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Abstract: Multidrug resistance (MDR) is one of the major clinical challenges in cancer treatment
and compromises the effectiveness of conventional anticancer chemotherapeutics. Among known
mechanisms of drug resistance, drug efflux via ATP binding cassette (ABC) transporters, namely
P-glycoprotein (P-gp) has been characterized as a major mechanism of MDR. The primary function of
ABC transporters is to regulate the transport of endogenous and exogenous small molecules across
the membrane barrier in various tissues. P-gp and similar efflux pumps are associated with MDR
because of their overexpression in many cancer types. One of the intensively studied approaches to
overcome this mode of MDR involves development of small molecules to modulate P-gp activity.
This strategy improves the sensitivity of cancer cells to anticancer drugs that are otherwise ineffective.
Although multiple generations of P-gp inhibitors have been identified to date, reported compounds
have demonstrated low clinical efficacy and adverse effects. More recently, natural polyphenols have
emerged as a promising class of compounds to address P-gp linked MDR. This review highlights
the chemical structure and anticancer activities of selected members of a structurally unique class of
‘biaryl’ polyphenols. The discussion focuses on the anticancer properties of ellagic acid, ellagic acid
derivatives, and schisandrins. Research reports regarding their inherent anticancer activities and
their ability to sensitize MDR cell lines towards conventional anticancer drugs are highlighted here.
Additionally, a brief discussion about the axial chirality (i.e., atropisomerism) that may be introduced
into these natural products for medicinal chemistry studies is also provided.

Keywords: anticancer drugs; cancer; multidrug resistance; polyphenols; ellagic acid; schisandrin;
quercetin; atropisomers; biaryl natural products

1. Introduction

Cancer continues to be a major public health burden and places significant stress on
global economy. Despite being a non-communicable disease, it is the second leading cause
of death in the United States and in Europe [1]. On a global scale, one in six deaths is linked
to cancer, and about 70% of deaths occur in low- and middle-income countries [1]. In 2018,
approximately 9.6 million people died from various types of cancer [2]. Among the many
different therapeutic interventions available, chemotherapeutics continue to be one of the
primary choices for treating various types of metastatic cancer [3,4]. Vinblastine, paclitaxel,
doxorubicin (Dox), docetaxel, etoposide, cisplatin, 5-fluorouracil (5-FU), cyclophosphamide,
and imatinib are some of the widely used drugs for the treatment of cancer (Figure 1) [3,5].
These agents are natural products, natural product derivatives, or synthetic molecules,
and have been developed to target different cellular pathways. Although many anticancer
agents are readily available, drug resistance renders these conventional chemotherapeutics
ineffective during cancer therapy.
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sistance to a broader selection of drugs, the phenomenon is generally referred to as devel-
opment of multidrug resistance (MDR) [7,8]. Some of the ways cancer cells develop drug 
resistance include (a) heightened DNA repair, (b) reduced drug uptake, (c) enhanced drug 
efflux, (d) mutation of drug targets, (e) changes in the inherent apoptotic process, and (f) 
increased drug metabolism [8]. As an example, MDR to paclitaxel has been attributed to 
increased levels of proteins such as mitogen-activated protein kinases (MAPKs), protein 
kinase B (PKB or Akt), and nuclear factor-κB (NF-κB), and overexpression of a type of 
ATP-binding cassette (ABC) transporter, referred to as P-glycoprotein (P-gp) [9,10]. Drug 
efflux mediated by ABC transporters has been identified as one of the major mechanisms 
of MDR for several classes of anticancer drugs, including etoposide, Dox, daunorubicin, 
vincristine, vinblastine, mitomycin C, and mitoxantrone, to name a few [11–15]. ABC 
transporters are a large family of membrane channels that regulate the movement of mol-
ecules of different sizes and chemical properties [16]. These transporters are found on the 
epithelial surface of various tissues, including brain, gastrointestinal tract, liver, renal tu-
bules, adrenal cortex, and placenta [17]. They play a crucial role in the absorption, distri-
bution, and excretion of various substances, including xenobiotics and endogenous mol-
ecules. P-gp, which is also referred to as MDR protein-1 (MDR1 or ABCB1) is the most 
studied ABC transporter and associated with MDR [12,18,19]. Two other ABC transport-
ers responsible for MDR in cancer cells are MDR-associated protein 1 (MRP1 or ABCC1) 
and breast cancer resistance protein (BCRP or ABCG2) [12,20,21]. P-gp is a dimeric 
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During the course of a treatment regimen, cancer cells transform and develop resis-
tance to these chemotherapeutics [6,7]. If a specific type of cancer exhibits drug resistance
to a broader selection of drugs, the phenomenon is generally referred to as development of
multidrug resistance (MDR) [7,8]. Some of the ways cancer cells develop drug resistance
include (a) heightened DNA repair, (b) reduced drug uptake, (c) enhanced drug efflux,
(d) mutation of drug targets, (e) changes in the inherent apoptotic process, and (f) increased
drug metabolism [8]. As an example, MDR to paclitaxel has been attributed to increased
levels of proteins such as mitogen-activated protein kinases (MAPKs), protein kinase B
(PKB or Akt), and nuclear factor-κB (NF-κB), and overexpression of a type of ATP-binding
cassette (ABC) transporter, referred to as P-glycoprotein (P-gp) [9,10]. Drug efflux medi-
ated by ABC transporters has been identified as one of the major mechanisms of MDR for
several classes of anticancer drugs, including etoposide, Dox, daunorubicin, vincristine,
vinblastine, mitomycin C, and mitoxantrone, to name a few [11–15]. ABC transporters are
a large family of membrane channels that regulate the movement of molecules of different
sizes and chemical properties [16]. These transporters are found on the epithelial surface of
various tissues, including brain, gastrointestinal tract, liver, renal tubules, adrenal cortex,
and placenta [17]. They play a crucial role in the absorption, distribution, and excretion
of various substances, including xenobiotics and endogenous molecules. P-gp, which is
also referred to as MDR protein-1 (MDR1 or ABCB1) is the most studied ABC transporter
and associated with MDR [12,18,19]. Two other ABC transporters responsible for MDR in
cancer cells are MDR-associated protein 1 (MRP1 or ABCC1) and breast cancer resistance
protein (BCRP or ABCG2) [12,20,21]. P-gp is a dimeric membrane glycoprotein, and the
two halves exhibit about 43% sequence homology. Both halves of P-gp form a highly hy-
drophobic transmembrane domain (TMD), which contains the substrate-binding region. A
well-accepted mechanism of drug transport involves an inward opening of TMDs to allow
substrate binding and, subsequently, an outward opening of the TMDs to release the sub-
strate during the process of drug efflux. ATP binds to the cytoplasmic nucleotide-binding
domain (NBD) and successively undergoes hydrolysis to provide the energy needed for the
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transporter activity [16,22]. P-gp and similar efflux pumps have a large substrate-binding
region within the TMDs, which allows the transport of a wide-range of substrates. A
crystal structure image below (PDB: 3G5U) shows the dimeric structure, and the inward
opening of P-gp (Figure 2) [23]. The large size and lack of substrate specificity enable P-gp
to efflux several anticancer drugs out of cancer cells, despite their size and polarity. Due
to a reasonable sequence homology between human P-gp and mouse P-gp, the structure
of mouse P-gp (PDB: 6FN1) is often used as a homology model during drug discovery
efforts [24,25].
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Since the discovery of P-gp, MRP-1, and BCRP, and their connection to MDR in cancer,
various approaches have been explored to overcome the drug efflux-linked therapeutic lim-
itation [26,27]. One of the widely investigated and highly promising approaches involves
the development of small molecules, including natural products, as potent modulators of
such drug efflux pumps [28–31]. The rationale is that effective inhibitors of P-gp, when
administered in combination with anticancer drugs, would increase the intracellular drug
concentration and reverse MDR [32]. Based on this hypothesis, several generations of P-
gp inhibitors have been investigated [26–31]. Cyclosporin A, a natural product and a first
generation P-gp inhibitor, was moved up to phase III clinical trials but failed due to ad-
verse effects [33]. First and second generation P-gp inhibitors were developed based on
the mechanistic evidence that P-gp inhibition would enhance anticancer therapy. However,
lead compounds from the initial phase of investigations were unsuccessful due to significant
dose limiting toxicity profiles and cardiac complications. More recently, medicinal chemistry
efforts led to the discovery of more promising third generation P-gp inhibitors, including
tariquidar, zosuquidar, elacridar, and laniquidar [34,35]. These highly selective and potent
agents advanced to clinical trials with high hope and promise because of their tolerable safety
profile. However, dose limiting adverse effects in some cases, and low objective response rate
in metastatic cancer prevented these leads from advancing further. Based on the proposed
mode of action, the third generation P-gp inhibitors, such as tariquidar and elacridar, are
acting directly on P-gp to modulate its activity, which is a similar mode of inhibition for many
earlier generation P-gp inhibitors. Currently reported compounds inhibit P-gp activity by
either modulating its ATPase activity or competitively binding to the substrate binding sites.
Polyphenols, on the contrary, have the ability to overcome P-gp based MDR via direct and
indirect mechanisms. The indirect mode of action relates to polyphenols’ ability to target
various signaling pathways that are linked to P-gp expression. Moreover, polyphenols are
structurally much different than the third generation P-gp inhibitors, and provide a new
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chemical space for exploration. Since these natural products have diverse functional groups,
a semi-synthetic approach could provide easy access to new structural analogs. Polyphe-
nols are also widely known for their antioxidant and anti-inflammatory properties, and it is
worth noting that such inherent beneficial effects may provide added advantages during the
exploration of these natural products [27].

Since the P-gp inhibitors developed to date have not provided a successful path for-
ward, there is a continuing interest in identifying new classes of P-gp inhibitors as more
efficacious clinical candidates [36–39]. Towards this direction, polyphenolic natural prod-
ucts have emerged as promising scaffolds for drug discovery efforts [40,41]. Furthermore,
polyphenols and their analogs may be developed to be used in combination with one or
more of the most successful third generation P-gp inhibitors to overcome MDR in cancer.

2. Natural Polyphenols and Their Anticancer Properties

Natural products are highly effective and structurally complex secondary metabolites
with a wide range of medicinal properties. Nature has optimized the molecular scaffold of
natural products by incorporating various functional groups, enabling natural products
to effectively bind to chiral binding sites within biological targets. Natural products from
microorganisms, plants, and animals have provided some of the most effective drugs and
drug leads to date [42–46]. Once new classes of natural products are discovered, scientists
employ chemical and biological approaches to transform natural products into pharma-
cologically optimized structures for therapeutic applications [47–50]. With the successful
development of several natural products and their derivatives as effective anticancer drugs,
there is a continuing interest to discover new and more effective anticancer natural prod-
ucts. Polyphenols are a class of highly oxygenated aromatic compounds and have emerged
as promising drugs with broad spectrum of bioactivity [51]. Many of the plant-derived
polyphenols can be classified into sub-categories based on their core-structure. Some of the
core structures found within various polyphenols, such as flavan-3-ol, 3-hydroxyflavone,
gallic acid, ellagic acid, caffeic acid, and phloroglucinol are highlighted in Figure 3.
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More than 800 polyphenolic compounds are broadly described as flavonoids and
they exhibit a range of biological activities, including anticancer activity [51]. The struc-
tures of selected examples of structurally unique and biologically important polyphenols
are shown in Figure 4. Among the various polyphenols investigated for anticancer ac-
tivities and their ability to modulate P-gp function, quercetin has gained considerable
attention [30]. Although quercetin is not the major focus of this review, its anticancer
potential is briefly discussed here. Quercetin exhibits anti-inflammatory/antioxidant ac-
tivity as it is capable of quenching free radicals. It exhibits anticancer activity via various
mechanisms, including cell cycle arrest, apoptosis and/or alteration of various signaling
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pathways [52,53]. A substantial amount of literature reports are available on the anticancer
activity of quercetin against several cancer types, including breast, lung, liver, pancreatic,
colon, cervical, ovarian, and kidney cancers. For a comprehensive review on the anticancer
properties of quercetin, readers are directed to a review article published by Mubarak
and coworkers [53]. Quercetin has been shown to enhance the therapeutic outcome of
cisplatin in a synergistic fashion, and sensitivity of breast cancer cell lines to Dox [54,55].
In addition to showing cytotoxicity, quercetin and similar chromones have been identified
as modulators of P-gp, MRP-1, and BCRP [20,56,57]. It is important to note that conversion
of the hydroxyl in these natural products to the corresponding methyl ethers improved
the inhibitory activity towards MDR efflux pumps. Current understanding of the SAR
of quercetin provides a strong foundation to further develop similar polyphenols into
promising anticancer agents.Cells 2021, 10, x FOR PEER REVIEW 7 of 16 
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2.1. Ellagic Acid

Ellagitannins represent a diverse class of polyphenolic natural products with remark-
able structural complexity [58,59]. The various members of ellagitannins are generally
glycosyl esters of ellagic acid and/or gallic acid motifs. Some members also contain flavone
motifs as part of the structure, referred to as flavano-ellagitannins. Ellagic acid (EA), a com-
ponent of ellagitannins, is a biaryl polyphenol where two gallic acid motifs are oxidatively
coupled via a carbon-carbon bond to join the two aryl rings. The biosynthetic modification
provides a structurally unique biaryl motif that has the potential to exhibit axial chirality,
referred to as ‘atropisomerism’ [60,61]. EA is generated via a hydrolysis reaction under
acidic or basic pH, and the ester linkages within ellagitannins are hydrolyzed to generate
the acyclic carboxylic acid derivative of EA. This intermediate readily undergoes an in-
tramolecular lactonization to generate EA (Scheme I). As a biologically active secondary
metabolite, EA and ellagitannins exhibit beneficial effects towards various diseases, in-
cluding microbial infection, cancer, and neurodegenerative diseases, mainly due to their
antioxidant properties [62]. For example, chebulagic acid (Figure 4), an ellagitannin, syner-
gistically enhances the anticancer activity of Dox, and overcomes MDR-1 mediated drug
resistance in HepG2 cell line [63]. The biological properties of EA have been extensively
reviewed in the literature and readers are directed to published work on this topic [62,64].
The presence of poly-oxygenated aryl rings allows EA to quench free radicals, making it a
highly effective antioxidant and cytoprotective agent. EA has been reported to provide a
protective effect against reactive oxygen species in biological environments [65]. One of the
major pharmacological limitations of EA relates to its low solubility in water, which leads
to significantly reduced bioavailability. Chemical modification of EA to enhance solubility
and bioactivity is of high interest to medicinal chemists. Additionally, gut bacteria are
known to metabolize EA into urolithins, which have better bioavailability compared to
EA. The rate of metabolism of EA by gut bacteria and the levels of urolithins may be
attributed to discrepancies in pharmacological outcomes observed from in vitro versus
in vivo studies [66].

With regards to anticancer activity, EA showed cytotoxicity against A549 cell line, and
the cytotoxicity was linked to inhibition of sphingosine kinase 1 (SphK1). Computational
methods and kinase inhibition assays were used to support SphK1 inhibition as a mech-
anism of cytotoxicity. The binding is proposed to occur within the ATP binding pocket
of SphK1 [67]. In a recent study, Ceci et al. reported that EA reduced the invasive nature
of bladder cancer through VEGF-mediated pathways by testing EA against four different
human bladder cancer cell lines (T24, UM-UC-3, 5637 and HT-1376) [68]. EA also exhibited
selective activity against A549, HepG2, and MCF-7 cell lines, compared to HEK293 cell
line [69–71]. The mechanism of cytotoxicity against A549 is linked to inhibition of PI3K/Akt
pathway [69], and pyruvate dehydrogenase kinase 3 (PDK3) activity [70]. EA was identi-
fied as an inhibitor of integrin-linked kinase (ILK) in the breast cancer cell line, MCF-7 as
well [71]. Recently, EA has attracted the attention of researchers who are developing drug
leads to overcome MDR in cancer. Along with a series of 3,4-dihydroisocoumarins, Sachs
et al. evaluated the activity of EA against A549, HCT-15 (expresses high levels of P-gp),
and MCF-7/MX (overexpresses BCRP) cell lines. EA showed an IC50 value of >50 µM
against all three cell lines, where the isocoumarin derivative-1 (Figure 5) showed selective
toxicity towards A549, and has an IC50 of > 100 µM against HCT-15 and MCF-7/MX [72].
Moreover, the isocoumarin derivative-1 showed a dose-dependent inhibition of P-gp and
BCRP. Current literature data support that EA has considerable potential as an anticancer
lead, and medicinal chemistry could improve its physiochemical properties and perhaps
provide a better understanding of its ability to overcome P-gp mediated MDR.
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2.2. Schisandrins and Related Lignans

Schisandrins are an important class of lignans and are characterized by the presence
of the ‘dibenzocyclooctadiene’ skeleton. These natural products were isolated from the
plant species Schisandra chinesis, and the extract from the Schisandraceae family was used
as part of traditional Chinese medicine [73]. The biologically active components in the
natural remedy were identified as dibenzocyclooctadienes and exhibited a wide range
of bioactivity, including antioxidant, anticancer, and hepatoprotective effects [74]. The
dibenzocyclooctadiene class polyphenols include several members, and are distinguished
by the identity of chemical groups attached to the biaryl-rings and the cyclooctadiene
ring [74]. The biaryl motif of schisandrins is structurally similar to EA and contains
the 3,4,5-trioxygenated benzene ring. However, the cyclooctadiene ring provides more
flexibility to the biaryl motifs in schisandrins, and a chance to exhibit atropisomerism. Since
it is impossible to discuss all members of the ‘dibenzocyclooctadiene’ class natural products
within this review, the scope of this review is limited to schisandrins, and their anticancer
properties. The three prominent members of schisandrins reported to date are schisandrin
A (Sch A), schisandrin B (Sch B) and schisandrin C (Sch C). Sch A is a per-methylether
compound, while Sch B and Sch C have a 1,3-benzodioxole group as part of the biaryl ring
(Figure 6). Other derivatives of schisandrins are also known in the literature, where the
cyclooctadiene ring is oxygenated, but those members are not discussed here [74,75].
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Sch A exhibits promising anticancer activities against thyroid, colorectal, breast, and
lung cancer cell lines [76–80]. Xu et al. report that Sch A is active against two triple-negative
breast cancer cell lines, MDA-MB-231 and BT-549 in vitro and in xenograft mouse models.
Sch A induced cell cycle arrest and apoptosis via Wnt/ER signaling pathway [79]. Sch A
also inhibited the proliferation of colorectal cancer cell lines (RKO, DLD-1, SW620, and
SW480), causing cell cycle arrest and apoptosis [78]. Chen et al. report that the mecha-
nism of cytotoxicity against these cell lines is linked to heat shock proteins function [78].
Interestingly, Sch A was reported as a chemosensitizer and improved the activity of con-
ventional anticancer drugs against MDR cell lines. In another report, Sch A rescued the
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anticancer activity of gefitinib towards a gefitinib-resistant cell line (HCC827/GR) by in-
hibiting IKKβ/NF-κB signaling [81]. Furthermore, Sch A reversed P-gp mediated Dox
resistance in MCF-7/Dox cell line. It also inhibited the NF-κB and Stat3 signaling pathways
to rescue the activity of Dox [82]. A recent report by Kong et al. showed that Sch A
improved the activity of 5-FU against two colorectal cancer cell lines, HCT-116 and SW480.
The report indicates that sensitization of HCT-116 and SW480 cell lines towards 5-FU is
through PI3K/Akt and NF-κB pathways [83].

Sch B has been extensively investigated for its anticancer properties and its abil-
ity to overcome MDR in cancer [84–92]. A recent study reported that Sch B was active
against three different triple negative breast cancer cell lines (MDA-MB-231, BT-549, and
MDA-MB-468) and inhibited cell growth via cell cycle arrest and apoptosis. The mech-
anism of cytotoxicity relates to Stat3 inactivation [86]. When a hepatic carcinoma cell
line (SMMC7721) and a breast cancer cell line (MCF-7) were treated with Dox and Sch B
together, Sch B considerably enhanced the anticancer effect. It is worth noting that Sch
B did not increase Dox-induced apoptosis in rat cardiomyocytes and human fibroblasts.
Li et al. reported that the enhanced cytotoxicity was due to caspase-9 activation, and less
likely to be via P-gp or other efflux pump inhibition [89]. Researchers have explored the
potential of Sch B to be a useful inhibitor of P-gp as well. Based on a report by Wang et al.,
Sch B sensitized a Dox-resistant breast cancer cell line (MCF-7/ADR) and ovarian cancer
cell line (A2780/Dox) by inhibiting P-gp expression and P-gp mediated efflux of Dox [90].
Sch B alone and in combination with Dox showed a concentration-dependent inhibition of
P-gp expression, as well as P-gp activity [90]. A report by Sun et al. confirms that Sch B
not only inhibits P-gp activity but also MRP-1 mediated drug efflux [91]. Sch B reversed
MRP-1 mediated drug resistance in HL60/ADR and HL60/MRP cell lines, and sensitized
these cell lines towards daunorubicin. Compared to probenecid, a known MRP-1 inhibitor,
Sch B showed noticeably stronger potency [91]. Hu and coworkers also showed that Sch B
reversed P-gp mediated drug resistance in K562/ADR, MCF-7/ADR, Bcap37/ADR, and
KBv200 cell lines [92], Several conventional anticancer drugs were evaluated in combina-
tion with Sch B or verapamil against these cell lines, and Sch B showed promising drug
reversal data. As per the authors, Sch B has an advantage over verapamil because Sch B
did not exhibit a similar toxicity profile as verapamil [92]. Based on literature evidence,
Sch B has emerged as a structurally novel natural product that modulates P-gp and similar
efflux pump mediated MDR in cancer [91,92]. Although Sch C shares structural similarities
to Sch A and Sch B, limited studies have been done to evaluate its anticancer potential. Sch
C, also referred to as wuweizisu C, was initially identified as a hepatoprotective agent [93].
Lu et al. [94] isolated and reported the selective anticancer activity of Sch C towards hep-
atocellular carcinoma cells (Bel-7402), compared to a breast cancer cell line (Bcap37) and
a nasopharyngeal carcinoma cell line (KB-3-1). Sch C also exhibited anticancer activity
against human leukemia U937 cells, where it induced cell cycle arrest and apoptosis [95].
Taken together, Sch A, Sch B, and Sch C are useful polyphenols with a ‘biaryl’ scaffold and
show considerable potential as anticancer agents and modulators of P-gp activity (Table 1).
It is important to note that these natural products exhibit anticancer activity via various bio-
chemical mechanisms. By altering the signaling pathways that are linked to tumorigenesis,
and sensitizing MDR-cell lines towards anticancer drugs, schisandrins exhibit promising
anticancer potential. Medicinal chemists are interested in synthesizing structural analogs of
schisandrins to improve their anticancer potential [96,97]. Current efforts have focused on
understanding the SAR related to the cyclooctadiene ring. However, the biaryl scaffold in
this class of natural products provides another useful avenue for structure diversification
of schisandrins.
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Table 1. Summary of anticancer activities of EA and schisandrins.

Polyphenol Cancer Cell Line Tumor Type Anticancer Mechanism Ref.

Ellagic acid

A549 non-small cell lung cancer SphK1 inhibition [67]
PI3K/Akt pathway and PDK3 activity [69,70]

T24, UM-UC-3, 5637,
HT-1376 bladder cancer VEGF-mediated pathway [68]

HepG2 liver cancer PI3K/Akt pathway and PDK3 activity [69,70]

MCF-7 breast cancer PI3K/Akt pathway and PDK3 activity [69,70]
integrin-linked kinase (ILK) inhibition [71]

Sch A

MDA-MB-231, BT-549 breast cancer cell cycle arrest/apoptosis via
Wnt/ER pathway [79]

RKO, DLD-1, SW620,
SW480, HCT-116 colorectal cancer

cell cycle arrest/apoptosis; cytotoxicity is via
heat shock protein function [78]

increased sensitivity to 5-FU via PI3K/Akt and
NF-kB signaling [83]

HCC827/GR Gefitinib-resistant
lung cancer inhibition of IKKb/NF-kB signaling [81]

MCF-7/Dox Dox-resistant breast cancer reversal of P-gp mediated MDR via Stat3 and
NF-kB pathway [82]

Sch B

MDA-MB-231, BT-549,
MDA-MB-468 breast cancer cell cycle arrest/apoptosis via Stat3 pathway [86]

SMMC7721 liver cancer enhanced the anticancer activity of Dox [89]

MCF-7 breast cancer enhanced the anticancer activity of Dox [89]

MCF-7/ADR Dox-resistant breast cancer decreased P-gp expression and P-gp
mediated efflux [90,92]

A2780/Dox Dox-resistant
ovarian cancer

decreased P-gp expression and P-gp
mediated efflux [90]

HL60/ADR, HL60/MRP,
K562/ADR drug-resistant leukemia sensitized the cells to daunorubicin; reversed

P-gp mediated drug resistance [91,92]

Bcap37/ADR drug-resistant
breast cancer reversed P-gp mediated drug resistance [92]

KBv200 drug-resistant
epidermoid carcinoma reversed P-gp mediated drug resistance [92]

Sch C

Bel-7402 liver cancer undisclosed mechanism [94]

Bcap37 breast cancer undisclosed mechanism [94]

KB-3-1 nasopharyngeal cancer undisclosed mechanism [94]

U937 leukemia cell cycle arrest and apoptosis [95]

3. Atropisomerism in Drug Discovery

Chirality of molecules often plays an important role in their biological activity. There
are many examples of drugs to illustrate that for a mixture of enantiomers, one isomer
exhibits desired biological activity, and the other isomer is either inactive or exhibits adverse
effects. Classically, chirality of a molecule is linked to stereocenters (i.e., enantiomers or
diastereomers), and racemization of such molecules involves bond breaking or bond
forming steps. Atropisomerism typically arises via rotation along a bond that connects two
sp2-hybridized atoms, and isomers with opposing optical properties are obtained. Biaryl
systems are classically known for their ability to exhibit atropisomerism and have been
well explored for structure, stability, and function. 1,1′-Bi-2-naphthol (BINOL) is a common
example in chemistry, which exhibits atropisomerism, and extremely difficult to racemize
at room temperature. Within the biaryl-containing small molecules, steric hindrance from
substituents on the aryl ring limits the rotation of two motifs along a chiral axis. If the size
of the substituents on the aryl rings are small, there is free rotation along the chiral axis and
the isomers racemize freely at room temperature. Atropisomerism in drug discovery has
been widely accepted due to the presence of one or more axial chirality in a large percentage
of clinically used drugs [98–100]. Although rapidly interconverting atropisomers are often
characterized as achiral entities, it is important to recognize that such molecules bind
to a biological target as one type of isomer [98,99]. Moreover, similar to enantiomers,
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atropisomers can exhibit different binding affinity towards an intended target and toxicity
profile [100,101]. Colchicine (Figure 7) is a natural product and exhibits atropisomerism.
The bioactive and stable isomer of colchicine is identified as (Ra, 7S)-colchicine. The stability
of this particular atropisomer is attributed to the ‘cycloheptadiene’ ring and the acetamido
group at 7-position [61,102]. It is interesting to note that the biaryl-motifs of schisandrins
(Figures 6 and 7) also share a similar mode of conformational stability due to the presence
of an cyclooctadiene ring. Based on the understanding of biaryl-containing atropisomeric
molecules, we hypothesize that EA, schisandrins and similar polyphenols can be suitably
derivatized to generate stable atropisomers.
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EA, as a bis-lactone, is a planar molecule and has substantial limitations in terms
of physiochemical properties and anticancer properties. On the other hand, the acyclic
carboxylic acid derivative of EA (Figure 7) has an atropisomeric axis and has the ability
to rotate around the biaryl axis. Literature reports indicate that a hydroxyl on the carbon
adjacent to the atropisomeric axis is not large enough to restrict the interconversion of
the isomers. It is very possible to modify the hydroxyls and/or carboxyl groups on the
aryl rings of EA with a suitable substituent to increase the rotational barrier and generate
atropisomeric derivatives. Schisandrins, on the other hand, are not planar, and likely to
exhibit atropisomerism. Based on the structure of colchicine, one can design atropisomeri-
cally pure structural analogs of schisandrins through modification of the cyclooctadiene
ring and/or the methoxy group adjacent to the biaryl axis. Since EA and schisandrins
show promise as anticancer agents and promising inhibitors of P-gp, MRP-1, and BCRP,
their therapeutic potential can be further explored by studying stable atropisomers. In
comparison to traditional chemical approaches available to rigidify the flexible or more
planar polyphenol scaffolds, rigidification of an interconverting atropisomeric axis is a
synthetically more viable option for drug discovery efforts.

4. Conclusions

Polyphenolic natural products represent a chemically unique class of molecules as
potential anticancer agents. This review summarizes the chemical structure and anticancer
activities of a class of structurally similar polyphenols, EA and schisandrins. They share a
3,4,5-trioxygenated biaryl scaffold as the core structure, yet schisandrins exhibit slightly
more structural complexity. These natural products exhibit inherent anticancer activities
against various cancer types and through different modes of action. Moreover, they
have emerged as promising leads to address the challenges related to MDR in cancer.
Schisandrins improve the anticancer activities of conventional anticancer drugs against
MDR cell lines by various biochemical mechanisms. One of the major advantages of
polyphenols relates to their ability to modulate drug efflux by P-gp and similar transporters,
and their expression at the transcription level. Therefore, polyphenols hold promise as
an important class of modulators of MDR in cancer. Since the atropisomeric properties of
these polyphenols have not been explored in detail, this review highlights the possibility
of generating conformationally rigid atropisomers of EA and schisandrins for medicinal
chemistry evaluation.
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