

Article – special issue Doi 10.5943/mycosphere/si/1b/10 Copyright © Guizhou Academy of Agricultural Sciences

Diversity and phylogeny of *Neofusicoccum* species occurring in forest and urban environments in Portugal

Lopes A¹, Barradas C¹, Phillips AJL² and Alves A¹

¹Departamento de Biologia, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal ²Biocustams and Integrative Sciences Institute, Equilty of Science, University of Lisbon, Campo Grande, 1749-016

²Biosystems and Integrative Sciences Institute, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal

Lopes A, Barradas C, Phillips AJL, Alves A 2016 – Diversity and phylogeny of *Neofusicoccum* species occurring in forest and urban environments in Portugal. Mycosphere 7(7), 906–920, Doi 10.5943/mycosphere/si/1b/10

Abstract

A collection of *Neofusicoccum* isolates was obtained from a large number of plant species, showing dieback and canker symptoms, in forest and urban environments in Portugal. A total of 351 isolates was characterised by BOX-PCR fingerprinting to evaluate their overall genetic diversity. Representatives of each group identified in this analysis were selected for multilocus sequence analyses, using sequences of the ribosomal internal transcribed spacer region (ITS rDNA) and partial sequences of the translation elongation factor 1-alpha (*tef1*) and β -tubulin (*tub2*). Phylogenetic analysis of multilocus sequence data identified five species within the collection of isolates, namely *N. australe*, *N. eucalyptorum*, *N. kwambonambiense*, *N. luteum*, and *N. parvum*. Of these *N. australe* and *N. eucalyptorum* were the most frequent representing the vast majority of the isolates. Several new fungus-host associations were established for all of the *Neofusicoccum* species found. Here we report for the first time the occurrence of *N. eucalyptorum* on a host outside the family Myrtaceae. The results of this study show that the genus *Neofusicoccum* appears to be common and widespread on a broad range of hosts representing a potential threat to susceptible plants. Additionally, ornamental plants in urban environments are shown to be hosts of a diverse assemblage of *Neofusicoccum* species.

Key words - Botryosphaeriaceae - endophytic - host-association - ornamentals - pathogenic

Introduction

The genus *Neofusicoccum* is a member of the *Botryosphaeriaceae* (Botryosphaeriales, Dothideomycetes) comprising numerous species found on a wide range of plant hosts of agricultural, forestry, ecological and economic importance (Crous et al. 2006, Slippers &Wingfield 2007, Slippers et al. 2013). Host infections are thought to occur predominantly through horizontal transmission, i.e. individual infections *via* spores (ascospores or conidia) but also through the seeds (vertical transmission). Inside the plant, they have the ability to colonize without producing any external symptoms, remaining inside the host as endophytes (Slippers & Wingfield 2007). Endophytism could be, however, an important feature since these fungi can be moved easily and inconspicuously around the world in seeds, cuttings and even fruits, subsequently infecting both native and non-native trees in their new environments (Burgess et al. 2005, Slippers et al. 2013).

The change from endophytic to pathogenic phase is often related to stress such as drought, extreme temperature fluctuations, nutrient deficiencies and mechanical injuries. Infected plants can exhibit a multiplicity of disease symptoms such as fruit rots, leaf spots, seedling damping-off and collar rot, cankers, blight of shoots and seedlings, gummosis, blue-stain of the sapwood, dieback and tree death (Slippers & Wingfield 2007).

Neofusicoccum is known to include a large number of phylogenetically closely related and morphologically similar cryptic species rendering phenotypic characteristics such as morphology, growth and culture appearance inadequate for species identification. Thus, species discrimination is based on a multilocus sequencing approach (Pavlic et al. 2009a, 2009b).

Within the 29 species currently accepted in the genus some are known to have very wide host and geographic ranges while others show some host preference. For example, *N. parvum* was reported from 90 hosts in 29 countries on six continents by Sakalidis et al. (2013). In contrast, *N. eucalypticola* and *N. mangiferae* were associated only with *Eucalyptus* spp. and *Mangifera indica* respectively and were geographically more restricted (Phillips et al. 2013). In general, species of *Neofusicoccum* are a constant presence in almost all kind of woody plants. For instance, they are frequently isolated from eucalypts (Iturritxa et al. 2011), almond (Inderbitzin et al. 2010), avocado (McDonald & Eskalen 2011), walnut (Yu et al. 2015), grapevine (Mondello et al. 2013, Berraf-Tebbal et al. 2014), olive (Triki et al. 2015), blueberry (Pérez et al. 2014), mango (Ismail et al. 2013), rubber tree (Ngobisa et al. 2013) and peach (Thomidis et al. 2011). Although these fungi have been relatively well studied on economically important crops, much less is known about their prevalence in others groups of plants namely the gymnosperms (Slippers et al. 2005, Golzar & Burgess 2011) and ornamental species (Zlatković et al. 2016). Although of low economic value, ornamental plant species should not be ignored as they provide a wide range of ecosystem services (Zlatković et al. 2016).

In Portugal the forest area occupies 35.4% of the total territory according to the National Forest Inventory 2013 (ICNF, 2013). *Eucalyptus globulus*, a non-native species, is the most abundant followed by *Quercus suber* and *Pinus pinaster*. Apart from the forest species Portugal has important crops such as grapevine and olive among others. In spite of this, knowledge about the diversity of the genus *Neofusicoccum* in Portugal is scarce. The few known studies were done on grapevines (Phillips 2002), conifers (Alves et al. 2013) and more recently on eucalypts (Barradas et al. 2016).

To gain further knowledge about the diversity of the genus *Neofusicoccum* in Portugal the main goal of this study was to identify the species associated with a wide diversity of plants. For this, a survey was performed on several species of forest and crop trees and also on ornamental species.

Materials & Methods

Fungal isolation and morphological characterization

Isolates were obtained from samples collected from plants in natural forest ecosystems and ornamentals planted in urban environments (e.g. parks, gardens, streetscapes). The following hosts were sampled: Acacia longifolia, Aesculus hippocastanum, Castanea sativa, Ferula communis, Fraxinus angustifolia, Fraxinus excelsior, Fraxinus ornus, Hydrangea macrophylla, Malus domestica, Melia azedarach, Olea europaea, Populus alba, Populus tremula, Pyracantha coccinea, Quercus robur, Rosa sp., Tilia platyphyllos and Ulmus minor. This study also included isolates from diseased and healthy Eucalyptus globulus that were previously obtained by Barradas et al. (2016). The remaining isolates were obtained from hosts showing disease symptoms on stems, trunks and branches such as canker and dieback (Fig. 1). Samples from diseased plants were initially screened for the presence of fruiting bodies (ascomata and/or conidiomata) and when present single spore isolations were made as described previously (Phillips et al. 2013). In the absence of fruiting bodies isolations were made by plating pieces of diseased tissues following

Fig. 1 – **a**. *Aesculus hippocastanum* with trunk canker. **b**. Detailed view of trunk canker. **c,d**. *Tilia platyphyllos* with symptoms of dieback of twigs and branches associated with N. luteum and N. australe. **e**. Ascus and ascospores of N. australe on Ferula communis. **f**. Developing conidia of N. luteum on Melia azedarach. **g**. Conidia of N. australe from Acacia longifolia.

surface sterilization as described by Alves et al. (2013). Cultures were routinely grown and maintained on half-strength potato-dextrose agar (PDA) (HIMEDIA, India).

To assign isolates to the genus *Neofusicoccum* conidial micromorphological characteristics and mode of conidiogenesis were observed with a Nikon 80i microscope and images captured with a Nikon DS-Ri1 camera. Isolates were induced to sporulate by plating them on ¹/₄ strength PDA (Merck, Germany) containing sterilised pine needles and incubating at room temperature (about 20–25°C) under diffused daylight until pycnidia developed. For microscopy, pycnidia were mounted in 100% lactic acid.

Molecular characterization

Genomic DNA was extracted from fresh mycelium grown on half-strength PDA plates for 5 d at approximately 23°C, according to Alves et al. (2004). All PCR reactions were carried out in 25 μ L reaction mixtures with NZYTaq 2× Green Master Mix (2.5 mM MgCl2; 200 μ M dNTPs; 0.2 U/ μ L DNA polymerase) (Lisbon, Portugal) in a Bio-Rad C-1000 TouchTM Thermal Cycler (Hercules, CA, USA). Negative controls with sterile water instead of the template DNA were used in every PCR reaction.

BOX-PCR fingerprinting was done as described previously (Alves et al. 2007) using primer BOXA1R. Representatives of each group identified in this analysis were selected for multilocus sequence analyses (Table 1). Primers ITS1 and ITS4 (White et al. 1990) were used for amplification and sequencing of the ITS region of the ribosomal RNA as described by Alves et al. (2004). Part of the translation elongation factor 1-alpha (*tef1*) was amplified with the primers EF1-688F and EF1-1251R (Alves et al. 2008) with the conditions described by Phillips et al. (2005). Part of the β -tubulin gene (*tub2*) was amplified with primers T1 (O'Donnell & Cigelnik 1997) and Bt2b (Glass & Donaldson 1995) using the following conditions: 95°C for 3 min; 35 cycles at 94°C for 30 s, 50°C for 30 s, and 72°C for 1 min; final extension at 72°C for 10 min.

PCR amplicons were purified with the DNA Clean & Concentrator^{TM-5} kit (Zymo Research, CA, USA) before DNA sequencing. Both strands of the PCR products were sequenced at GATC Biotech (Cologne, Germany). The nucleotide sequences were read with FinchTV v.1.4.0 (Geospiza Inc.). All sequences were checked manually, and nucleotide arrangements at ambiguous positions were clarified using both primer direction sequences. Sequences were deposited in GenBank (Table 1) and the alignment in TreeBase (S19901).

Available ITS, *tef1* and *tub2* sequences from known and well-characterized *Neofusicoccum* species were retrieved from GenBank and also included in the phylogenetic analyses. Sequences of *Dothiorella sarmentorum* and *Do. iberica* were used as outgroup (Table 1).

Sequences were aligned with ClustalX v. 2.1 (Thompson et al. 1997), using the following parameters: pairwise alignment parameters (gap opening = 10, gap extension = 0.1) and multiple alignment parameters (gap opening = 10, gap extension = 0.2, transition weight = 0.5, delay divergent sequences = 25 %). Alignments were checked and edited with BioEdit Alignment Editor v. 7.2.5 (Hall 1999). Phylogenetic analyses of sequence data were done with MEGA6 v. 6.06 (Tamura et al. 2013). All gaps were included in the analyses. The model of DNA sequence evolution used for each dataset was determined by the software. Maximum likelihood (ML) analyses were performed on a neighbour-joining (NJ) starting tree automatically generated by the software. Bootstrap analyses with 1000 replicates were used to estimate the consistency of each node of the trees. Trees were visualized and edited with Interactive tree of life (iTOL) v3 (Letunic & Bork 2016).

Results

Fungal Isolation

A collection of 351 isolates from different hosts was established. These isolates were initially selected based on culture characteristics typical of the *Botryosphaeriaceae*, namely fast-growing fluffy white aerial mycelium becoming grey to black with grey to indigo-grey or black pigment visible from the reverse side of Petri dishes. Most isolates sporulated within 2–3 weeks on ¹/₄ strength PDA supplemented with pine needles. Micromorphology of conidia and conidiogenesis assigned them to *Neofusicoccum*. Host ranges of the species were determined from the SMML Fungus-Host Distribution Database as well as available literature. Several new fungus-host associations were established (Table 2).

GenBank Access			sion ^b	n ^b		
Species	Isolate ^a	Origin	Host	ITS	tef1	tub2
Dothiorella iberica	CBS115041	Spain	Quercus ilex	AY573202	AY573222	EU673096
D. sarmentorum	IMI63581b	United Kingdom	<i>Ulmus</i> sp.	AY573212	AY573235	EU673102
N. algeriense	CBS137504	Algeria	Vitis vinifera	KJ657702	KX505893	KX505915
	CAA322	Portugal	Malus domestica	KX505906	KX505894	KX505916
	CAA366	Portugal	Eucalyptus globulus	KT440951	KT441011	KX871764
	PE32	Portugal	Eucalyptus globulus	KT440952	KT441012	KX871765
N. andinum	CBS117453	Venezuela	Eucalyptus sp.	GU251155	GU251287	GU251815
N. arbuti	CBS116131	USA	Arbutus menziesii	AY819720	KF531792	KF531793
	CBS117090	USA	Arbutus menziesii	AY819724	KF531791	KF531794
N. australe	CMW6837	Australia	Acacia sp.	AY339262	AY339270	AY339254
	CMW6853	Australia	Sequoiadendron giganteum	AY339263	AY339271	AY339255
	CAA178	Portugal	Ferula communis	KX871844	KX871800	KX871709
	CAA184	Portugal	Ferula communis	KX871845	KX871801	KX871710
	CAA191	Portugal	Ferula communis	KX871846	KX871802	KX871711
	CAA195	Portugal	Ferula communis	KX871847	KX871803	KX871712
	CAA197	Portugal	Ferula communis	KX871848	KX871804	KX871713
	CAA202	Portugal	Melia azedarach	KX871849	KX871805	KX871714
	CAA231	Portugal	Hydrangea macrophylla	KX871850	KX871806	KX871715
	CAA233	Portugal	Hydrangea macrophylla	KX871851	KX871807	KX871716
	CAA242	Portugal	Hydrangea macrophylla	KX871852	KX871808	KX871717
	CAA319	Portugal	Eucalyptus globulus	KT440900	KT440960	KX871718
	CAA320	Portugal	Eucalyptus globulus	KT440901	KT440961	KX871719
	CAA326	Portugal	Pyracantha coccinea	KX871853	KX871809	KX871720
	CAA327	Portugal	Pyracantha coccinea	KX871854	KX871810	KX871721
	CAA332	Portugal	Eucalyptus globulus	KT440902	KT440962	KX871722
	CAA341	Portugal	Eucalyptus globulus	KT440903	KT440963	KX871723
	CAA344	Portugal	Eucalyptus globulus	KT440904	KT440964	KX871724
	CAA351	Portugal	Eucalyptus globulus	KT440905	KT440965	KX871725
	CAA357	Portugal	Eucalyptus globulus	KT440906	KT440966	KX871726
	CAA359	Portugal	Eucalyptus globulus	KT440907	KT440967	KX871727
	CAA392	Portugal	Quercus robur	KX871855	KX871811	KX871728
	CAA398	Portugal	Eucalyptus globulus	KX871856	KX871812	KX871729
	CAA400	Portugal	Eucalyptus globulus	KT440908	KT440968	KX871730
	CAA401	Portugal	Eucalyptus globulus	KT440909	KT440969	KX871731
	CAA406	Portugal	Eucalyptus globulus	KT440910	KT440970	KX871732
	CAA420	Portugal	Eucalyptus globulus	KT440911	KT440971	KX871733
	CAA427	Portugal	Eucalyptus globulus	KT440912	KT440972	KX871734

Table 1 Identity of the isolates studied and GenBank accession numbers of sequences used in phylogenetic analyses.

				GenBank Acces	sion ^b	
Species	Isolate ^a	Origin	Host	ITS	tef1	tub2
	CAA434	Portugal	Eucalyptus globulus	KT440913	KT440973	KX505927
	CAA441	Portugal	Eucalyptus globulus	KT440914	KT440974	KX871735
	CAA455	Portugal	Eucalyptus globulus	KT440915	KT440975	KX505928
	CAA464	Portugal	Eucalyptus globulus	KT440916	KT440976	KX871736
	CAA466	Portugal	Eucalyptus globulus	KT440917	KT440977	KX871737
	CAA468	Portugal	Olea europaea	KX871857	KX871813	KX871738
	CAA475	Portugal	Olea europaea	KX871858	KX871814	KX871739
	CAA546	Portugal	Eucalyptus globulus	KT440918	KT440978	KX871740
	CAA549	Portugal	Eucalyptus globulus	KT440919	KT440979	KX871741
	CAA550	Portugal	Eucalyptus globulus	KX871859	KX871815	KX871742
	CAA571	Portugal	Eucalyptus globulus	KX871860	KX871816	KX871743
	CAA647	Portugal	Eucalyptus globulus	KT440920	KT440980	KX871744
	CAA648	Portugal	Eucalyptus globulus	KT440921	KT440981	KX871745
	CAA649	Portugal	Eucalyptus globulus	KX871861	KX871817	KX871746
	CAA723	Portugal	Tilia platyphyllos	KX871862	KX871818	KX871747
	CAA741	Portugal	Acacia longifolia	KX871863	KX871819	KX871748
	CAA743	Portugal	Acacia longifolia	KX871864	KX871820	KX871749
	CAA747	Portugal	Acacia longifolia	KX871865	KX871821	KX871750
	CAA749	Portugal	Acacia longifolia	KX871866	KX871822	KX871751
	CAA750	Portugal	Acacia longifolia	KX871867	KX871823	KX871752
	CAA751	Portugal	Acacia longifolia	KX871868	KX871824	KX871753
N. batangarum	CBS124924	Cameroon	Terminalia catappa	FJ900607	FJ900653	FJ900634
	CBS124923	Cameroon	Terminalia catappa	FJ900608	FJ900654	FJ900635
N. brasiliense	CMM1338	Brazil	Mangifera indica	JX513630	JX513610	KC794031
	CMM1285	Brazil	Mangifera indica	JX513628	JX513608	KC794030
N. cordaticola	CBS123634	South Africa	Syzygium cordatum	EU821898	EU821868	EU821838
	CBS123635	South Africa	Syzygium cordatum	EU821903	EU821873	EU821843
N. cryptoaustrale	CMW23785	South Africa	Eucalyptus sp.	FJ752742	FJ752713	FJ752756
	CMW20738	South Africa	Eucalyptus citriodora	FJ752740	FJ752710	FJ752754
N. eucalypticola	CBS115679	Australia	Eucalyptus grandis	AY615141	AY615133	AY615125
	CBS115766	Australia	Eucalyptus rossi	AY615143	AY615135	AY615127
N. eucalyptorum	CBS115791	South Africa	Eucalyptus grandis	AF283686	AY236891	AY236920
	CAA369	Portugal	Eucalyptus globulus	KT440922	KT440982	KX871773
	CAA450	Portugal	Eucalyptus globulus	KT440923	KT440983	KX871774
	CAA517	Portugal	Eucalyptus globulus	KT440924	KT440984	KX871775
	CAA518	Portugal	Eucalyptus globulus	KX871883	KX871839	KX871776
	CAA520	Portugal	Eucalyptus globulus	KT440925	KT440985	KX871777
	CAA522	Portugal	Eucalyptus globulus	KT440926	KT440986	KX871778
	CAA528	Portugal	Eucalyptus globulus	KT440927	KT440987	KX871779

				GenBank Accession ^b		
Species	Isolate ^a	Origin	Host	ITS	tef1	tub2
	CAA532	Portugal	Eucalyptus globulus	KT440928	KT440988	KX871780
	CAA535	Portugal	Eucalyptus globulus	KT440929	KT440989	KX871781
	CAA536	Portugal	Eucalyptus globulus	KT440930	KT440990	KX871782
	CAA539	Portugal	Eucalyptus globulus	KX871884	KX871840	KX871783
	CAA542	Portugal	Eucalyptus globulus	KT440931	KT440991	KX871784
	CAA558	Portugal	Eucalyptus globulus	KT440932	KT440992	KX871785
	CAA561	Portugal	Fraxinus excelsior	KX871885	KX871841	KX871786
	CAA601	Portugal	Eucalyptus globulus	KT440933	KT440993	KX871787
	CAA604	Portugal	Eucalyptus globulus	KT440934	KT440994	KX871788
	CAA618	Portugal	Eucalyptus globulus	KT440935	KT440995	KX871789
	CAA624	Portugal	Eucalyptus globulus	KT440936	KT440996	KX871790
	CAA651	Portugal	Eucalyptus globulus	KT440937	KT440997	KX871791
	CAA680	Portugal	Eucalyptus globulus	KT440938	KT440998	KX871792
	CAA683	Portugal	Eucalyptus globulus	KT440939	KT440999	KX871793
	CAA695	Portugal	Eucalyptus globulus	KT440940	KT441000	KX871794
	CAA709	Portugal	Eucalyptus globulus	KT440941	KT441001	KX505920
	CAA712	Portugal	Eucalyptus globulus	KT440942	KT441002	KX871795
	CAA713	Portugal	Eucalyptus globulus	KT440943	KT441003	KX505921
	CAA714	Portugal	Eucalyptus globulus	KX871886	KX871842	KX871796
	PE20	Portugal	Eucalyptus globulus	KT440944	KT441004	KX871797
	PE21	Portugal	Eucalyptus globulus	KT440945	KT441005	KX871798
	PE23	Portugal	Eucalyptus globulus	KX871887	KX871843	KX871799
N. hellenicum	CERC1947	Greece	Pistacia vera	KP217053	KP217061	KP217069
	CERC1948	Greece	Pistacia vera	KP217054	KP217062	KP217070
N. kwambonambiense	CBS123639	South Africa	Syzygium cordatum	EU821900	EU821870	EU821840
	CBS123641	South Africa	Syzygium cordatum	EU821919	EU821889	EU821859
	CAA755	Portugal	Eucalyptus globulus	KT440946	KT441006	KX505917
N. luteum	CBS110299	Portugal	Vitis vinifera	AY259091	AY573217	DQ458848
	CBS110497	Portugal	Vitis vinifera	EU673311	EU673277	EU673092
	CAA200	Portugal	Melia azedarach	KX871869	KX871825	KX871754
	CAA203	Portugal	Melia azedarach	KX871870	KX871826	KX871755
	CAA352	Portugal	Quercus robur	KX871871	KX871827	KX871756
	CAA360	Portugal	Fraxinus ornus	KX871872	KX871828	KX871757
	CAA362	Portugal	Fraxinus ornus	KX871873	KX871829	KX871758
	CAA365	Portugal	Quercus robur	KX871874	KX871830	KX871759
	CAA379	Portugal	Melia azedarach	KX871875	KX871831	KX871760
	CAA412	Portugal	Populus alba	KX871876	KX871832	KX871761
	CAA505	Portugal	Fraxinus ornus	KX871877	KX871833	KX871762
	CAA628	Portugal	Fraxinus excelsior	KX505911	KX505902	KX505929

				GenBank Accession ^b		
Species	Isolate ^a	Origin	Host	ITS	tef1	tub2
	CAA720	Portugal	Tilia platyphyllos	KX871878	KX871834	KX871763
N. macroclavatum	CBS118223	Australia	Eucalyptus globulus	DQ093196	DQ093217	DQ093206
	WAC12445	Australia	Eucalyptus globulus	DQ093197	DQ093218	DQ093208
N. mangiferae	CBS118531	Australia	Mangifera indica	AY615185	DQ093221	AY615172
	CBS118532	Australia	Mangifera indica	AY615186	DQ093220	AY615173
N. mediterraneum	CBS121718	Greece	Eucalyptus sp.	GU251176	GU251308	GU251836
	CBS121558	USA	Vitis vinifera	GU799463	GU799462	GU799461
N. nonquaesitum	CBS126655	USA	Umbellularia californica	GU251163	GU251295	GU251823
N. nonquaesitum	PD301	Chile	Vaccinium corymbosum	GU251164	GU251296	GU251824
N. occulatum	CBS128008	Australia	Eucalyptus grandis hybrid	EU301030	EU339509	EU339472
	MUCC286	Australia	Eucalyptus pellita	EU736947	EU339511	EU339474
N. parvum	CMW9081	New Zealand	Populus nigra	AY236943	AY236888	AY236917
	UCR-NP2	USA	Vitis vinifera	AORE01001444	AORE01000046	AORE01001255
	CBS110301	Portugal	Vitis vinifera	AY259098	AY573221	EU673095
	CAA189	Portugal	Ferula communis	KX871879	KX871835	KX871766
	CAA192	Portugal	Ferula communis	KX505905	KX505892	KX505913
	CAA384	Portugal	<i>Rosa</i> sp.	KX871880	KX871836	KX871767
	CAA386	Portugal	Rosa sp.	KX871881	KX871837	KX871768
	CAA608	Portugal	Aesculus hippocastanum	KX871882	KX871838	KX871769
	CAA692	Portugal	Eucalyptus globulus	KT440950	KT441010	KX871770
	CAA704	Portugal	Eucalyptus globulus	KT440947	KT441007	KX505914
	PE17	Portugal	Eucalyptus globulus	KT440948	KT441008	KX871771
	PE18	Portugal	Eucalyptus globulus	KT440949	KT441009	KX871772
N. pennatisporum	MUCC510	Australia	Allocasuarina fraseriana	EF591925	EF591976	EF591959
N. protearum	MUCC497	Australia	Santalum acuminatum	EF591912	EF591965	EF591948
N. ribis	CBS115475	USA	<i>Ribes</i> sp.	AY236935	AY236877	AY236906
	CBS121.26	Unknown	Ribes rubrum	AF241177	AY236879	AY236908
N. umdonicola	CBS123645	South Africa	Syzygium cordatum	EU821904	EU821874	EU821844
	CBS123646	South Africa	Syzygium cordatum	EU821905	EU821875	EU821845
N. vitifusiforme	5H022	California	Juglans regia	KF778869	KF779059	KF778964
	B8	Italy	Vitis vinifera	KC469638	KX505897	KX505922
	B9	Italy	Vitis vinifera	KX505908	KX505898	KX505923

^aAcronyms of culture collections: **CAA** – Personal culture collection Artur Alves, Universidade de Aveiro, Portugal; **CBS** – Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; **CERC** – China Eucalypt Research Center, Beijing, China; **CMM** – Coleção de culturas de fungos fitopatogénicos Prof. Maria Menezes, Universidade Federal Rural de Pernambuco, Brazil; **CMW** – Tree Pathology Co-operative Program, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; **IMI** - International Mycological Institute, CBI-Bioscience, Egham, Bakeham Lane, UK; **MUCC** – Murdoch University Culture Collection, Perth, Australia; **PD** - University of California, Davis, USA; **UCR** – College of Natural and Agricultural Sciences, Riverside, California, USA; **WAC** - Department of Agriculture, Western Australia Plant Pathogen Collection, South Perth, Western Australia.

^bSequence numbers in italics were retrieved from GenBank. All others were determined in the present study.

Isolates in bold are ex-type cultures.

Fig. 2 – Combined ITS, *tef1* and *tub2* maximum likelihood tree based on the Tamura 3-parameter model. A discrete Gamma distribution was used to model evolutionary rate differences among sites. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The thickness of branches is proportional to bootstrap support values.

Molecular Characterization

BOX-PCR fingerprinting analysis divided the 351 isolates into 7 distinct clusters, which were presumed to represent distinct species. A total of 99 isolates representative of each group were selected for further molecular characterization (Table 1). The 7 clusters formed by the BOX-PCR fingerprinting analysis were resolved into 5 clades by multilocus (ITS, *tef1* and *tub2*) phylogenetic analysis (Fig. 2).

Clades I, II, IV and V were clearly resolved and represent the species *N. eucalyptorum*, *N. kwambonambiense*, *N. luteum* and *N. australe* respectively. Clade III contained isolates belonging to two species (*N. parvum* and *N. algeriense*) and was further divided into 3 subclades. However, these showed incongruence between phylogenetic analyses results obtained from each individual locus (data

not shown) and from the combined dataset (Fig. 2). Moreover, there were no fixed alleles between the different subclades.

Species	Host
N. australe	Acacia longifolia ^{a,b}
	Castanea sativa ^{a,b}
	Eucalyptus globulus
	Ferula communis ^{a,b}
	Fraxinus excelsior ^{a,b}
	Hydrangea macrophylla ^{a,b}
	Melia azedarach ^{a,b}
	Olea europaea ^b
	Populus alba ^{a,b}
	Pyracantha coccinea ^{a,b}
	Quercus robur
	Tilia platyphyllos ^{a,b}
	Ulmus minor ^{a,b}
N. eucalyptorum	Eucalyptus globulus
	Fraxinus excelsior ^{a,b}
N. kwambonambiense	Eucalyptus globulus
N. luteum	Fraxinus excelsior ^{a,b}
	Fraxinus ornus ^{a,b}
	Melia azedarach ^{a,b}
	Populus alba ^{a,b}
	Populus tremula ^{a,b}
	Quercus robur
	Tilia platyphyllos ^{a,b}
N. parvum	Aesculus hippocastanum ^b
•	Eucalyptus globulus
	Ferula communis ^{a,b}
	Malus domestica
	Melia azedarach ^{a,b}
	Rosa sp. ^{a,b}

Table 2 Neofusicoccum species isolated in this study and their respective hosts

^anew host reported for the species

^bfirst report from Portugal

Within the clades formed by *N. eucalyptorum* and *N. australe* two subclades were also noticeable. However, a comparison of sequences of the three loci from members of each subclade showed minor differences between them. Thus, only 1 bp difference in the *tef1* of *N. eucalyptorum* isolates and 1 bp in the *tub2* sequence of *N. australe* isolates.

Discussion

In this study a collection of 351 isolates retrieved from a large diversity of plant hosts was characterised by morphological and PCR typing analysis. Selected representative isolates of each PCR

typing group were further characterised by multilocus phylogenetic analyses. The isolates studied grouped into five clades, four of which clearly represented distinct species (Fig. 2).

The clade containing *N. parvum* and *N. algeriense* (Clade III) was not clearly resolved, exhibiting incongruence between phylogenetic analysis results obtained from each individual locus and the combined dataset. A similar inconsistency was seen in phylogenetic analyses based on *MAT* genes (Lopes et al. 2016). By applying the principle of Phylogenetic Species Recognition (Taylor et al. 2000) where the transition from concordance to conflict determines the limits of species Lopes et al. (2016) considered that this clade represented a single species and synonymized *N. algeriense* with *N. parvum*. This study is in agreement with this previous finding.

Neofusicoccum australe and *N. eucalyptorum* were the most common species found. *Neofusicoccum australe* was originally regarded as native to Australia but since then it has been shown to have a widespread distribution occurring on a broad range of hosts (Sakalidis et al. 2011, Phillips et al. 2013). In Portugal, *N. australe* was found on *Rubus* sp. (Phillips et al. 2006), *Quercus robur* (Barradas et al. 2013), *Eucalyptus globulus* (Barradas et al. 2016), *Robinia pseudoacacia* (van Niekerk et al. 2004) and several species of conifers (Alves et al. 2013). To our knowledge, this study is the first to report *N. australe* occurring on *A. longifolia*, *C. sativa*, *F. communis*, *F. excelsior*, *H. macrophylla*, *M. azedarach*, *P. alba*, *P. coccinea*, *T. platyphyllos* and *U. minor*. It is also the first time that this species is found on *O. europaea* in Portugal. Another interesting finding was the isolation of *N. australe* from *A. longifolia*, being the first report of this species colonizing *Acacia* spp. outside of Australia. This could have serious repercussions on the dissemination of *N. australe* in Portugal since *Acacia* spp. are introduced exotic species that have spread rapidly to several new areas, from the coast to inland forests. Colonization of the invasive species *A. longifolia* will allow *N. australe* to be rapidly introduced into new geographic areas, possibly infecting new hosts.

Neofusicoccum eucalyptorum was first found on diseased *Eucalyptus grandis* and *E. nitens* in South Africa (Smith et al. 2001). Later, the species was isolated from cankers on native and planted eucalypts in eastern Australia (Slippers et al. 2004). Based on the dominance and wide distribution in eastern Australia, the authors suggested that the pathogen is probably native to this area (Slippers et al. 2004). Meanwhile, the presence of N. eucalyptorum was also detected on eucalypt species in other countries including Portugal (Barradas et al. 2016). Several authors suggested that the occurrence of the species on *Eucalyptus* in others parts of the world is a consequence of anthropogenic actions due to the large amounts of germplasm traded (Pérez et al. 2009, Barradas et al. 2016). Although this species is apparently specialized in the infection of *Eucalyptus* spp., it has also been associated with other genera in the Myrtaceae (Pérez et al. 2009, Pérez et al. 2010). In our study we report the occurrence of N. eucalyptorum in Fraxinus excelsior (Oleaceae) planted as ornamental. This is the first time that N. eucalyptorum is associated with a host outside of the family Myrtaceae. However, it is important to note that the F. excelsior tree from which the fungus was isolated was surrounded by a large number of eucalypts. Thus, it is possible that F. excelsior was colonized due to the high pressure of the surrounding inoculum or the fungus used it as a transition host. Further studies should be carried out to test the pathogenicity of *N. eucalyptorum* to this host and evaluate the impact that host jumps may have on the fungus host expansion and pathogenicity.

The species *N. luteum* and *N. parvum* were also found in this study although the number of isolates was lower. Both species are known to occur on a wide range of hosts worldwide (Phillips et al. 2013). *Neofusicoccum luteum* has been associated with dieback and canker mostly on crops (e.g. Phillips 2002, Úrbez-Torres et al. 2013) but also on ornamentals (Marincowitz et al. 2008, Varela et al. 2011). In Portugal, *N. luteum* has been found to infect conifers (Alves et al. 2013), *Quercus robur* (Barradas et al. 2013), grapevines, *Fraxinus angustifolia* and *Sophora japonica* (Phillips et al. 2002). In our study we found new host associations namely with *M. azedarach*, *F. ornus*, *F. excelsior*, *P. alba*, *P. tremula* and *T. platyphyllos*, all of them planted as ornamentals.

Neofusicoccum parvum is probably the species within the genus with the widest geographic distribution, host range and proven ability to cause disease (Phillips et al. 2013, Sakalidis et al. 2013). It has been found associated with many forest species (Iturritxa et al. 2011), fruit trees (Ismail et al. 2013) and ornamental plants (Marincowitz et al. 2008, Zlatković et al. 2016). In Portugal, *N. parvum* was found associated with *Protea cynaroides* and *P. repens* (Crous et al. 2013), grapevines (Phillips 2002), conifers (Alves et al. 2013) and *E. globulus* (Barradas et al. 2016). To our knowledge, this study is the first to report the association of *N. parvum* with *Rosa* spp., *F. communis*, *M. azedarach* and also the first occurrence of *N. parvum* on *A. hippocastanum* in Portugal. The fungus was only recently associated for the first time with *A. hippocastanum* in the Western Balkans, showing symptoms of canker and dieback (Zlatković et al. 2016). In our study it was isolated from severely affected trees with trunk cankers (Fig. 1) and planted as ornamentals on streetscapes. However, since no pathogenicity tests were carried out we cannot conclude that *N. parvum* was the cause of the observed symptoms. This aspect should be addressed in future studies.

The presence, in this study, of species in such a wide diversity of hosts confirms that *Neofusicoccum* species are opportunistic fungi that can potentially colonize most plant hosts that it comes into contact with and represents a threat to vulnerable plants. This study reinforces the urgent need to understand the routes of introduction and dissemination of these fungi, not only in natural environments but also in the less studied urban environments where many potential hosts are planted as ornamentals.

Acknowledgements

This work was financed by European Funds through COMPETE and National Funds through the Portuguese Foundation for Science and Technology (FCT) to project ALIEN (PTDC/AGR-PRO/2183/2014 – POCI-01-0145-FEDER-016788), CESAM (UID/AMB/50017/2013 – POCI-01-0145-FEDER-007638), Artur Alves (FCT Investigator Programme – IF/00835/2013), Anabela Lopes (PhD grant – SFRH/BD/85615/2012) and Carla Barradas (PhD grant – SFRH/BD/77939/2011).

References

- Alves A, Barradas C, Phillips AJL, Correia A. 2013 Diversity of *Botryosphaeriaceae* species associated with conifers in Portugal. European Journal of Plant Pathology 135, 791–804.
- Alves A, Correia A, Luque J, Phillips AJL. 2004 *Botryosphaeria corticola* sp. nov. on Quercus species, with notes and description of *Botryosphaeria stevensii* and its anamorph *Diplodia mutila*. Mycologia 96, 598–613.
- Alves A, Crous PW, Correia A, Phillips AJL. 2008 Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. Fungal Diversity 28, 1–13.
- Alves A, Phillips AJL, Henriques I, Correia A. 2007 Rapid differentiation of species of *Botryosphaeriaceae* by PCR fingerprinting. Research in Microbiology 158, 112–121.
- Barradas C, Correia A, Alves A. 2013 First Report of *Neofusicoccum australe* and *Neofusicoccum luteum* Associated with Canker and Dieback of *Quercus robur* in Portugal. Plant Disease 97, 560.
- Barradas C, Phillips AJL, Correia A, Diogo E, Bragança H, Alves A. 2016 Diversity and potential impact of *Botryosphaeriaceae* species associated with *Eucalyptus globulus* plantations in Portugal. European Journal of Plant Pathology 146, 245–257.
- Berraf–Tebbal A, Guerreiro MA, Phillips AJL. 2014 Phylogeny of *Neofusicoccum* species associated with grapevine trunk diseases in Algeria, with description of *Neofusicoccum algeriense* sp. nov. Phytopathologia Mediterranea 53, 416–427.

- Burgess TI, Barber PA, Hardy GEStJ. 2005 *Botryosphaeria* spp. associated with eucalypts in Western Australia, including the description of *Fusicoccum macroclavatum* sp. nov. Australasian Plant Pathology 34, 557–567.
- Crous PW, Denman S, Taylor JE, Swart L, Bezuidenhout CM, Hoffman L, Palm ME, Groenewald JZ. 2013 Cultivation and Disease of Proteaceae: *Leucadendron*, *Leucospermum*, and *Protea*: Second Edition. CBS Biodiversity Series.
- Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves A, Burgess T, Barber P, Groenewald JZ. 2006 Phylogenetic lineages in the *Botryosphaeriaceae*. Studies in Mycology 55, 235–253.
- Glass NL, Donaldson G. 1995 Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied Environmental Microbiology 61, 1323–1330.
- Golzar H, Burgess TI. 2011 *Neofusicoccum parvum*, a causal agent associated with cankers and decline of Norfolk Island pine in Australia. Australasian Plant Pathology 40, 484–489.
- Hall TA. 1999 BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
- ICNF. 2013 IFN6 Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. [pdf], 34 pp. Instituto da Conservação da Natureza e das Florestas. Lisboa (accessed April 2016).
- Inderbitzin P, Bostock RM, Trouillas FP, Michailides TJ. 2010 A six locus phylogeny reveals high species diversity in *Botryosphaeriaceae* from California almond. Mycologia 102, 1350–1368.
- Ismail AM, Cirvilleri G, Lombard L, Crous PW, Groenewald JZ, Polizzi G. 2013 Characterization of *Neofusicoccum* species causing mango dieback in Italy. Journal of Plant Pathology 95, 549– 557.
- Iturritxa E, Slippers B, Mesanza N, Wingfield MJ. 2011 First report of *Neofusicoccum parvum* causing canker and die–back of *Eucalyptus* in Spain. Australasian Plant Disease Notes 6, 57–59.
- Letunic I, Bork P. 2016 Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44, W242–245.
- Lopes A, Phillips AJL, Alves A. 2016 Mating type genes in the genus *Neofusicoccum*: mating strategies and usefulness in species delimitation. Fungal Biology, In Press doi: 10.1016/j.funbio.2016.08.011
- Marincowitz S, Groenewald JZ, Wingfield MJ, Crous PW. 2008 Species of *Botryosphaeriaceae* occurring on Proteaceae. Persoonia 21, 111–118.
- McDonald V, Eskalen A. 2011 *Botryosphaeriaceae* Species Associated with Avocado Branch Cankers in California. Plant Disease 95, 1465–1473.
- Mondello V, Picolo SL, Conigliaro G, Alfonzo A, Torta L, Burruano S. 2013 First report of *Neofusiccoccum vitifusiforme* and presence of other *Botryosphaeriaceae* species associated with Botryosphaeria dieback of grapevine in Sicily (Italy). Phytopathologia Mediterranea 52, 388–396.
- Ngobisa AICN, Abidin MAZ, Wong MY, Noordin MWDW. 2013 *Neofusicoccum ribis* Associated with Leaf Blight on Rubber (Hevea brasiliensis) in Peninsular Malaysia. The Plant Pathology Journal 29, 10–16.
- O'Donnell K, Cigelnik E. 1997 Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. Molecular and Phylogenetics Evolution 7, 103–116.

- Pavlic D, Slippers B, Coutinho TA, Wingfield MJ. 2009a Molecular and phenotypic characterization of three phylogenetic species discovered within the *Neofusicoccum parvum/N. ribis* complex. Mycologia 101, 636–647.
- Pavlic D, Slippers B, Coutinho TA, Wingfield MJ. 2009b Multiple gene genealogies and phenotypic data reveal cryptic species of the *Botryosphaeriaceae*: A case study on the *Neofusicoccum parvum/N. ribis* complex. Molecular Phylogenetics and Evolution 51, 259–268.
- Pérez CA, Wingfield MJ, Slippers B, Altier NA, Blanchette RA. 2010 Endophytic and canker– associated *Botryosphaeriaceae* occurring on non-native *Eucalyptus* and native Myrtaceae trees in Uruguay. Fungal Diversity 41, 53–69.
- Pérez CA, Wingfield MJ, Slippers B, Altierd NA, Blanchette RA. 2009 *Neofusicoccum eucalyptorum*, a *Eucalyptus* pathogen, on native Myrtaceae in Uruguay. Plant Pathology 58, 964–970.
- Pérez SF, Meriño–Gergichevich C, Guerrero JC. 2014 Detection of *Neofusicoccum nonquaesitum* causing dieback and canker in highbush blueberry from Southern Chile. Journal of Soil Science and Plant Nutrition 14, 581–588.
- Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW. 2013 The *Botryosphaeriaceae*: genera and species known from culture. Studies in Mycology 76, 51– 167.
- Phillips AJL, Alves A, Correia A, Luque J, 2005. Two new species of *Botryosphaeria* with brown, 1–septate ascospores and *Dothiorella* anamorphs. Mycologia 97, 513–529.
- Phillips AJL, Oudemans PV, Correia A, Alves A. 2006 Characterisation and epitypification of *Botryosphaeria corticis*, the cause of blueberry cane canker. Fungal Diversity 21, 141–155.
- Phillips AJL, Fonseca F, Povoa V, Castilho R, Nolasco G, 2002 A reassessment of the anamorphic fungus *Fusicoccum luteum* and description of its teleomorph *Botryosphaeria lutea* sp. nov. Sydowia 54, 59-77.
- Phillips AJL. 2002 *Botryosphaeria* species associated with diseases of grapevines in Portugal. Phytopathologia Mediterranea 41, 3–18.
- Sakalidis ML, Hardy GEStJ, Burgess TI. 2011 Class III endophytes, clandestine movement amongst hosts and habitats and their potential for disease; a focus on *Neofusicoccum australe*. Australasian Plant Pathology 40, 510–521.
- Sakalidis ML, Slippers B, Wingfield BD, Hardy GE St J, Burguess TI. 2013 The challenge of understanding the origin, pathways and extent of fungal invasions: global populations of the *Neofusicoccum parvum – N. ribis* species complex. Diversity and Distributions 19, 873–883.
- Slippers B, Boissin E, Phillips AJL, Groenewald JZ, Lombard L, Wingfield MJ, Postma A, Burgess T, Crous PW. 2013 – Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Studies in Mycology 76, 31–49.
- Slippers B, Fourie G, Crous PW, Coutinho TA, Wingfield BD, Carnegie AJ, Wingfield MJ. 2004 Speciation and distribution of *Botryosphaeria* spp. on native and introduced *Eucalyptus* trees in Australia and South Africa. Studies in Mycology 50, 343–58.
- Slippers B, Summerell BA, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ. 2005 Preliminary studies on *Botryosphaeria* species from Southern Hemisphere conifers in Australasia and South Africa. Australasian Plant Pathology 34, 213–220.
- Slippers B, Wingfield MJ. 2007 *Botryosphaeriaceae* as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21, 90–106.
- Smith H, Crous PW, Wingfield MJ, Coutinho TA, Wingfield BD. 2001 *Botryosphaeria eucalyptorum* sp. nov., a new species in the *B. dothidea*-complex on *Eucalyptus* in South Africa. Mycologia 93, 277–285.

- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013 MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 2725–2729.
- Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC. 2000 Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31, 21–32.
- Thomidis T, Michailides TJ, Exadaktylou E. 2011 *Neofusicoccum parvum* associated with fruit rot and shoot blight of peaches in Greece. European Journal of Plant Pathology 131, 661–668.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
- Triki MA, HadjTaieb SK, Cheffi M, Gharbi Y, Rhouma A. 2015 First Report of Dieback of Olive Trees caused by *Neofusicoccum australe* in Tunisia. Journal of Plant Pathology 97, 209–220.
- Úrbez–Torres JR, Peduto F, Vossen PM, Krueger WH, Gubler WD. 2013 Olive twig and branch dieback: etiology, incidence and distribution in California. Plant Disease 97, 231–244.
- van Niekerk JM, Crous PW, Groenewald JZE, Fourie PH, Halleen F. 2004 DNA phylogeny, morphology and pathogenicity of *Botryosphaeria* species on grapevines. Mycologia 96, 781–798.
- Varela CP, Fernández VR, Vásquez JPM, Casal OA. 2011 First Report of Dieback on Hybrid Rhododendrons Caused by *Neofusicoccum luteum* and *N. parvum* in Spain. Plant Disease 95, 221.
- White TJ, Bruns T, Lee S, Taylor J, 1990 Amplification and direct sequencing of fungal genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, (eds) PCR protocols: a guide to methods and applications. Academic Press, California, 315–322.
- Yu Z, Tang G, Peng S, Chen H, Zhai M. 2015 *Neofusicoccum parvum* causing canker of seedlings of *Juglans regia* in China. Journal of Forestry Research 26, 1019–1024.
- Zlatković M, Keča N, Wingfield MJ, Jami F, Slippers B. 2016 *Botryosphaeriaceae* associated with the die-back of ornamental trees in the Western Balkans. Antonie van Leeuwenhoek 109, 543–564.