Document processing applications

George Nagy

Rensselaer Polytechnic Institute, Troy, NY 12180, USA

ABSTRACT

Progress in Optical Character Recognition, which underlies most applications of document processing, has been driven by technological advances in microprocessors and optical sensor arrays. Software development based on algorithmic innovations appears to be reaching the point of diminishing returns. Recently published research results are dispersed among a dozen venues. Some mainline applications, like reading typescript and converting patents and law libraries to computer readable text have already become obsolete. Others, like check, postal address and form processing, are on their way out. Open Source layout analysis and OCR software is opening up niche applications that don’t generate enough revenue for commercial developers. It will also speed up the transcription of historical document especially genealogical records of widespread popular interest. Smartphone cameras are engendering new image-based applications. As document contents are integrated into a web-based continuum of data, they are likely lose even the meager individuality of discrete sheets of paper.

1. 1. Introduction

For many centuries, letters, books, maps, drawings and sheet music served to preserve and disseminate ideas and facts. Documents comprising written or printed symbols were the primary means of communicating across time and space. The underlying symbol systems were the crowning achievement of human aspiration for indirect communication. Alphabets, syllabaries and logographs represented spoken language. Specialized notations were developed for music, chess, electrical circuits, architecture, and engineering design. Documents proliferated. But the migration of information to the web raises troubling questions about the role of documents in the electronic age.

1.1. Scope of the article

The focus in this article is on automated processes for converting ink on paper into a computer-storable, electronically-transmittable and, in a restricted sense, machine-understandable entity. The image-processing aspects of document processing consist of scanning the hardcopy document into a digital image, and converting the image into a symbolic representation that reflects some of its content and appearance. Both steps share many aspects with other image processing applications, but the reader must look elsewhere for descriptions and explanations of logo, stamp, seal and signature recognition, text and image compression, cybersecurity (encryption, watermarking, steganography, CAPTCHAs), scene OCR, license plate readers, and many other related and worthy topics.

Even simply scanning a page into an image file—perhaps to email it to a friend—constitutes a valid document processing application. Optical Character Recognition is the conversion of a text image into a character-by-character digital representation like ASCII (American Standard Code for Information Interchange) or Unicode. The term digitization may encompass OCR in addition to scanning. Software for reading hand printed and handwritten script is sometimes called Intelligent Character Recognition (ICR). Plain OCR is almost enough to convert a printed book to an eBook.

Specialized OCR underlies document image processing applications for engineering drawings, music, maps, and mathematical formulas. A typical E-sized telephone company drawing has about 3000 words and numbers (including revision notices). Good lettering was a prime job qualification for the draftsmen who drew the legacy drawings that are now being converted to CAD (computer-aided design) file formats. Musical scores contain numerals and instructions like pianissimo. A map without place names and elevations would have limited use. Formulas and equations abound in digits and alphabetic fragments like sin, log, or limit, in addition to dozens of special symbols.

Commercial OCR systems, tuned to paragraph-length segments of text, do poorly on the alphanumeric fragments typical of such applications. When freely available Open Source OCR matures, it will provide an opportunity for customization to specialized applications that have not yet attracted heavyweight developers. In the meantime, the conversion of documents containing diverse mixes of text and line art has given rise to distinct sub-disciplines with their own conference sessions and workshops that target graphics techniques like vectorization and complex symbol configurations.

The next Section provides overviews of digitization (scanners and cameras), physical and logical layout analysis, and feature extraction for OCR and for graphics recognition. Section 3 describes specialized applications like check and postal address reading that are usually performed by large organizations. Distributed applications like map, mathematical notation and music score conversion that are characterized by smaller volumes and fewer resources are discussed in Section 4, as are the niche applications of processing chess records and calligraphy.

George Nagy Tel. +0-518-271-6885; e-mail: nagy@ecse.rpi.edu
Section 5 provides an overview of related downstream information retrieval and document management applications. It explores what can be done with transcribed books, technical journals, magazines and newspapers. It also offers suggestions for finding further information in conference proceedings, technical journals and monographs, and a peek into the future.

The remainder of the Introduction presents a brief history of document image processing and of the industry that it fostered. We also classify the applications reviewed in subsequent sections into those that were so successful that they worked themselves out of a job, those that are still mainstream, and those that are still waiting around the corner.

1.2. History

In the first half of the 19th Century many inventors were excited by the idea of reading machines for the blind and for automated input to telegraphy. After some false starts, OCR became a competitive commercial enterprise in the 1950’s. David Shepard founded Intelligent Machines Corporation. Jacob Rabinow designed the first postal readers. Rapid progress ensued in feature design, classifiers, character and word segmentation, layout analysis, and language modeling. A decade later there were more than 50 OCR manufacturers in the US alone. Their products consisted of scanning equipment and hardwired logic for recognizing mono-spaced OCR fonts and Elite and Pica typewritten scripts one character at a time—eventually at the rate of several thousand characters per second. Each of these systems displaced dozens of key-entry operators.

With the advent of microprocessors and inexpensive optical scanners derived from facsimile machines, the price of OCR dropped from tens and hundreds of thousands of dollars to that of a bottle of table wine. Software displaced the racks of electronics. The Optical Character Recognition Users Association (OCRUA) staged popular conferences and published an informative newsletter. By 1985 anybody could program and test their ideas on a personal computer, and then write a paper about it (and perhaps even patent it). Low-end OCR was packaged for give-away with printers.

With enough memory to store an entire page image, word recognition for reading hard-to-segment typeset text became practicable. The value of language models better than letter n-gram frequencies and lexicons without word frequencies gradually became clear. When coding methods (like ASCII for Latin-based scripts) became available for other languages, OCR turned multilingual. This triggered a movement to post all the cultural relics of the past on the Web. Much of the material still awaiting conversion, ancient and modern, stretches the limits human readability. Like humans, OCR must take full advantage of syntax, style, context, and semantics to resolve similar character images like i, l, and 1.

OCR error rates have gradually dropped, but it is useful to remember that a 0.5% error rate still leaves 10 errors on a printed page. Perhaps a more significant contemporary development is detailed tagging of output. Both alphabetic and graphic document components are parsed, and their syntactic characteristics are labeled in the output for the benefit of downstream (non-image) applications (cf. §5).

There is, however, little information available to the public about current commercial methods and in-house experimental results. Competitive industries have scarce motivation to publish and their patents may only be part of their legal arsenal. Herbert Schantz’s The History of OCR was an exception: it traced the growth of REI (originally Recognition Equipment Inc.), which was one of the major OCR success stories of the 1960’s and 1970’s. Schantz also told the romantic story of the previous fifty years’ attempts to mechanize reading. Among other manufacturers of the period, IBM may have stood alone in publishing detailed (though often delayed) information about its many OCR products.

Whether intelligent is the appropriate adjective for OCR designed for handwriting, it is here to stay until tracing glyphs with a stylus goes the way of the quill. Both human and machine legibility of manuscripts depend significantly on the motivation of the writer: a hand-printed income tax return requesting a refund is likely to be more legible than one reporting an underpayment. Immediate feedback, the main advantage of online recognition, is a powerful form of motivation. Humans still adapt more readily than machines.

1.3. The industry

Today a few industrial-strength OCR engines dominate the US market: FineReader (Abbyy, originally from Moscow), OmniPage (product ancestry: Palenteer then Calera then CAERE, now Nuance), Readiris (Iris) and Open Source Tesseract and OCRopus (originally Hewlett Packard’s ReadRight, now sponsored and promoted by Google). Many commercial and open-source software providers incorporate one of the above engines, though some older products are still available. Earlier suppliers, like REI, IBM, Control Data, Burroughs, NCR, Kurtzweil, Xerox, ScanSoft, and Recognita, are no longer in this business. However, most of the large Chinese, Japanese, Korean and Arabic OCR providers include English-language subsystems in their products.

Software for handprint and handwriting recognition tends to be too error prone for stand-alone applications. To yield acceptable output, contextual information and an operator interface for correction are embedded in the recognition software. Parascript and A2ia offer handprint and hand-writing recognition for postal and administrative documents in several scripts.
Abbyy, Nuance, and Lead Technologies provide software for document format conversion, compression, and for forms-processing, internal mail handling, and other document management applications. Adobe software allows overlaying a searchable (OCR’d) but invisible layer over the rectified page image. Many vendors offer kits for converting non-searchable (image) PDF files into searchable PDF or word-processing formats—essentially an OCR task. Most computer-printer manufacturers also market optical scanners. Although any desktop scanner or multifunction printer can digitize a printed page, some specialized document scanners are described in Section 2.1.

Another segment of the industry consists of service bureaus equipped with high-speed, large-format, microfilm and book scanners, document processing software from multiple vendors, key-entry operators, proofreaders and copy editors. These job shops are now facing stiff competition from lower-wage overseas operators who provide overnight service over the internet.

1.4. Disappearing and emerging applications

Some of the large early applications, like the conversion of US Patents (7 million by 2006) and of the thousands of volumes of edicts by federal, state and local legislatures and courts, have disappeared when searchable versions (mostly produced by key entry) became available. The need for recognizing typewritten material vanished with typewriters, but OCR font and barcode recognition is still used. Shrinking applications include extracting the relevant information from tax returns as all companies and most individuals now file electronically.

Technological advances have enabled camera-based OCR. Most current smartphone cameras have sufficient resolution for a full page of text. Home applications include capturing financial records (bank checks, invoices), instant language translation, text-to-voice, decision support systems for the list of wines or the bottles on the rack, and scene OCR (e.g., shop and highway signs).

Historical document processing is tackling older and more degraded documents, some of which are not readable by laymen. Still at the research stage is the automated conversion of old handwritten census, army and legal records, personal diaries and correspondence. The National Archives and Records Administration has compiled extensive military records and maintains the Federal Register. The humungous Congressional Record has been back-digitized to 1983 and posted online. Interest in genealogy fostered the devotion of large resources to the capture and analysis of census records and of birth, marriage and death certificates. The Family Search project of the Church of Jesus Christ of Latter-day Saints deploys teams over the whole world to digitize such material (as well as family and regional history books), engages thousands of volunteers to convert the records to searchable form, and sponsors workshops and research to automate the underlying tasks. Some of the oldest records outside the US are of interest mainly for their calligraphy, ranked by some communities near the top of their cultural heritage.

2. Foundations

Digitization (i.e., scanning) of paper or film is usually followed by a stage of layout analysis to parse each page into objects consisting of disjoint sets of pixels that require the same type of processing. Objects may consist of unitary symbols like letters or musical notes, of graphics like table rulings, music staff lines and curves representing roads or rivers, and of photographs. Features that characterize the groups of object pixels are extracted and the underlying patterns are classified. Finally the objects are tagged according to their assigned labels, their location in the document, and their relationship to other objects. This process is often called logical layout analysis. The final output file is generally in some format established earlier for manual data preparation for downstream software, which of course varies from application to application.

2.1. Digitization

Some early OCR scanners (line followers) traced the foreground with a light beam, but all contemporary systems start with a raster scan into a rectangular array of pixels. A small portion of the document is illuminated, and the reflected (or, for microfilm, transmitted) light is captured by a charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) sensor chip. The voltage or current corresponding to the light intensity is quantized by an analog-to-digital converter (ADC) into a digital pixel value (gray value, digital number, DN) and transmitted to an internal buffer. Here pixel values may be changed to improve the consistency of the image before it is transmitted to an external storage device. Each pixel may consist of a single bit, an 8- or 16-bit gray-value, or a 24-bit RGB value. While in other types of image processing the highest possible pixel value (usually 255) is white, in OCR “1” is black (foreground) and “0” is white (background). Scanners produce output in their native (“raw”) format, versatile tagged image file format (TIFF), or portable document format (PDF). Nowadays most scanners have a Universal Serial Bus (USB) interface.

The spatial sampling rate (often called “resolution”) is specified as dots per inch (dpi) or lines per millimeter (lpm). For most OCR, 300 dpi is considered adequate. Because the reflectance output from the sensors is serialized and read out as a voltage stream, it can be sampled at a lower or higher rate than the “optical resolution” (scanning elements per mm), giving
rise to different physical and nominal dpp. The dynamic intensity range and contrast that govern the mapping of optical density into pixel values can be set by external controls. The functional form of the analog-to-digital conversion may be linear or logarithmic (with gray values proportional to optical density rather than brightness). Also important, but seldom specified, are the size and shape of the sensor point-spread function (or, informally, “sampling spot”) that determines the amount of blurring. The optical-, modulation- and phase-transfer functions, all based on the Fourier transform of the sampling spot, provide more detailed characterization of image capture.

Desktop scanners move the light bar and a row of sensors down the paper. High-speed scanners usually move the paper past the sensing elements. The page transport often introduces some irregularity in the scanning pattern. Overhead book scanners may be equipped with a robotic page-turning mechanism and software correction for geometric distortion. Fat volumes may need a focus adjustment every few hundred pages. Large-format scanners with roller feed are used for E-sized engineering drawings and for maps, although software is available for mosaicking images scanned piecemeal on a small-format scanner. Postal scanners are combined with high-speed sorters. Microfilm scanners are equipped with rollers and can typically scan a 16mm or 35mm roll of document images in five minutes. Current camera-phones can capture page images at 300 dpi, which is adequate for OCR, and have enough computing power and memory for some other document management tasks.

2.2. layout analysis

Methods of document image analysis that are shared with other image processing applications include connected component analysis, mathematical morphology, thinning and skeletonization, edge filters, straight line and quadratic curve finding (e.g., the Hough Transform), and vectorization.

Physical layout analysis is model-based image segmentation. Simple book pages are divided into lines of text and word blocks. Newspaper pages, magazines and technical journals require more complex page grammars for demarcating columns, spanning rows of text, line art, tables, charts and photographs. In circuit diagrams, components, connecting lines, labels, values, notes and title blocks are located. In bank checks, preprinted labels and background graphics are separated from items added by the account owner. The layout models are often hidden in the software rather than specified explicitly.

While physical layout analysis often precedes object recognition, logical analysis usually follows it (a notable change from past practices). Physical layout analysis establishes the location and extent of objects consisting of mutually-exclusive sets of pixels. Logical analysis seeks to determine the function or “meaning” of objects and how they are related to other objects in the document. Examples of the types of information sought here, depending on the application, are titles, authors, affiliations and, citations in technical journals; header-to-value-cell relations within tables; circuit element types, values and connections in electrical schematic diagrams; logos, headers, signatories and signatures in business letters; legal and courtesy amounts in checks; clefs, ligatures, notes, staff lines and bars in musical scores; addressee names, street addresses and postal zones on envelopes. Common symbol-string configurations, like dates, telephone numbers, web and street addresses, and citations, can be detected by pre-regular expressions (regex). Tagging the elements of a document that are significant for a particular application is sometimes called document understanding. For example, a properly tagged circuit diagram could be entered directly into a circuit simulator.

2.3. Object Recognition

Document objects of interest differ from application to application. Glyphs that correspond to symbols are compact regions of pixels that can be characterized by features like height, width, ratio of foreground/background areas, aspect ratio, outline concavities and convexities, and number of background islands surrounded by foreground. Linear objects are distinguished by diameter, length, curvature, number of turning points, intersections with other lines, color, termination (e.g. arrow head, T-joint) and line style (solid, dotted, dashed). Regions in topographic maps or architectural renderings have color, texture, and boundary features. Compound objects like tables and title blocks are recognized by analyzing the simpler objects therein (bottom-up processing) or vice-versa (top-down processing).

The extracted features may constitute a vector space, a string of values, or a labeled graph. They can be classified by rule-driven, statistical or neural classifier, by edit-distance or by graph matching. The remainder of this subsection addresses character recognition in greater detail.

Character recognition converts single logograms or groups of logograms (the smallest meaningful units of a writing system) into a computer code. At the simplest level, an OCR engine consists of (1) a segmentation algorithm that locates, isolates, and finds the reading order of the bounding rectangle of every word or even every character (2) a feature extractor that summarizes the several hundred pixels of each pattern array into a few dozen features, and (3) a classifier that assigns an ASCII or Unicode label to each pattern. Unrecognized patterns may be rejected for eventual operator intervention, or their identity may be discovered by selecting from alternatives using letter n-grams or lexicon words that fit already labeled adjacent patterns. The segmentation and feature extraction are generally based on hand-crafted heuristics.
This simple model fails to reflect the actuality of distorted character images due to printing, copying or scanning defects, the presence of touching or broken characters due to kerning and variable stroke thickness, figures, the reading order of multi-column layouts interrupted by wide illustrations that may trip up even human readers, and the immense variety of typefaces and sizes. Commercial OCR engines combine segmentation, feature extraction and classification. They provide mechanisms to let hard-to-recognize patterns benefit from the characteristics of cleaner or simpler patterns on the same page or in the same document.

The simplest script is probably that of English because, unlike most other Latin- and Greek-based scripts, it is devoid of diacritics. Nevertheless, in addition to the upper and lower case letters of the alphabet and the numerals, dozens of punctuation, mathematical and special-purpose (e.g. currency) symbols must be recognized. The European Patent Office must deal with over 600 different symbols. Furthermore, layout, grammar, vocabulary, and the shape of letters, keep changing. Many persons literate in their contemporary script find it difficult to decipher older versions.

Scripts like Hanzi (Chinese) have tens of thousands of logographs and ideographs, but the spacing of printed characters is quite uniform. Japanese incorporates Kanji in addition to its own two syllabaries (Hiragana and Katakana). In Sanskrit- and Hindi-based writing, like Devanagari and Bengali, individual symbols are linked by a header line (shirorekha). Vowels are modified by diacritics above or below the writing line, and consonants assume different shapes (allographs) depending on their position in a word. A major pan-Indian effort is underway to develop OCR for the top ten languages and scripts. Arabic, Persian and Urdu scripts mimic calligraphic handwriting with connected and vertically overlapping sub-words and allographic characters. Only recently have useable Arabic OCR and large test data sets for validating them become available. The only “engineered” script is the Korean Hangul, designed by scientists at the command of a 15th Century ruler.

Far more than the sum of its parts, a complete OCR system must demonstrate language and script recognition, colored print processing, column, paragraph and line layout analysis, accurate character/word, numeric, symbol and punctuation recognition, table analysis, adequate language modeling, document-wide consistency, customizability and adaptability, graphics subsystems, effectively embedded interactive error correction, and multiple output formats. Furthermore, specialized systems - for postal address reading, check reading, litigation, and bureaucratic forms processing - also require high throughput and different error-reject trade-offs.

Hand-printed character recognition is either free-form or constrained. Constraints are typically guide lines, character boxes, or “combs” in a drop-out ink (invisible to the scanner) that avoids having to separate preprinted boxes from character strokes. ICR accuracy depends on the training and motivation of the writer, and on the degree of contextual correction available from the processor’s database. Various types of useful redundancy and appropriate context will be discussed under specific applications in Sections 3-5. Accuracy may also benefit from exploiting the consistency of individual writers.

Nowadays few people communicate important information via handwriting, except possibly to themselves (as notes or diaries). Even such personal use is being displaced by online, stylus-based text entry and thumb keyboards. The major remaining application of handwritten script recognition is to historical documents created before the spread of typewriters around 1900. Even line-level segmentation is often a problem because of curving lines, crossed-out phrases, and overlaps between descenders and ascenders. So far only experimental systems have surfaced for this purpose, and the necessary scanning and interactive correction make them more expensive than key entry (for historical documents, often by unpaid volunteers).

Feature extraction and classification are part of pattern recognition and machine learning. Because all of us know how to read, samples of isolated characters have been frequently used by researchers to test and demonstrate new algorithms. However, most OCR applications include many tasks in addition to isolated character classification.

3. Large, specialized applications

Most of the document processing tasks described in this section have a direct application to some important ongoing activity where they were previously performed manually – via OCR-font typewriter, keypunch, key-to-disk, or specialized data entry terminal.

3.1. Postal addresses

Among the oldest (since about 1966) and largest applications is postal address reading. The layout analysis problem here is separating sender and destination addresses from background (often advertising) franking, and notices like CONFIDENTIAL. Reading a U.S. destination address is helped greatly by frequently updated directories of all valid mailing addresses and gradually lengthening postal codes for every state, city and street-- and even large buildings. Some countries, like Japan, have advanced postal readers in spite of their abstruse address system. Several countries require postal codes in designated boxes.
Incoming and outgoing mail are handled separately: the first is sorted by delivery route, the second, according to the next
distribution center. Printed and handwritten addresses are read with an error rate of about 0.5%, and 2% error respectively. The
undecipherable images are transmitted electronically to a Remote Encoding Center where the missing or incorrect
segment is encoded with very few keystrokes. A barcode with the completed address is added to the envelope to speed up
operations at successive sorting stations. US postal volume is down more than 25% from its high of 213 billion pieces in
2006. Furthermore, more and more mail is barcoded at the source to decrease postage and speed delivery, obviating the need
for OCR.

3.2. Bank checks

Another large and specialized application is recovering data from checks. The issuing bank’s routing number and the
account number are read with Magnetic Ink Character Recognition (MICR), which has barely changed since its introduction
by Stanford Research Institute in the 1950s. The numeric courtesy amount is compared with the handwritten legal amount
and disagreements are corrected manually. Handwritten checks with fancy backgrounds and imprinted amount fields for
security are especially hard to read automatically.

High-speed check scanners are used by banks with centralized operations. Since passage of the Check 21 Act in 2003
opened the way for check truncation (image presentment), lower-speed equipment has become available for check capture
at teller windows and retailers. Some banks provide free check readers to small businesses for remote entry. Bank checks,
at a high of 70 billion in the US in 2001, are being rapidly displaced by electronic payments. Some countries have entirely
phased out paper checks.

3.3. Reports, scholarly journals and newspapers

The archival files of many technical journals, magazines, and larger newspapers have already been converted to electronic
formats. Like digitized books, most are searchable in spite of uncorrected OCR errors. Some, especially those originally
retained only on microfilm, are too degraded for OCR. Conversion of these document image files fall in the rubric of
historical document processing. Digitization of the earliest issues of IEEE publications (including thousands of workshop
and conference proceedings) remains in progress. An even larger undertaking is the conversion of the holdings of the
National Library of Medicine – the largest medical library in the world. Current efforts are aimed at a much fuller
representation of technical papers and reports by adding automatically extracted catalog metadata, linking illustrations with
the narrative, reverse engineering graphs and tables, and culling, parsing and linking citations and references.

The metadata required to classify and find a document is specified by the Dublin Core Metadata Initiative (DCMI) under
the aegis of the International Standards Organization (ISO). The Text Encoding Initiative (TEI) Consortium’s 1664 page
TEI-P5 Guidelines for Electronic Text Encoding and Interchange via the Extensible Markup Language (XML) promotes
coherence and consistency in detailed tagging of the internal elements of documents. Although TEI also distributes open-
source software to assist and validate XML tagging, full automation of the standard is many years away.

Encoding a technical article requires location and identification of titles, subtitles, running heads, page numbers, dates,
authors, affiliations, citations, references, figure/table titles and captions, footnotes and footnote references, and many other
items. We note, however, that an article or report processed by contemporary OCR software looks as though all the
significant components were identified because the layout, fonts and type sizes of the original pages are captured and
reproduced or closely approximated in rendering. While this is perfectly adequate for human reading and keyword searches,
complex queries over entire digital libraries require much more detailed encoding.

Examples of cultural digitization projects include records of the National Archives and Records Administration. NARA
already has more than two million digitized copies of its records. Some are processed and posted by Archives partners
Familysearch (open access), and Ancestry and Fold3 (via subscription). Other test beds for document interpretation include
5.5 million digitized documents seized during the 1980s Kurdish uprising, 19th Century French military records, and
collections of digitized ancient manuscripts in national libraries and museums (some on stone, papyrus, parchment, silk, or
palm leaves). The Gallica digital library of the Bibliothèque nationale de France (BnF) offers free download of millions of
rare and out-of-print documents.

3.4. Books

Few applications have attracted as much popular attention as Google’s 2004 proposal to scan all existing books in a
partnership with some of the world’s major libraries. By 2013 Google had scanned more than 30 million books. Full text
is made available for books no longer subject to copyright, and snippets and some meta-data for others. The books are
scanned and OCR’d in several dozen languages at the rate of about 1000 pages per hour per machine, but they are not
proofread.
Books with simple layouts, modern typefaces and relatively few special symbols can be scanned and OCR’d into searchable formats. However, pages are seldom linked automatically to the table of contents, as they are, manually or via PDF’s built-in routines, in all current electronic conference records. Some books are marred by scanning and OCR errors like missing, folded or upside-down pages. Many of the available high quality eBooks, including over 47,000 books of the Gutenberg Project, were keyed in manually.

3.5. Forms and tables

Forms are used for collecting information. They are also called bureaucratic forms, office forms, official forms or, more specifically, tax returns, invoices, insurance applications, betting tickets. Forms were sometimes published in newspapers with a request for reader feedback. The first commercial form reader, for reader subscriptions, was installed at Readers Digest in 1955. By 1959 it had read its billionth character. The IBM 1975 page reader—for well formatted and spaced lines of typewritten and printed identification numbers, first and last names, and contributed dollar amounts—was delivered to the Social Security Administration in 1966 with a price tag of over three million dollars.

Many organizations still maintain websites with downloadable forms, but online-fillable web forms have quickly replaced typed and hand-printed forms. All computer-fillable forms can be printed. Security measures may, however, prevent filled-out forms from being downloaded or saved by the client. Although over 75% of the four million Medicare claims per day arrive electronically, medical insurance remains among the largest forms processing applications.

The principal elements of a form are labeled fields demarcated by line art or color. The blank spaces for entering information may include horizontal lines, combs, or other character separators. Fields may also be grouped by line art or color at one or more levels to facilitate entering the required information. Most form recognition software offers templates for customization to specific layouts and preprinted keywords and for verification against information stored in the form processor’s database. Forms often solicit redundant information for error detection or correction.

The labels are preprinted in or near the blank where the information is to be entered. Labels may range from a single word to an entire paragraph, possibly in several languages. Forms may also contain check boxes. Line art and labels may be printed in a drop-out color invisible to the designated scanner. Mark sense forms represent an extreme combination of drop-out ink and check boxes.

In addition to a Form Name like “Application for Driver’s License”, professionally designed forms usually have a, Form Number, Version Number, or Date of Issue and sometimes a unique barcoded identifier. Forms may also show instructions, organizational affiliation (including logos), source, signature lines, spaces for stamps, and advertising. The preprinted instructions may include lists or tables: e.g., state sales tax rates.

Form configurations range from the very simple, like forms for recording tournament chess games, to the outright recondite (like some IRS tax forms). Even simple forms may have dozens of repetitive fields and continuation pages. Among the overwhelming advantage of web forms is their ability to stretch to accommodate varying amounts of information and their ease of correction as opposed to correcting errors on multiple carbon or self-inking copies.

A special case of forms processing is the conversion of hospital patient jackets in the drive towards universal electronic medical record-keeping. Unlike mass conversion of financial and hospital records, historical forms projects are perennially short of resources. Historical documents are often transcribed manually by volunteers. Historical form conversion is, however, a popular field of research.

In contrast to forms, tables are used for the dissemination rather than the collection, of information, and they seldom appear as stand-alone documents. Printed tables in books, technical design manuals, journals, patents, and even newspapers (stock market, election or baseball statistics) contain an enormous amount of quantitative information. When such material is transplanted to the web, the tables are often included only in raster image form, or in a simple tabular format like that of a word processor. However, what is wanted for massive data analysis is the more structured representation offered by relational databases that can be queried with SQL, or the newer “ontological” Resource Description Framework (RDF) triples queried with SPARQL. This requires software that discovers the relationship between the (possibly multi-line, multi-category) row and column headers that index every value cell of the table. Research in this direction is conducted by Google, Microsoft, HP and several academic groups.

4. Distributed Applications

This section describes document processing tasks with less economic motivation and urgency than those of Section 3.

4.1. Maps, Engineering drawings and schematic diagrams

Mobile-accessible web apps are displacing atlases, topographic maps, road maps, marine charts and globes. Modern maps, like almost all contemporary documents, are produced by computer, often as byproducts of data for Geographic
Information Systems (GIS). The common map file formats are either easily rendered color raster files (e.g. DRG, ADRG and RPF) or more complex vector formats with layers of point, polyline and polygon entities (USGS DLG, OpenGIS GML, and Esri Shapefile). There is some interest in rapid automated processing of local hardcopy maps for expeditionary forces in remote military theaters.

Historical map conversion, still primarily at the research stage, does not necessarily aim for application-oriented formats. Specific projects focus on locating buildings and boundary lines in cadastral maps, roads on highway maps, soil types in soil maps, minerals in geological maps, contour lines and waterways in old topographic maps, street names and street lines in city maps, and soundings in hydrological charts.

Digitization and interpretation of engineering and architectural drawings, circuit schematics, wiring diagrams, and other graphical manifestations of technical design are at a stage similar to that of maps because they too have arcane conventions for layout and symbology. Also, like maps, they have a long life time. All current production is by computer-aided drafting and design (CADD). However, some of the DC-3 aircraft launched in 1935 are still flying, and so do the 1970’s Boeing 747 Jumbo Jets (reputedly the last commercial airplane manufactured according to hand-drafted plans). Electric and gas lines, railroad tracks and roadways, and many buildings have even longer operational lifetimes. Most of these artifacts require reviving their outlived documentation in electronic form for updates and maintenance.

Ironically, some of the early CAD software is no longer available or functional, so engineering drawings produced by these systems must be scanned for conversion to modern file formats. The conversion of 3-D machine drawings is particularly demanding and has been subject to decades of research. Raster-digitized drawings produced by obsolete software are often off-shored for re-entry via contemporary stylus-based drafting systems.

4.2. Mathematical formulas and chemical diagrams

Ordinary text consists of a linear sequence of symbols, but in mathematics the relative size and position of the symbols is meaningful. Equation recognition has long been an established field of research with its own workshops, conference sessions and competitions. The advent of stylus computers was largely responsible for the recent flourish of online equation recognition, which allows entering a formula in the way learned in high school, without resorting to a math editor like MathType or AMS Math (the American Mathematical Society’s LaTeX equation editor). The 2014 Competition on Handwritten Mathematical Expression Recognition (CROHME) compared performance on isolated math symbol recognition, math expression recognition, and matrix recognition.

As in the case of text, tables and maps, labeling the symbols and keeping track of their location is sufficient for printing or displaying them for a human reader. Such a representation is not, however, powerful enough for numerical analysis, symbolic algebra or simulation programs like Mathematica and Matlab. Current research efforts in equation recognition therefore concentrate on converting printed and hand printed formulas to mathematical mark-up languages like OpenMath and MathML.

Manipulation of structural formulas in chemistry and predicate calculus expressions in formal logic face similar problems. Drug research firms have long ago converted to computerized operations, and Artificial Intelligence programs have manipulated logic formulas for many decades. Nevertheless, there have been only scattered efforts to convert images of written and printed notations of organic chemistry and formal logic to electronic form.

4.3. Music

Music has a prominent place in contemporary culture, entertainment, and commerce. The conversion of scanned musical scores has been a research objective since the early days of music synthesizers, and music OCR programs have been available two decades. Like the language of mathematics, that of music is essentially two-dimensional, and its transcription requires graphics routines in addition to conventional OCR. Current programs can convert scores to playable and editable Musical Instrument Digital Interface (MIDI) notation. Participants at a recent conference could listen to songs generated from sheet music captured in situ by the presenter’s smartphone camera.

4.4. Niche applications

Researchers have demonstrated the recognition of many symbol systems. Some of these, like the above music app, will surely soon reach commercial maturity. Reading cook books may lead to automating grocery orders and perhaps even chefs. Interest in genealogy led to experiments on reading obituaries, birth and marriage notices, and photographs of tombstones.

A particularly interesting demonstration was “Reading Chess”, by H. Baird and K. Thompson. The program devised by the authors was able to reconstruct complete chess games from several volumes of the poorly printed Chess Informant by taking advantage of the codified rules of chess and of the constrains imposed by each successive move. It even found some errors in tournament records.
In China there has been recent interest in producing advertisements in ancient calligraphic fonts. The study of calligraphy is also a popular pastime. Researchers have reported attempts to recognize the calligraphic style (e.g. seal, clerical, standard, cursive, and running) of ancient manuscripts. The 32-bit GB 18030 and Unicode 7.0 contain codes for over 50,000 Hanzi logograms, all but ~6000 of which seldom if ever appear in modern documents. Many Chinese characters have been transplanted to Japanese, Korean and Vietnamese writing systems.

Although low-end document image processing applications are often packaged with other computer software and peripherals, they have not seen wide home use. That is likely to change as ever more powerful smartphones with high resolution cameras saturate the market. Personal document processing differs from mass conversion in amount of data, customization of desired output, range of tasks, individual skill and usage levels, and the jarring effect of unpredictable system responses. It requires (1) a black-box system, like a spreadsheet, that is tunable by lay users, (2) predictability, which allows the user adapt to the system because the machine communicates and illustrates the source of errors, and (3) interaction based on meaning rather than appearance, similar to that between humans discussing an obscure document.

5. End notes

Pervasive use of many important document applications depends on the economic trade-off between the development costs of automation and computer-assisted key entry. While the most valuable documents have been and are still being transcribed by hand, the transcription of continually refreshed streams of hardcopy documents like postal envelopes and medical forms has been successfully automated. Commercially less remunerative document transcription applications must await further progress in automation. Some significant downstream applications that require digitized documents are listed in Section 5.1. Sources of further information about the material presented in this article are listed in Section 5.2. The last subsection is a preview of expected developments in document processing.

5.1. Downstream technologies

Although Information Retrieval (IR) is not generally considered part of Document Image Analysis (DIA) or vice-versa, the overlap between them includes “logical” document segmentation, extraction of tables of contents, linking figures and illustrations to textual references, and word spotting. A recurring topic is assessing the effect of OCR errors on downstream applications. Common IR methodologies that follow DIA or key entry are keyword search, relevance feedback, document categorization, summarization, authentication, concordance, literary or forensic author identification, and duplicate and plagiarism detection.

In addition to information retrieval, downstream applications include mailroom automation, advertising and political campaigns targeted to individuals’ reading and writing, decision support systems (medical, financial, legal, utility, military, and political), and text re-use (for user manuals or advertising). NewsStand makes use of web crawlers, gazetteers, spatial synonyms, toponym resolution, and geotagging to quasi-instantaneously gather all the news pertinent to a location pointed-to on a zoomable world map.

Computer vision used to be easily distinguished from the image processing aspects of DIA by its emphasis on illumination and camera position. The border is blurring because the correction of the contrast and geometric distortions of camera-captured document images goes well beyond what is required for scanned documents.

5.2. Additional sources of information

Information relevant to the topics discussed is readily available online (though some only via academic, corporate or library subscriptions) in conference proceedings, technical journals, specialized collections, and monographs. The biennial International Conference on Pattern Recognition (ICPR) has a document processing stream, and the smaller International Conference on Document Analysis and Recognition (ICDAR), held in alternate years, is entirely dedicated to this subject. More detailed experimental reports can be found in the proceedings of the even smaller Document Analysis Systems (DAS) workshops and in those of the annual IST/SPIE Document Recognition and Retrieval (DR&R) conferences. More specialized workshops, on historical image processing, equation recognition, graphics recognition, handwriting analysis, and camera-based OCR, are organized around ICPR and ICDAR. The International Conference on the Frontiers of Handwriting (ICFHR) and Graphonomics (IGS) meetings concentrate on the eponymous topics, the ACM Document Engineering Conference (DocEng) on document semantics, and the annual Family Search workshops in Salt Lake City on genealogical applications.

The International Journal of Document Analysis and Recognition (IJDAR) is devoted to document research. However, relevant articles occasionally appear in the IEEE Transactions on Pattern Recognition and Machine Intelligence (PAMI), the journal Pattern Recognition (PR), Pattern Recognition Letters (PRL), and the Journal of Electronic Imaging (JEI).

Among edited collections the largest are the two-volume Handbook of Document Image Processing and Recognition (also in electronic form), and the still useful Handbook of Document Image Processing and Recognition. Many of the
conference programs are revised for publication by commercial publishing houses. *Machine Learning in Document Analysis and Recognition*\(^1\), and *Advances in Digital Document Processing and Retrieval*\(^2\) contain individually solicited expert contributions. For information about publishing practices and vocabulary, *The U.S. Government Printing Office Style Manual or The Chicago Manual of Style* (both available online) may be consulted.

A 2011 monograph by S. Ferilli\(^6\) provides an excellent introduction to the subject and some chapters on its more arcane aspects. *Character Recognition Systems*\(^7\) offers extensive introductory material on feature extraction and pattern classification, and several case studies. Still relevant are parts of the entertaining and informative *Managing Gigabytes*\(^8\) and of two 1999 books on character recognition, by Rice et al.\(^9\) and by Mori et al.\(^10\), respectively.

5.3. Future Prospects

In spite of ubiquitous phone cameras and tireless satellite imagers, documents remain the most common digital images. Journalists and advertisers fill newspapers and magazines, historians indite chronicles, economists explain the stock market, geographers and Google operatives map the world in ever greater detail, diarists record their observations and opinions, bloggers air them, and novelists compete for virtual shelf space on Amazon.

We pass through life leaving a broad trail of documents. We first acquire a birth certificate, then write essays and take tests at school, fill out census, income tax, license and insurance application forms, send birthday cards and checks, sign credit card invoices, accumulate fat folders at our doctor, clinic and hospital, and eventually exit with estate tax forms, an obituary and a death certificate. Document processing offers the possibility, for better or worse, of analyzing and preserving for future generations all of the above.

We are, however, getting out of the loop. More and more documents are now both generated and read only by computers, and they will all be tagged eventually, in whole and in part, in conformance with the dictates of the semantic web\(^11\). A glimpse of the power of machines able to read, remember and cognitively manipulate an enormous number of documents is the Jeopardy world champion Watson supercomputer, whose powers are now being turned to medical and business applications\(^12,13\).

5.4. Summary

Although documents may eventually lose their individuality and unitary nature through integration into quasi-universal information depositories organized along principles entirely different from those of traditional archives and libraries, for now documents remain an essential tool for human communications. Some of the early drivers for the development of OCR to eliminate the cost of key-entry of patents and judiciary records have disappeared, but almost all document processing applications related to image processing still depend on character recognition.

Progress in computing and scanning technologies and in algorithm design has expanded the scope of document processing from simple typescript to complex magazine pages and graphic documents. Word error rates on clean, high-contrast print were reduced to the levels expected from professional proofreaders. OCR systems, albeit of variable efficacy, became available for almost every language and script and we are well on our way to converting all existing books to electronic files. Industrial adoption targeted mainly high-volume applications for reading checks, postal envelopes and bureaucratic forms. The digitalization of medical records, a huge but transient problem, illustrates the need for less specialized approaches. While image processing techniques are already widely applied to the conversion of maps, schematics and engineering drawings, these applications still require considerable operator interaction for acceptable accuracy.

The increase in the volume of digital documents due to fully or partially automated production and conversion resulted in a corresponding increase in the scope and power of downstream information retrieval and document management applications. Except for genealogy-related records, historical documents have attracted less funding. Nevertheless significant research in document image analysis is devoted to improving the accuracy, speed and scope of the conversion of complex, low-contrast, degraded historical documents in a way that preserves the essential connection between the textual and visual aspects of these artifacts. At the opposite end of the spectrum of document processing applications, the new generation of digital cameras opens the way for mobile personal document capture, transcription and analysis.

References

