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Abstract: The rapid, recent development of image recognition technologies has led to the widespread
use of convolutional neural networks (CNNs) in automated image classification and in the recognition
of plant diseases. Aims: The aim of the present study was to develop a deep CNNs to identify tea
plant disease types from leaf images. Materials: A CNNs model named LeafNet was developed with
different sized feature extractor filters that automatically extract the features of tea plant diseases
from images. DSIFT (dense scale-invariant feature transform) features are also extracted and used
to construct a bag of visual words (BOVW) model that is then used to classify diseases via support
vector machine(SVM) and multi-layer perceptron(MLP) classifiers. The performance of the three
classifiers in disease recognition were then individually evaluated. Results: The LeafNet algorithm
identified tea leaf diseases most accurately, with an average classification accuracy of 90.16%, while
that of the SVM algorithm was 60.62% and that of the MLP algorithm was 70.77%. Conclusions: The
LeafNet was clearly superior in the recognition of tea leaf diseases compared to the MLP and SVM
algorithms. Consequently, the LeafNet can be used in future applications to improve the efficiency
and accuracy of disease diagnoses in tea plants.
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1. Introduction

Tea plantation and production areas comprise a total of 2.87 million hectares among the
17 provinces of China. Moreover, the total output of tea plant production exceeded 2.4 billion tons in
2016 [1]. Tea plants tolerate elevated levels of heat and shade, and thus, areas where tea plantations
are typically found are characterized by warm climates and abundant rainfall. However, these regions
are also very conducive to the growth and reproduction of diseases that have severely decreased
tea quality with the gradual increase in tea production. Consequently, tea diseases are a limiting
factor hindering robust tea production. Plant disease diagnosis is typically based on the characteristic
appearances of diseases. However, trained tea plant pathologists are scarce, and limitations in the
background knowledge of tea growers leads to an inability to identify disease events in a timely and
effective manner. Therefore, development and implementation of a diagnostic framework for tea plant
diseases would help ensure the accurate and timely identification of tea plant diseases by agricultural
producers. Such improvements would lead to better control methods that would economically and
effectively restore losses due to diseases. Moreover, these advancements would help ensure higher
tea qualities while reducing costs of labor and agricultural production, and importantly, thereby
improving yields and the sustainable development of tea production.

The current methods for diagnosing plant diseases primarily include microscopic identification
in addition to molecular biological and spectroscopic techniques. Microscopic identification is time
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consuming and can be subjective, where even experienced plant pathologists may incorrectly diagnose
diseases. Molecular biological and spectroscopic identification are more accurate but are labor intensive
and require specialized and expensive instrumentation.

The rapid development of intelligent agriculture and precision agriculture in recent years has led
to the widespread use of computer image processing technologies to solve diverse problems within
agricultural sciences. For example, these technologies have been used to estimate plant nutrient
content [2–4], classify plant species [5], and identify plant diseases [6,7]. In particular, deep neural
network and genetic algorithms have been used in combination to estimate nitrogen content in wheat
leaves [2–4], which represents a considerable improvement over other existing methods.

Artificial neural networks (ANNs) and Support Vector Machines (SVMs) have been used in
this capacity. ANNs reflect biological neural networks and autonomously learn, progressively
improving their knowledge and capacities [8]. The multi-layer perceptron (MLP) model is a multi-layer
feedforward artificial neural network model that exhibits superior performance when analyzing
nonlinear systems. MLPs typically comprise the input, hidden, and output layers, where each layer
contains several neurons, the sigmoidal linear activation functions was used to map the sum of the
weighted inputs to the output of a neuron in the hidden layer [9].

SVMs are an effective type of classification algorithm that has been widely used for many pattern
recognition tasks [10], including machine learning methods based on statistical learning theory [11].
The primary goal of SVMs is to identify a separating plane to evaluate different class memberships.
SVMs were initially used to classify two-class problems in the analysis of linear separable cases.
In the event of linear inseparability, nonlinear mapping algorithms can be used to transform linearly
inseparable samples of low-dimensional input space into high-dimensional feature space in order to
render them linearly separable. The technique is based on the structural risk minimization theory that
informs the construction of an optimal hyperplane in feature space, such that the learner is globally
optimized and the expectation in the entire sample space meets a certain upper bound with a certain
probability. These two methods require smaller sample sizes and an appropriate train rule, which have
led to their widespread use in image classification and recognition.

Convolutional neural networks (CNNs) were developed in the 1980s and are a type of deep
neural network which were used to recognize handwritten digits [12]. CNNs could learn to extract
features from images by themselves through stacked layers of convolutional filters. Typical CNNs are
hierarchical neural networks that are primarily composed of multiple convolution layers, a pooling
layer, and a full connection layer. Local receptive fields, weight sharing, and spatial sub-sampling
are the primary hierarchical aspects within the networks. These attributes result in a high invariance
of CNNs for translation, scaling, shifting, or other forms of deformation [13]. Moreover, CNNs
directly take the image as a network input, thus avoiding the extraction of complex features and the
need for data reconstruction, as in traditional image recognition algorithms. Meanwhile, the high
recognition accuracy of CNNs leads to wide implementation in fields related to computer vision,
where development is occurring rapidly [14].

The rapid development of computer vision technology in recent years has led to increased usage of
computational image processing and recognition methods to identify diseases. The most widely used
current method relies on extracting global features including color features [15], shape features [16],
texture features [17], or some combination of the above features [18–22]. The local features of the
disease spots are then processed using various algorithms including local feature SIFT (scale-invariant
feature transform), SURF (speeded-up robust features), HOG (histogram of oriented gradient), DSIFT
(dense scale-invariant feature transform), and PHOW (pyramid histograms of visual words) [23–25].
Lastly, the extracted feature parameters are used in various classifiers including ANNs [26,27] and
SVMs [28,29]. A significant drawback of these methods is the need to artificially extract features in
advance. In contrast, CNNs learn data characteristics from convolution operations, which is better
suited for pattern recognition of images. Consequently, CNNs have been used to detect and diagnose
plant diseases [30–34].
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Following these previous studies, CNNs were developed and adopted here to improve the
diagnosis and classification of tea diseases. In addition, the classification performances of traditional
machine learning algorithms were evaluated relative to manual classifications and the proposed
CNNs. Among the former, the HOG, SURF, and PHOW algorithms did not exhibit better invariance
towards image rotation and scaling than SIFT, while the SIFT algorithm performed reliably with affine
transformations, viewing angle variation, and noise. Moreover, the SIFT algorithm exhibited strong
scalability, that when combined with other algorithms could be used as a highly optimized algorithm.
Consequently, SIFT was used here as a feature descriptor in a traditional machine learning algorithm.
Although SIFT features can describe images, each SIFT represents a 128-dimensional vector, and images
contain hundreds or thousands of SIFT features, thereby leading to very computationally intensive
operations. To greatly reduce computational processing, a bag of visual words (BOVW) model was
constructed based on these vectors, wherein each image was represented by a numerical vector.

2. Materials and Methods

To identify the optimal strategy for identifying tea leaf diseases from images, disease classification
was conducted with CNNs and compared against classifications with SVM and multi-layer perceptron
(MLP) algorithms. The dense scale-invariant feature transform (DSIFT)-based bag of visual words
(BOVW) model was used to obtain image features for the latter two classifiers.

2.1. Disease Dataset

Images showing tea leaf diseases were all captured using a Cannon PowerShot G12 camera in
the natural environments of Chibi and Yichang within the Hubei province of China. The images were
taken ~20 cm directly above the leaves and captured in the auto-focus mode at a resolution of 4000
× 3000 pixels. A total of 3810 tea leaf images were used that showed symptoms for seven different
diseases, as identified by phytopathologists (Figure 1). The identification criteria used for the tea
tree diseases were based on previously described identification schemes [35,36]. All images in the
present manuscript were resized to 256 × 256 pixels. In order to improve the classifier’s generalization
ability, we increased the size of the dataset, which is more advantageous to the training of the network.
Three different methods were used to alter the image input and improve classification (Figure 2).
Finally, there are 7905 images in the database. Table 1 shows the number of images for every class used
as training, validation and testing datasets for the disease classification model.

The disease classification datasets that were used in these analyses are shown in Table 1.
The 80/20 ratio of training/test data is the most commonly used ratio in neural network applications.
In addition, a 10% subset of the test dataset was used to validate the dataset.

Table 1. The image dataset comprising of seven different diseases used in this study.

Class
Number of Images

from the Dataset Used
for Training

Number of Images
from the Dataset Used

for Validation

Number of Images
from the Dataset Used

for Testing

(1) White spot 941 118 117

(2) Bird’s eye spot 955 120 119

(3) Red leaf spot 890 111 111

(4) Gray blight 893 112 111

(5) Anthracnose 880 110 110

(6) Brown blight 920 115 115

(7) Algal leaf spot 846 106 105

Total 6325 792 788
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Figure 1. Typical example images of tea leaves used in the present analysis. 1) Red leaf spot caused 
by Phyllosticta theicola Petch; 2) Algal leaf spot caused by Cephaleuros virescens Kunze; 3) Bird's eye spot 

Figure 1. Typical example images of tea leaves used in the present analysis. (1) Red leaf spot caused by
Phyllosticta theicola Petch; (2) Algal leaf spot caused by Cephaleuros virescens Kunze; (3) Bird’s eye spot
caused by Cercospora theae Bredde Haan; (4) Gray blight caused by Pestalotiopsis theae (Sawada) Steyaert; (5)
White spot caused by Phyllosticta theaefolia Hara; (6) Anthracnose caused by Gloeosporium theae-sinensis
Miyake; (7) Brown blight caused by Colletotrichum camelliae Massee.
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2.2. Performance Measurements

The accuracy and mean class accuracy (MCA) indices were used to evaluate algorithm
performances, as previously described [37]. CCRk is first defined as the correct classification rate
for class k, as determined by Equation (1):

CCRk =
Ck
Nk

(1)

where Ck is the number of correct identifications for class k and Nk is the total number of elements in
class k. Classification accuracy is then defined by Equation (2):

Accuracy =
∑k CCRk·Nk

∑k Nk
(2)

Lastly, MCA is determined using Equation (3):

MCA =
1
k ∑

k
CCRk (3)

2.3. Convolutional Neural Networks

The network architecture described here is an improvement upon the classical AlexNet model,
and is termed LeafNet. The total number of parameters (weights and biases) of the entire AlexNet
network reaches upwards of 60 million, wherein the parameters of the convolution layer comprises
3.8% of the total network parameters and those of the full connection layer comprises up to 96.2%
of the total. To reduce the computational complexity associated with such networks, we sought to
construct a disease identification model with a relatively simple structure and small computational
requirements. The network was constructed by reducing the number of convolutional layer filters and
the number of nodes in the fully connected layer, thereby effectively reducing the number of network
parameters requiring training and reducing the overfitting problem.

In particular, the LeafNet architecture comprises of five convolutional layers, two fully connected
layers, and a final layer as the classification layer. In addition, the number of filters in the first, second,
and fifth convolutional layers are designed to equal half of those used in AlexNet’s filters. Further,
the number of neurons in the fully connected layer are 500, 100, and seven, respectively, which differs
from the number used in the standard AlexNet architecture. The entire network architecture is shown
in Figure 3.
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Input images were rescaled to 227 × 227 pixels and the three color channels were all processed
directly by the network. The convolutional and full connection layers are defined as follows:
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1. The first convolutional layer comprises of 24 filters and a kernel size of 11 × 11 pixels, outputting
24 feature maps with a size of 55 × 55 pixels. This process is followed by a rectified linear unit (ReLU)
operation. ReLU is an activation function that provides a solution to vanishing gradients and exhibits
more optimal error transmission than the sigmoid function. The pooling layer has a kernel size of 3 ×
3 pixels, with a stride of 2 pixels. Local Response Normalization (LRN) after pooling can improve the
generalization ability of models and accelerate the convergence speed of networks. Finally, 24 × 27 ×
27 feature maps are obtained.

2. The second convolutional layer comprises of 64 filters with kernel sizes of 5 × 5 pixels and
outputs 64 × 27 × 27 feature maps. As above, batch normalization and ReLU operations are also
implemented. The pooling layer has a kernel of size 3 × 3 pixels, with a stride of 2 pixels. After pooling,
local response normalization is performed, and 64 × 13 × 13 feature maps are obtained.

3. The third and fourth convolutional layers both comprise of 96 filters with kernel sizes of 3 × 3
pixels, and output 96 × 13 × 13 feature maps that are subjected to a ReLU operation.

4. The fifth convolutional layer has 64 filters with kernel sizes of 3 × 3 pixels and outputs 64
13 × 13 feature maps that are subjected to a ReLU operation. The pooling layer has a kernel size of
3 × 3 pixels and a stride of 2 pixels. After pooling, 64 × 6 ×6 feature maps are obtained.

5. The first full connection layer contains 500 neurons and is followed by a ReLU operation in
addition to a dropout operation. The dropout [38] technique is an effective solution to overfitting via
the training of only some of the randomly selected nodes rather than the entire network. The dropout
ratio was set as 0.5, as used previously.

6. The second full connection layer contains 100 neurons and is followed by ReLU and
dropout operations.

7. The last full connection layer contains seven neurons, representing the number of tea leaf
disease categories. The output of the last full connection layer is then transferred to the output layer to
determine the classification of the input image. The softmax activation function is then implemented,
which forces the sum of the output values to equal 1.0 and limits individual outputs to values between
0–1. The softmax function is an appropriate implementation into LeafNet because it accounts for the
relative magnitudes of all outputs. Layer parameters for the LeafNet are shown in Table 2.

Table 2. Layer parameters for the LeafNet.

Layer Parameter Activation Function

Input 227 × 227 × 3 -

Convolution1 (Conv1) 24 convolution filters (11 × 11), 4 stride ReLU

Pooling1 (Pool1) Max pooling (3 × 3), 2 stride -

Convolution2 (Conv2) 64 convolution filters (5 × 5), 1 stride ReLU

Pooling2 (Pool2) Max pooling (3 × 3), 2 stride -

Convolution3 (Conv3) 96 convolution filters (3 × 3), 1 stride ReLU

Convolution4 (Conv4) 96 convolution filters (3 × 3), 1 stride ReLU

Convolution5 (Conv5) 64 convolution filters (3 × 3), 1 stride ReLU

Pooling5 (Pool5) Max pooling (3 × 3), 2 stride -

Full Connect6 (fc6) 500 nodes, 1 stride ReLU

Full Connect7 (fc7) 100 nodes, 1 stride ReLU

Full Connect8 (fc8) 7 nodes, 1 stride ReLU

Output 1 node Softmax

Weights for all of the layers are first initialized with random values from a Gaussian distribution.
The network was trained using a stochastic gradient descent (SGD) technique, with a batch size of 16
and a momentum value of 0.9 [39]. Batch training increases the convergence rate while minimizing
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memory usage. The initial learning rate of all layers of the network were set to 0.1. As the network
trains, the learning rate decreased according to the error reduction. Specifically, the learning rate
decreases to 0.1 times the original learning rate in subsequent iterations, with the minimum learning
rate threshold set to 0.0001. The number of epochs was set as 100, while the weight of decay was set to
0.0005. The method was implemented using the Matconvnet toolbox for MATLAB and training was
performed on a Lenovo machine with a Core i7-3770K CPU, 8 GB of RAM, and acceleration via two
NVIDIA GeForce GTX 980 GPUs.

2.4. Dense SIFT-Based Bag of Visual Words (BOVW) Model

Lowe [40] proposed the SIFT algorithm for extracting local features from images which is invariant
to image rotation, scaling, and affine transformations. Consequently, the SIFT method is considered
the most robust local invariant feature descriptor for image processing [41]. However, for the SIFT
algorithm that includes feature detection and description stages, considerable calculation requirements
lead to the low image processing speed. Therefore, an improvement upon the original algorithm,
the dense scale-invariant feature transform (DSIFT) algorithm [42], has been developed and applied.
The DSIFT algorithm applies a fixed-size rectangular window for sampling, proceeding from the left
to the right of the image and from the top to the bottom, based on a specified step length. The center of
the window is used as the key point and an image block comprising of 16 pixels around the center is
divided into cells with 4 × 4 pixel sizes. Within each cell, a gradient histogram is calculated in eight
directions using the SIFT algorithm, and a feature vector of 4 × 4 × 8 = 128 dimensions is obtained,
thus forming the DSIFT descriptor.

The BOVW model proposed by Sivic and Zisserman [43] is widely used in machine vision due to
its simplicity and computational efficiency [44]. The traditional BOVW model comprises four major
steps. The first step is feature extraction and description. The DSIFT output represents the local
invariant feature points for each image and were the dense SIFT descriptors in this study, which
comprised of a 128 dimensional vector. The second step is the construction of a visual vocabulary by
processing the dense SIFT descriptors using a K-means algorithm. Each cluster center can be thought
of as a visual word in the dictionary. All visual words thus form a visual vocabulary and the size of
the vocabulary is equal to the number of words. The third step is to statistically analyze the number of
visual word occurrences in each image, wherein the image can be represented as a numerical vector
histogram. The final step is the operation of a classifier, which was either a support vector machine
(SVM) or multi-layer perceptron (MLP) algorithm in this study.

In this study, the tea disease image was represented by the DSIFT feature vector of size 1000 × 128,
with a k value of 1000. The input image histogram was then sent to the SVM and MLP classification
algorithms. Here, a three-layer MLP network structure is adopted with the number of nodes in the
hidden layer set at 100 and the use of a sigmoid activation function. The random gradient descent
method with mini-batch was used to train the MLP parameters, with a batch size of 25 and a learning
rate of 1.0. The framework of the SVM and MLP algorithms based on the BOVW model is shown in
Figure 4.
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3. Results and Discussion

In this study, the accuracy of the SVM, MLP, and CNN classifiers in determining disease states
for tea leaves from images were evaluated. The results of these analyses are shown in Figure 5. Error
matrices were used to evaluate the accuracy of tea leaf disease recognition classifiers (Tables 3–5).
From these data, the various tea leaf disease recognition algorithms generally identified the majority
of diseases correctly, although the LeafNet algorithm clearly performed better than the SVM and MLP
algorithms. Among the different diseases, the Bird’s eye spot disease was best distinguished by the
LeafNet, which is likely due to its obvious phytopathological symptoms and ease of discernment.
White spot disease was the next most accurately classified disease, while all other diseases were
classified at accuracies between 84–93%. The gray blight, red leaf spot, and brown blight were classified
with the least accuracy, which is due to the similarity in pathological characteristics among the three
diseases. Some disease symptoms are too similar in their later stages to be distinguished, like gray
blight and brown blight diseases, which both exhibit annulations during later stages. Moreover, the
symptoms in the early and middle stages of these diseases are also difficult to distinguish. In addition
to the above cases, the symptoms during early and middle stages of some diseases are also very
similar. For example, the symptoms of white spot and bird’s eye spot diseases both include reddish
brown spots at early stages. In addition, both anthracnose and brown blight diseases are typified
by waterlogged leaves during early disease stages, while differentiation occurs during later stages.
Some diseases can occur in tea plants throughout the year, although some diseases occur at distinct
times. Consequently, the time of year when diseases are diagnosed may differ, which would affect the
accuracy of disease recognition. A further complication in accurate disease diagnoses may be that tea
leaves can be infected by two or more diseases. The occurrence of a disease within a leaf would likely
result in physiological weakness that could lead to infection by a second disease. Thus, the above
confounding factors may explain lessened accuracy in disease recognition by the tested models.

In addition, the performance of LeafNet was compared against two other methods described
previously [26,28]. The accuracy of LeafNet was slightly lower than of the two aforementioned
algorithms (Table 6). However, more types of diseases were used in the present study compared to
those used to evaluate the accuracy of the other two models. Consequently, the method proposed here
to classify tea tree diseases is clearly superior to the two other previously described algorithms.
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Table 3. Error matrix showing the classification accuracy of the LeafNet algorithm.

White Spot Bird’s Eye Spot Red Leaf Spot Gray Blight Anthracnose Brown Blight Algal Leaf Spot Sensitivity Accuracy MCA

White spot 111 3 0 0 3 0 0 94.87%

90.23% 90.16%

Bird’s eye spot 1 117 0 0 0 0 1 98.32%
Red leaf spot 0 0 95 7 0 8 1 85.59%
Gray blight 0 0 4 96 3 7 1 86.49%

Anthracnose 5 0 1 6 97 1 0 88.18%
Brown blight 0 1 15 2 0 97 0 84.35%

Algal leaf spot 1 1 2 2 1 0 98 93.33%

Table 4. Error matrix showing the classification accuracy of the SVM algorithm.

White Spot Bird’s Eye Spot Red Leaf Spot Gray Blight Anthracnose Brown Blight Algal Leaf Spot Sensitivity Accuracy MCA

White spot 79 11 0 2 19 1 5 67.52%

60.91% 60.62%

Bird’s eye spot 12 89 0 4 1 10 3 74.79%
Red leaf spot 2 4 59 23 2 19 2 53.15%
Gray blight 0 0 13 70 8 17 3 63.06%

Anthracnose 19 0 5 13 56 11 6 50.91%
Brown blight 0 2 19 17 3 73 1 63.48%

Algal leaf spot 9 10 12 13 3 4 54 51.43%

Table 5. Error matrix showing the classification accuracy of the MLP algorithm.

White Spot Bird’s Eye Spot Red Leaf Spot Gray Blight Anthracnose Brown Blight Algal Leaf Spot Sensitivity Accuracy MCA

White spot 83 13 0 3 15 1 2 70.94%

70.94% 70.77%

Bird’s eye spot 6 100 0 6 1 5 1 84.03%
Red leaf spot 1 1 80 17 0 11 1 72.07%
Gray blight 0 0 9 81 6 14 1 72.97%

Anthracnose 13 0 4 10 73 8 2 66.36%
Brown blight 0 5 16 15 3 75 1 65.22%

Algal leaf spot 6 5 9 10 4 4 67 63.81%
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Table 6. Comparison of LeafNet and two previously published classification algorithms.

Method Disease Types Evaluated Accuracy (%)

Leaf Net 7 90.16%

Algorithm from [26] 1 91%

Algorithm from [28] 2 91%

The disease classification accuracies of the SVM and MLP algorithms were not very high, which is
due to the necessity of artificial selection of features. To a large extent, the performance of these methods
depends on whether the characteristics selected by investigators are reasonable, while investigators
usually rely on experience and can exhibit significant naivety when selecting features. Although better
results are obtained by using artificial feature classification, these features are specific for datasets.
Results may differ considerably if the same features are used to analyze different data sets, which is a
problem inherent to these techniques.

4. Conclusions

CNNs have developed into mature techniques that have been increasingly applied in image
recognition. The computational complexity needed for neural network analyses is considerably
reduced compared to other algorithms and it also significantly improves computing precision.
Concomitantly, the high fault tolerance of CNNs allows the use of incomplete or fuzzy background
images, thereby effectively enhancing the precision of image recognition.

Feature extraction is an important step in image classification and directly affects classification
accuracies. Thus, two feature extraction methods and three classifiers were compared in their abilities
to identify seven tea leaf diseases in the present manuscript. These analyses revealed that LeafNet
yielded the highest accuracies compared to SVM and MLP classification algorithms. CNNs thus have
obvious advantages for identifying tea plant diseases. Importantly, the results from the present study
highlight the feasibility of applying CNNs in the identification of tea plant diseases, which would
significantly improve disease recognition for tea plant agriculture. Although the disease classification
accuracy of the LeafNet was not 100%, improvements upon the present method can be implemented in
future studies to improve the method and provide more efficient and accurate guidance for the control
of tea plant diseases. At present, the LeafNet model has been applied to the identification of other crop
diseases, such as grape disease; however, it needs to be further investigated according to the specific
situation of disease, so as to verify the universality of this model.
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