Scrambling and Descrambling
SMT-LIB Benchmarks

Tjark Weber

Uppsala University, Sweden

SMT 2016
Coimbra, Portugal

Tjark Weber Scrambling and Descrambling ... 1/16

Motivation

The benchmarks used in the SMT Competition are known in advance.

Competing solvers could cheat by simply looking up the correct answer for
each benchmark in the SMT Library.

To make this form of cheating more difficult, benchmarks in the
competition are lightly scrambled.

Tjark Weber Scrambling and Descrambling ... 2 /16

Scrambling: Example

(set—logic UFNIA)

(set—info :status unsat)

(declare—fun f (Int Int) Int)

(declare—fun x () Int)

(assert (forall ((y Int)) (< (f y y) y))) ORIGINAL
(assert (> x 0)) BENCHMARK I
(assert (> (f x x) (x 2 x)))

(check—sat)
(exit)

Tjark Weber Scrambling and Descrambling ... 3/16

Scrambling: Example

(set—logic UFNIA)

(set—info :status unsat)

(declare—fun f (Int Int) Int)
(declare—fun x () Int)

(assert (forall ((y Int)) (< (f y y) y)))
(assert (> x 0))

(assert (> (f x x) (x 2 x)))

(check—sat)

(exit)

$

(set—logic UFNIA)

(declare—fun x2 () Int)

(declare—fun x1 (Int Int) Int)

(assert (< (*x x2 2) (x1 x2 x2)))

(assert (> x2 0))

(assert (forall ((x3 Int)) (> x3 (x1 x3 x3))))
(check—sat)

(exit)

Tjark Weber Scrambling and Descrambling ...

ORIGINAL
BENCHMARK

SCRAMBLED
BENCHMARK

3/16

The Benchmark Scrambler

The benchmark scrambler parses SMT-LIB benchmarks into an abstract
syntax tree, which is then printed again in concrete SMT-LIB syntax.

@ Originally developed by Alberto Griggio

e Written in C++ (= 1,000 lines of code)

@ Based on a Flex/Bison parser (= 900 lines) for the SMT-LIB language
@ Used (with minor modifications) at every SMT-COMP since 2011

Tjark Weber Scrambling and Descrambling ... 4/16

The (Old) Scrambling Algorithm

@ Comments and other artifacts that have no logical effect are removed.

@ Input names, in the order in which they are encountered during
parsing, are replaced by names of the form x1, x2,

@ Variables bound by the same binder (e.g., let, forall) are shuffled.
© Arguments to commutative operators (e.g., and, +) are shuffled.

© Anti-symmetric operators (e.g., <, bvslt) are randomly replaced by
their counterparts (e.g., >, bvsgt).

@ Consecutive declarations are shuffled.

@ Consecutive assertions are shuffled.

All pseudo-random choices depend on a seed value that is not known to
competition solvers.

Tjark Weber Scrambling and Descrambling ... 5/ 16

Benchmark Normalization

Since scrambling loses information (e.g., input names), the original
benchmark cannot be restored from the scrambled benchmark alone.

However, how difficult is it to identify some original benchmark(s) in the
SMT Library that could have resulted in the scrambled output?

Scrambling

S NN N N N N N N

Original benchmark Scrambled benchmark

Tjark Weber Scrambling and Descrambling ... 6 /16

Benchmark Normalization

Since scrambling loses information (e.g., input names), the original
benchmark cannot be restored from the scrambled benchmark alone.

However, how difficult is it to identify some original benchmark(s) in the
SMT Library that could have resulted in the scrambled output?

This turns out to be computationally easy. We use a normalization
algorithm:

Scrambling

Original benchmark Scrambled benchmark

N OW

Normalized benchmark

Normalization’

Tjark Weber Scrambling and Descrambling ... 6 /16

The Normalization Algorithm

©@ Comments and other artifacts that have no logical effect are removed.

@ For original benchmarks, input names, in the order in which they are
encountered during parsing, are replaced by names of the form x1,
x2, For scrambled benchmarks, input names are retained.

@ Variables bound by the same binder (e.g., let, forall) are sorted.
© Arguments to commutative operators (e.g., and, +) are sorted.

@ Anti-symmetric operators (e.g., <, bvslt) are replaced by a canonical
representation.

@ Consecutive declarations are sorted.

@ Consecutive assertions are sorted.

Where the scrambler shuffles, the normalizer sorts. J

Tjark Weber Scrambling and Descrambling ... 7 /16

The World's Fastest SMT Solver

Our normalization algorithm allows us to build a cheating SMT solver. J

Before the competition:

@ Normalize all 154,238 benchmarks used in the Main Track of
SMT-COMP 2015.

@ For each normal form, compute its SHA-512 hash digest. Create a
map from digests to benchmark status.
During the competition, for each scrambled benchmark:
© Normalize the benchmark (retaining input names).
@ Compute the SHA-512 digest of the normal form.

© Use this to look up the benchmark’s status in the pre-computed map.

Tjark Weber Scrambling and Descrambling ... 8 /16

The World's Fastest SMT Solver: Performance

We compare the performance of our normalizing solver to the performance
of a virtual best solver obtained by using, for each benchmark, the best
performance of any solver that participated in SMT-COMP 2015.

Run-time comparison for each benchmark:

w 3 x e %
2 1000 - is"ﬁ% s
3 boox BeK S I R SR P
9] F LN ,'i*% I=
£ 100 - ™ T
p. 3 X
g £
©o 10 % e
2] Wy W
2 1 - e
T]
£ 0.1 -
= E
[0}]
Z 0.01 0.1 1 10 100 1000
3 . s
[~2 Run-time normalizing solver (seconds)

Tjark Weber Scrambling and Descrambling ... 9 /16

The World's Fastest SMT Solver: Performance (cont.)

Run-times plotted against the number of benchmarks solved:

1000

——Normalizing solver

100
——Virtual best solver

10 J
1 l
|)
0.01 %

0.001 T T T
0 50000 100000 150000
solved benchmarks

o
N

Run-time (seconds)

Our normalizing solver solves every benchmark and is (on average) 223
times faster than the virtual best solver.

Tjark Weber Scrambling and Descrambling ... 10 / 16

Benchmark Similarities in the SMT Library

Our normalization algorithm allows us to identify similar benchmarks in
the SMT Library. J

There are 196,375 non-incremental benchmarks in the 2015 release of the
SMT Library.

We call two benchmarks similar if they have the same normal form.

Tjark Weber Scrambling and Descrambling ... 11 /16

Benchmark Similarities in the SMT Library: Findings

10000 *
2 1000 <
7]
% X
©
@ X
e 100 x X
2 X
[
% X xxx X X
= x
w 10 X x X
x X X v
x
x
A » X
1 X MO FIORSOOK JOC I XXX K X x
10 100 1000

Size (benchmarks)

@ 30,799 benchmarks (16%) are duplicates wrt. similarity.
@ Up to 1,499 similar versions of a single benchmark.
@ 119 benchmarks with unknown status are similar (and thus

equisatisfiable) to benchmarks with known status.

Tjark Weber Scrambling and Descrambling ... 12 /16

Requirements on a Good Scrambling Algorithm

@ Must not affect satisfiability.
@ Must be efficient.
@ Should (ideally) not affect solving times.

@ Given two benchmarks, it should be hard to decide without additional
information (such as the seed used for scrambling) whether one is a
scrambled version of the other.

Tjark Weber Scrambling and Descrambling ... 13 / 16

Requirements on a Good Scrambling Algorithm

@ Must not affect satisfiability.
@ Must be efficient.
@ Should (ideally) not affect solving times.

@ Given two benchmarks, it should be hard to decide without additional
information (such as the seed used for scrambling) whether one is a
scrambled version of the other.

The old scrambling algorithm meets (1)-(3), but falls short of (4).

Observation: Our normalization algorithm crucially relies on the fact that
the replacement of input names with names of the form x1, x2, ... is
entirely predictable.

Tjark Weber Scrambling and Descrambling ... 13 /16

A New Scrambling Algorithm

©@ Comments and other artifacts that have no logical effect are removed.

@ Input names, in the order in which they are encountered during
parsing, are replaced by names of the form x1, x2,

© A random permutation 7 is applied to all names, replacing each
name xi with m(x/).

© Variables bound by the same binder (e.g., let, forall) are shuffled.
@ Arguments to commutative operators (e.g., and, +) are shuffled.

O Anti-symmetric operators (e.g., <, bvslt) are randomly replaced by
their counterparts (e.g., >, bvsgt).

@ Consecutive declarations are shuffled.

@ Consecutive assertions are shuffled.

Tjark Weber Scrambling and Descrambling ... 14 / 16

The New Scrambling Algorithm is GI-Complete

Theorem

For the new scrambling algorithm, the problem of determining whether
two benchmarks are scrambled versions of each other is Gl-complete.

Proof of Gl-hardness:

Given a graph G = (V, E), construct a corresponding SMT-LIB
benchmark B(G) as follows:

veV (declare—fun v () Bool)
{vl,v2} € E (assert (= vl v2))

Now two graphs G and H are isomorphic if and only if B(G) and B(H)
are scrambled versions of each other.

Tjark Weber Scrambling and Descrambling ... 15 / 16

Conclusions

The scrambling algorithm used at SMT-COMP since 2011 is ineffective at
obscuring the original benchmark. However, we have no reason to believe
that cheating has occurred at past competitions.

Our improved scrambling algorithm renders the problem of identifying the
original benchmark Gl-complete. This algorithm has now been used at

SMT-COMP 2016.

Nonetheless, the competition may have to rely on social disincentives and
scrutiny more than on technical measures to prevent this form of cheating.

Is there an even better scrambling algorithm?

Tjark Weber Scrambling and Descrambling ... 16 / 16

	Scrambling and Descrambling SMT-LIB Benchmarks
	Motivation
	Scrambling: Example
	The Benchmark Scrambler
	The (Old) Scrambling Algorithm
	Benchmark Normalization
	The Normalization Algorithm
	The World's Fastest SMT Solver
	The World's Fastest SMT Solver: Performance
	The World's Fastest SMT Solver: Performance (cont.)
	Benchmark Similarities in the SMT Library
	Benchmark Similarities in the SMT Library: Findings
	Requirements on a Good Scrambling Algorithm
	A New Scrambling Algorithm
	The New Scrambling Algorithm is GI-Complete
	Conclusions

