Variable Weighted Synthesis Inference Method for Fuzzy Reasoning and Fuzzy Systems

Yu-Zhuo ZHANG and Hong-Xing LI
School of Mathematical Sciences, Beijing Normal University
Beijing 100875, P.R. China
lhxqx@bnu.edu.cn
(Received February 2005; revised and accepted April 2006)

Abstract—A new fuzzy inference method, called a VWSI (variable weighted synthesis inference) method, is presented by applying the principle of variable weighted synthesis in factor spaces theory to fuzzy inference. The analysis for response abilities of fuzzy systems constructed by VWSI algorithms indicates that such fuzzy systems have a characteristic of interpolation approximations to unknown functions. The fuzzy systems constructed by commonly used fuzzy inference algorithms are equivalent to some special fuzzy systems constructed by VWSI algorithms. A simulation experiment shows the advantage of VWSI method. © 2006 Elsevier Ltd. All rights reserved.

Keywords—Fuzzy reasoning, Fuzzy system, Variable weighted synthesis inference method, CRI method, Fuzzy control.

1. INTRODUCTION

It is well known that fuzzy inference is a theoretical foundation of fuzzy control systems and fuzzy expert systems. At present, general fuzzy inference methods include the CRI (compositional rules of inference) method, (+,-)-centroid method, simple inference method, function inference method, characteristic expansion inference method, full implication triple I method, and so on [1-7]. Among them, the CRI method is widely adopted in applications. The CRI method is realized by fuzzy implication operators and fuzzy relation composition, where the selection of appropriate fuzzy implication operators appears critical. The Mamdani implication operator "\(\wedge \)" is one of the most commonly used implication operators in practice. In the CRI method built upon Mamdani implication, inference relations are defined as fuzzy relations between antecedents and consequents of inference rules by the Mamdani implication operator "\(\wedge \)", and then fuzzy relation composition operators are used to composite an input fuzzy set and the total inference relation. Through analyzing its mathematical expression, we find out that the expression has the form of a variable weighted synthesis function, in which the variable weights are determined by some fuzzy relations between input fuzzy sets and rule antecedents and vary with input fuzzy sets, and the...
synthesis is realized by composing rule consequents with variable weights. This idea conforms to the principle of variable weighted synthesis in multifactorial decision-making.

The notion of variable weights was introduced for the synthetic decision-making analysis in [8]. Reference [9] gave the axiomatic definitions of variable weight vectors and state variable weight vectors in accordance with varying regularity of weights, and presented the principle of variable weights saying that "variable weight vectors are made by normalized Hadamard products of a constant weight vector and state variable weight vectors." The concept of synthesis functions, also named multifactorial functions, was introduced for reducing dimensions in [10]. If the parameters in synthesis functions are variable, the synthesis functions are called variable weighted synthesis functions and have the ability of merging information.

In this paper, we propose the variable weighted synthesis inference (VWSI) method by applying the principle of variable weighted synthesis to fuzzy inference. In Section 2, we give some preliminary knowledge. In Section 3, we introduce the notions of states of rules, state variable weights of rules and variable weights of rules, and also present the VWSI method and some algorithmic models. In Section 4, we discuss the construction of variable weights of rules. In Section 5, we analyze the interpolation mechanism of fuzzy systems constructed by several VWSI algorithmic models. In Section 6, we discuss the relationship between the fuzzy systems based on VWSI algorithms and the fuzzy systems based on commonly used fuzzy inference algorithms. In Section 7, we give a method for determining constant weights of rules and a simulation experiment.

2. PRELIMINARIES

DEFINITION 2.1. An m-dimensional variable weight is a mapping \(W = (w_1, \ldots, w_m) \) from \([0, 1]^m\) to \([0, 1]^m\), where

\[
w_i : [0, 1]^m \to [0, 1]; \quad (x_1, \ldots, x_m) \mapsto w_i(x_1, \ldots, x_m), \quad 1 \leq i \leq m.
\]

A variable weight with reward is an m-dimensional variable weight \(W \) satisfying the following three conditions:

(w.1) normality, i.e., \(\sum_{i=1}^m w_i(x_1, \ldots, x_m) = 1 \),
(w.2) continuity, i.e., every mapping \(w_i \) is continuous with respect to any variable \(x_j \) (\(1 \leq i, j \leq m \)),
(w.3) reward law, i.e., every mapping \(w_i \) is monotonically increasing with respect to the variable \(x_i \) (\(1 \leq i \leq m \)).

A variable weight with penalty is an m-dimensional variable weight \(W \) satisfying (w.1), (w.2) and the following condition:

(w.3') penalty law, i.e., every mapping \(w_i \) is monotonically decreasing with respect to the variable \(x_i \) (\(1 \leq i \leq m \)).

A synthesis function \(M_m \), also named a multifactorial function, is essentially a projection from m-dimensional space to one-dimensional space [10]. In many cases, the spaces may be transformed into the unit closed intervals. Then \(M_m : [0, 1]^m \to [0, 1] \) and it is called a standard synthesis function. Standard synthesis functions can be divided into additive ones and nonadditive ones.

DEFINITION 2.2. An additive m-ary standard synthesis function is a mapping \(M_m : [0, 1]^m \to [0, 1] \); \((x_1, \ldots, x_m) \mapsto M_m(x_1, \ldots, x_m) \) satisfying the following three conditions:

(m.1) \(x_i \leq y_i \) (\(1 \leq i \leq m \)) \(\Rightarrow M_m(x_1, \ldots, x_m) \leq M_m(y_1, \ldots, y_m) \),
(m.2) \(M_m \) is continuous with respect to any variable \(x_i \) (\(1 \leq i \leq m \)),
(m.3) \(\bigwedge_{i=1}^m x_i \leq M_m(x_1, \ldots, x_m) \leq \bigvee_{i=1}^m x_i \).

A nonadditive m-ary standard synthesis function is a mapping

\[
M_m : [0, 1]^m \to [0, 1]; \quad (x_1, \ldots, x_m) \mapsto M_m(x_1, \ldots, x_m),
\]
Variable Weighted Synthesis

satisfying (m.1), (m.2) and the following condition:

\[(m.3') \quad M_m(x_1, \ldots, x_m) > \bigvee_{i=1}^{m} x_i \text{ or } M_m(x_1, \ldots, x_m) < \bigwedge_{i=1}^{m} x_i.\]

EXAMPLE 2.1. The following mappings from \([0, 1]^m\) to \([0, 1]\) are additive \(m\)-ary standard synthesis functions:

\[
\begin{align*}
\bigwedge(x_1, \ldots, x_m) & \triangleq \bigwedge_{i=1}^{m} x_i; \\
\bigvee(x_1, \ldots, x_m) & \triangleq \bigvee_{i=1}^{m} x_i; \\
\sum(x_1, \ldots, x_m) & \triangleq \sum_{i=1}^{m} w_ix_i,
\end{align*}
\]

where \(w_i \in [0, 1]\) and \(\sum_{i=1}^{m} w_i = 1;\)

\[
M_m(x_1, \ldots, x_m) \triangleq \bigvee_{i=1}^{m} w_ix_i,
\]

where \(w_i \in [0, 1]\) and \(\bigvee_{i=1}^{m} w_i = 1;\)

\[
M_m(x_1, \ldots, x_m) \triangleq \bigvee_{i=1}^{m} (w_i \wedge x_i),
\]

where \(w_i \in [0, 1]\) and \(\bigvee_{i=1}^{m} w_i = 1;\)

\[
M_m(x_1, \ldots, x_m) \triangleq \left(\sum_{i=1}^{m} w_ix_i^p\right)^{1/p},
\]

where \(p > 0, w_i \in [0, 1]\) and \(\sum_{i=1}^{m} w_i = 1.\)

EXAMPLE 2.2. The mapping \(\Pi : [0, 1]^m \rightarrow [0, 1]\) given by

\[
\Pi(x_1, \ldots, x_m) \triangleq \prod_{i=1}^{m} x_i
\]

is a nonadditive \(m\)-ary standard synthesis function.

NOTE 2.1. In (3)-(6), if every parameter \(w_i\) is variable, that is, \(w_i \triangleq w_i(x_1, \ldots, x_m) (1 \leq i \leq m),\) then those synthesis functions are said to be variable weighted.

In [9], it was pointed out that in variable weighted synthesis, the relative importance of every factor should be considered and the weights should vary with different factor states.

DEFINITION 2.3. Let \(S = (S_1, \ldots, S_m)\) be a mapping from \([0, 1]^m\) to \([0, 1]^m,\) where

\[
S_i : [0, 1]^m \rightarrow [0, 1]; \quad (x_1, \ldots, x_m) \mapsto S_i(x_1, \ldots, x_m), \quad 1 \leq i \leq m.
\]

The mapping \(S\) is called an \(m\)-dimensional state variable weight with reward if it satisfies the following four conditions:

(s.1) \(S\) is symmetric, i.e., for any \(i, j (1 \leq i < j \leq m),\)

\[
S(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_m) = S(x_1, \ldots, x_j, \ldots, x_i, \ldots, x_m),
\]

(s.2) every \(S_i(x_1, \ldots, x_m)\) is continuous with respect to any variable \(x_j (1 \leq i, j \leq m),\)
(s.3) \(x_i \geq x_j \Rightarrow S_i(x_1, \ldots, x_m) \geq S_j(x_1, \ldots, x_m) \),

(s.4) the mapping \(W : [0,1]^m \to [0,1]^m \) given by

\[
X \mapsto W(X) \triangleq \frac{W^0 \circ S(X)}{\sum_{i=1}^{m} w_i^0 S_i(X)}
\]

is a variable weight with reward, where \(W^0 = (w_1^0, \ldots, w_m^0) \) is a constant weight vector and \(\circ \) is the Hadamard product operator.

The mapping \(S \) is called an \(m \)-dimensional state variable weight with penalty if it satisfies (s.1), (s.2) and the following two conditions:

(s.3') \(x_i \geq x_j \Rightarrow S_i(x_1, \ldots, x_m) \leq S_j(x_1, \ldots, x_m) \),

(s.4') the mapping \(W : [0,1]^m \to [0,1]^m \) given by

\[
X \mapsto W(X) \triangleq \frac{W^0 \circ S(X)}{\sum_{i=1}^{m} w_i^0 S_i(X)}
\]

is a variable weight with penalty, where \(W^0 = (w_1^0, \ldots, w_m^0) \) is a constant weight vector and \(\circ \) is the Hadamard product operator.

The principle of variable weights, presented in [9], is as follows.

Theorem 2.1. The variable weight vector \(W(X) \) is the normalized Hadamard product of a constant weight vector \(W^0 \) and a state variable weight vector \(S(X) \), i.e.,

\[
W(X) = \frac{W^0 \circ S(X)}{\sum_{i=1}^{m} w_i^0 \cdot S_i(X)}.
\]

3. **VWSI METHOD FOR FUZZY REASONING**

We herein primarily discuss the multiple fuzzy inference, since it is widely applied in practice. The general form of multiple fuzzy inference is given as follows:

- Known
 - If \(x \) is \(A_1 \) then \(y \) is \(B_1 \)
 - If \(x \) is \(A_2 \) then \(y \) is \(B_2 \)
 - ...
 - If \(x \) is \(A_m \) then \(y \) is \(B_m \)

- Given \(x \) is \(A' \)

- Determined \(y \) is \(B' \)

where \(x \in X, y \in Y, A_i, A' \in \mathcal{F}(X) \) and \(B_i, B' \in \mathcal{F}(Y) \) (\(1 \leq i \leq m \)).

We first intend to show the principle of variable weighted synthesis in fuzzy inference through analyzing the inference process of the CRI method on the basis of the Mamdani implication operator. Every inference rule is regarded as a fuzzy relation \(R_i \) from \(X \) to \(Y \) defined by the Mamdani implication \(\land \), i.e., \(R_i(x, y) = A_i(x) \land B_i(y) \) (\(1 \leq i \leq m \)), and \(m \) inference rules are jointed by fuzzy set operator \(\lor \) to get the total inference relation \(R(x, y) \), that is,

\[
R(x, y) \triangleq \bigvee_{i=1}^{m} R_i(x, y) = \bigvee_{i=1}^{m} (A_i(x) \land B_i(y))
\]
Then the given input fuzzy set \(A' \) and the total inference relation \(R(x, y) \) are composed by fuzzy relation composite operation to obtain the output fuzzy set \(B' \), i.e.,

\[
B'(y) = \bigvee_{x \in X} \left[A'(x) \land \bigwedge_{i=1}^{m} (A_i(x) \land B_i(y)) \right] = \bigvee_{i=1}^{m} \left[\left(\bigvee_{x \in X} (A'(x) \land A_i(x)) \right) \land B_i(y) \right].
\] (8)

From another viewpoint, equation (8) can be explained as follows: \(\bigvee_{x \in X} (A'(x) \land A_i(x)) \) is the approach degree between input fuzzy set \(A' \) and rule antecedent \(A_i \) (this formula satisfies the axioms of approach degree of fuzzy sets, refer to [11]). The value of approach degree can be regarded as a variable weight of the \(i \)th rule in the inference process, since it changes with \(A' \). And \((\bigvee_{x \in X} (A'(x) \land A_i(x))) \land B_i(y) \) shows that the rule consequent \(B_i \) is weighted by \(\bigvee_{x \in X} (A'(x) \land A_i(x)) \). Finally, \(m \) rule consequents with variable weights are synthesized by disjunctive operator \(\lor \) to obtain the output fuzzy set \(B' \). In conclusion, the whole inference process conforms to the principle of variable weighted synthesis in the multifactorial decision-making.

The principle of variable weighted synthesis can be taken to realize fuzzy inference. In fact, it is a reasonable inference process for simulating man’s inference thought that first the weight of every inference rule is determined by some fuzzy relation between the given input fuzzy set and every rule antecedent, and then rule consequents with the weights are synthesized to produce the output fuzzy set. Accordingly, we propose a new idea of fuzzy inference, that is, an idea on variable weighted synthesis of fuzzy inference.

Some necessary definitions should be introduced. We think that inference rules in the rule-base are static, in other words, their initial states are zero before making inference. When the given input fuzzy set \(A' \) is compared with every rule antecedent in the rule-base, a state value is assigned to each rule.

Definition 3.1. Let \(s \) be a fuzzy relation from \(\mathcal{F}(X) \) to \(\mathcal{F}(X) \). Then \(s(A', A_i) \) is called the state of the \(i \)th rule for the input fuzzy set \(A' \).

Definition 3.2. Let \(D_s = \{(s(A', A_1), \ldots, s(A', A_m)) \mid A' \in \mathcal{F}(X) \} \). An \(m \)-dimensional state variable weight with reward of rules is a mapping \(S = (S_1, \ldots, S_m): D_s \rightarrow [0, 1]^m \) satisfying the following five conditions:

- (S.1) normality, i.e., \(\sum_{i=1}^{m} S_i(s(A', A_1), \ldots, s(A', A_m)) = 1 \),
- (S.2) continuity, i.e., every \(S_i \) is continuous with respect to any \(s(A', A_j) \) (\(1 \leq i, j \leq m \)),
- (S.3) order-preserving, i.e.,
 \[
s(A', A_i) \geq s(A', A_j) \Rightarrow S_i(s(A', A_1), \ldots, s(A', A_m)) \geq S_j(s(A', A_1), \ldots, s(A', A_m)),
\]
- (S.4) reward law, i.e., \(S_i \) is monotonically increasing with respect to \(s(A', A_i) \) (\(1 \leq i \leq m \)),
- (S.5) polarity, i.e.,
 \[
s(A', A_i) = 0 \Rightarrow S_i(s(A', A_1), \ldots, s(A', A_m)) = 0,
 s(A', A_i) = 1 \Rightarrow S_i(s(A', A_1), \ldots, s(A', A_m)) = 1.
\]

Definition 3.3. Let \(D_s = \{(s(A', A_1), \ldots, s(A', A_m)) \mid A' \in \mathcal{F}(X) \} \). An \(m \)-dimensional state variable weight with penalty of rules is a mapping \(S = (S_1, \ldots, S_m): D_s \rightarrow [0, 1]^m \) satisfying (S.1), (S.2) and the following three conditions:

- (S.3') order-inverting, i.e.,
 \[
s(A', A_i) \geq s(A', A_j) \Rightarrow S_i(s(A', A_1), \ldots, s(A', A_m)) \leq S_j(s(A', A_1), \ldots, s(A', A_m)),
\]
- (S.4') penalty law, i.e., \(S_i \) is monotonically decreasing with respect to \(s(A', A_i) \) (\(1 \leq i \leq m \)),
- (S.5') polarity, i.e.,
 \[
s(A', A_i) = 0 \Rightarrow S_i(s(A', A_1), \ldots, s(A', A_m)) = 1,
 s(A', A_i) = 1 \Rightarrow S_i(s(A', A_1), \ldots, s(A', A_m)) = 0.
\]
DEFINITION 3.4. Let $W^0 = (w_1^0, \ldots, w_m^0)$ be a constant weight vector of rules, and $S = (S_1, \ldots, S_m)$ be a state variable weight with reward (with penalty) of rules. A variable weight with reward (with penalty) of rules is a mapping $W : \mathcal{F}(X) \to [0, 1]^m$ defined by

$$A' \mapsto W(A') = \frac{W^0 \circ S(s(A', A_1), \ldots, s(A', A_m))}{\sum_{i=1}^{m} w_i^0 \cdot S_i(s(A', A_1), \ldots, s(A', A_m))}.$$

NOTE 3.1. In Definition 3.4, the constant weight vector W^0 of rules expresses the credibility of rules, since those rules which are extracted from input-output data or summarized by area experts are not always absolutely credible. In Section 7, we will give an approach of determining W^0 by using known input-output data and present a simulated experiment.

On the basis of the above results, we introduce the VWSI (variable weighted synthesis inference) method in a step-by-step manner.

STEP 1. By input-output data or area experts’ experience, a constant weight vector $W^0 = (w_1^0, \ldots, w_m^0)$ is determined to represent the relative credibility of rules.

STEP 2. A state variable weight $S_i(s(A', A_1), \ldots, s(A', A_m))$ of every rule is determined by some fuzzy relation s between input fuzzy set A' and rule antecedent A_i ($1 \leq i \leq m$).

STEP 3. According to m state variable weights of rules, choose a variable weight vector $W(A') = (w_1(A'), \ldots, w_m(A'))$ of rules for A' as the activation degrees of rules.

STEP 4. The output fuzzy set is obtained from rule consequents by the variable weighted synthesis.

According to this method, we need to choose the form of concrete synthesis functions. The following give several algorithmic models of variable weighted synthesis for determining the output fuzzy set $B' \in \mathcal{F}(Y)$.

MODEL 1.

$$B'(y) = \sum_{i=1}^{m} w_i(A') B_i(y).$$

MODEL 2.

$$B'(y) = \bigvee_{i=1}^{m} w_i(A') B_i(y).$$

MODEL 3.

$$B'(y) = \bigvee_{i=1}^{m} (w_i(A') \land B_i(y)).$$

MODEL 4.

$$B'(y) = \left(\sum_{i=1}^{m} w_i(A') B_i^p(y) \right)^{1/p}, \quad p > 0.$$

NOTE 3.2. According to Definition 3.4, a variable weight of every rule consists of its constant weight and state variable weight. Constant weights of rules are determined before making inference. Only state variable weights of rules are relevant to the given input fuzzy set A', and they have the function of adjusting weights assigned to rules in accordance with A'. Therefore, the determination of state variable weights of rules seems critical in fuzzy inference.

4. CONSTRUCTION OF VARIABLE WEIGHTS OF RULES

4.1. Variable Weight with Reward of Rules Based on Approach Degree of Fuzzy Sets

The definition of approach degree of fuzzy sets was introduced in [12].
DEFINITION 4.1.1. Let $\sigma : \mathcal{F}(X) \times \mathcal{F}(X) \rightarrow [0,1]$; $(A, B) \mapsto \sigma(A, B)$ be a mapping satisfying the following four conditions:

$(\sigma.1)$ $\sigma(A, A) = 1$,

$(\sigma.2)$ $\sigma(\phi, X) = 0$,

$(\sigma.3)$ $\sigma(A, B) = \sigma(B, A)$,

$(\sigma.4)$ $A \subseteq B \subseteq C \Rightarrow \sigma(A, C) \leq \sigma(A, B) \wedge \sigma(B, C)$.

Then $\sigma(A, B)$ is called an approach degree of fuzzy sets A and B.

EXAMPLE 4.1.1. Let $\sigma(A, B) = \bigvee_{x \in X} (A(x) \wedge B(x))$ for fuzzy sets A and B. Then σ satisfies four conditions in Definition 4.1.1. Put $s(A', A_i) \triangleq \sigma(A', A_i)$,

$$S_i(\sigma(A', A_1), \ldots, \sigma(A', A_m)) \triangleq \sigma(A', A_i)$$

and

$$w_i(A') \triangleq \frac{w_i^0 \cdot S_i(\sigma(A', A_1), \ldots, \sigma(A', A_m))}{\sum_{j=1}^{m} w_j^0 \cdot S_j(\sigma(A', A_1), \ldots, \sigma(A', A_m))}.$$ \hspace{1cm} (13)

Then $w_i(A')$ is a variable weight with reward of the i^{th} rule, where w_i^0 is a constant weight of the i^{th} rule ($1 \leq i \leq m$).

4.2. Variable Weight with Penalty of Rules Based on Distance of Fuzzy Sets

There are many kinds of distances between fuzzy sets. Considering the special structure of fuzzy systems in practice, we here use the center of peak points of a fuzzy set, namely, the center of $\{x \in X \mid A(x) = 1\}$. Let

$$d(A, B) = \alpha|x' - x|,$$

where α is a normalized factor, and x' and x are centers of peak points of fuzzy sets A and B, respectively. Put $s(A', A_i) \triangleq d(A', A_i)$,

$$S_i(d(A', A_1), \ldots, d(A', A_m)) \triangleq 1 - d(A', A_i)$$

and

$$w_i(A') \triangleq \frac{w_i^0 \cdot S_i(d(A', A_1), \ldots, d(A', A_m))}{\sum_{j=1}^{m} w_j^0 \cdot S_j(d(A', A_1), \ldots, d(A', A_m))}.$$ \hspace{1cm} (14)

Then $w_i(A')$ is a variable weight with penalty of the i^{th} rule, where w_i^0 is a constant weight of the i^{th} rule ($1 \leq i \leq m$).

4.3. Variable Weight of Rules Based on Fuzzy Implication Operators

In the CRI method for fuzzy inference, the selection of fuzzy implication operators is a key of inference and has great influence on inference results. In the VWSI method, we can also use fuzzy implication operators to construct variable weights of rules. The axiomatic definition of fuzzy implication operators was given in [13].

DEFINITION 4.3.1. A fuzzy implication operator is a mapping $\theta : [0,1]^2 \rightarrow [0,1]$ satisfying the following two conditions:

$(I.1)$ there exists $a, b \in [0,1]$ such that $\theta(a, b) = 1$,

$(I.2)$ there exists $a', b' \in [0,1]$ such that $\theta(a', b') = 0$.

A normal implication operator is a fuzzy implication operator θ satisfying

$(I.3)$ $\theta(0,0) = \theta(0,1) = \theta(1,1) = 1$, $\theta(1,0) = 0$.
Obviously, normal implication operators are a generalization of two-valued logical implication operator.

In the CRI method, fuzzy relations between fuzzy sets are represented by fuzzy implication operators. Although many fuzzy implication operators such as Mamdani implication, Larsen product implication, Bounded-product implication, etc., are not normal, the fuzzy systems constructed by them have good properties [14]. Meanwhile, a lot of normal implication operators such as Lukasiewicz implication, Goguen implication, Gödel implication, and so on, have no significance for construction of practical control systems [15]. For the sake of generalization of two-valued logic, we choose normal implication operators to construct variable weights of rules.

EXAMPLE 4.3.1. Suppose θ is a normal implication operator. We define

$$s'(A', A_1) \triangleq \theta(A', A_1),$$

$$S_i(\theta(A', A_1), \ldots, \theta(A', A_m)) \triangleq \left(\bigwedge_{x \in X} \theta(A'(x), A_i(x)) \right) \lor \left(\bigwedge_{x \in X} \theta(A_i(x), A'(x)) \right)$$

and

$$w_i(A') \triangleq \frac{w_0^i \cdot S_i(\theta(A', A_1), \ldots, \theta(A', A_m))}{\sum_{j=1}^{m} w_0^j \cdot S_j(\theta(A', A_1), \ldots, \theta(A', A_m))},$$

where w_0^i is a constant weight of the ith rule ($1 \leq i \leq m$).

NOTE 4.3.1. $\theta(A', A_1)$ represents a fuzzy relation between A' and A_1, and different θ reflects distinct relevance between A' and A_1. So $\theta(A', A_1)$ can express the state of the ith rule.

NOTE 4.3.2. $w_i(A')$ defined by (15) is neither a variable weight with reward of the ith rule nor a variable weight with penalty of the ith rule. However, we can prove that the fuzzy system constructed by $w_i(A')$ has a good interpolation approximation characteristic.

5. INTERPOLATION MECHANISM OF FUZZY SYSTEMS BASED ON VWSI ALGORITHMIC MODELS

The universal approximation of fuzzy systems is a theoretical foundation of their applications in practice. In this section, we analyze the interpolation approximation ability of fuzzy systems based on several VWSI algorithmic models from the analytical viewpoint. For convenience, single-input single-output fuzzy systems are discussed.

A fuzzy partition of a set X is a family $A = \{A_i \mid 1 \leq i \leq m\}$ of normal fuzzy sets on X satisfying the following conditions: $\sum_{i=1}^{m} A_i(x) \equiv 1$. Then $A_i (1 \leq i \leq m)$ are called base elements of A, and A is also called a group of base elements of X.

Let X be the universe of input variable and Y be the universe of output variable. Denote by $A \triangleq \{A_i \mid 1 \leq i \leq m\}$ and $B \triangleq \{B_i \mid 1 \leq i \leq m\}$ fuzzy partitions of X and Y, respectively. Without the loss of generality, we can suppose $X = [a, b]$ and $Y = [c, d]$ are real number intervals, and the following hold:

$$a \leq x_1 < x_2 < \cdots < x_m \leq b, \quad c \leq y_1 < y_2 < \cdots < y_m \leq d,$$

where x_i and y_i represent peak points of A_i and B_i ($1 \leq i \leq m$), respectively. If we regard A and B as linguistic variables, then m fuzzy inference rules can be formed as follows:

If x is A_i then y is B_i ($1 \leq i \leq m$).

For a practical fuzzy system, its input is a crisp quantity $x' \in X$ and should be changed into a fuzzy set in order to use fuzzy inference rules. We usually define a singleton fuzzy set $A' \in \mathcal{F}(X)$ as

$$A'(x) = \begin{cases} 1, & x = x', \\ 0, & x \neq x'. \end{cases}$$
Since the output of the VWSI method is a fuzzy set $B' \in \mathcal{F}(Y)$, the centroid defuzzification method is often used to obtain the crisp output quantity in practice, i.e.,

$$y' = \frac{\int_Y yB'(y) \, dy}{\int_Y B'(y) \, dy}.$$

Theorem 5.1. Under the above conditions, there exists a group of base functions $\mathcal{A}' = \{A'_i \mid 1 \leq i \leq m\}$ such that the single-input single-output fuzzy system based on the VWSI algorithm defined by (9) and (13) is approximately a unary piecewise interpolation function

$$f(x) = \sum_{i=1}^{m} A'_i(x) y_i,$$

and \mathcal{A}' is just a fuzzy partition of X.

Proof. Let $h_1 = y_1 - c$, $h_i = y_i - y_{i-1}$ $(i = 2, \ldots, m)$, and $h = \max\{h_i \mid 1 \leq i \leq m\}$. Because \mathcal{A} and \mathcal{B} are fuzzy partitions, they have the Kronecker property, i.e., $A_i(x_j) = \delta_{ij} = B_j(y_j)$. For any input $x' \in X$, since $A'(x)$ is the singleton fuzzy set of it, $\sigma(A', A_i) = \bigvee_{x \in X} (A'(x) \wedge A_i(x)) = A_i(x')$ and the output quantity determined by (9) and (13) is

$$y' \approx \sum_{i=1}^{m} y_i \sum_{k=1}^{m} \frac{w^0_k \sigma(A', A_k) B_k(y_i)}{\sum_{j=1}^{m} w^0_j \sigma(A', A_j) B_j(y_i)} h_i.$$

Let $A' \triangleq \{A'_i \mid 1 \leq i \leq m\}$. It is easy to prove that A' is a fuzzy partition of X. Put $f(x) \triangleq \sum_{i=1}^{m} A'_i(x) y_i$. Obviously, it is a unary piecewise interpolation function that takes A'_i $(1 \leq i \leq m)$ as its base functions. Particularly, if $x' = x_i$, then $y' = y_i$.

Note 5.1. The proofs in the cases of fuzzy systems constructed by the other models and (13) are similar to that of Theorem 5.1.

Theorem 5.2. Under the assumption of Theorem 5.1, there exists a group of base functions $\phi = \{\phi_i \mid 1 \leq i \leq m\}$ such that the single-input single-output fuzzy system based on the VWSI algorithm defined by (9) and (14) is approximately a unary piecewise interpolation function

$$f(x) = \sum_{i=1}^{m} \phi_i(x) y_i,$$
PROOF. For convenience, we suppose \(\{x_i \mid 1 \leq i \leq m\} \) is an equidistant partition (i.e., \(x_{i+1} - x_i = \lambda \) for all \(i \)). According to (14), we define \(d(A', A_i) = \frac{|x' - x_i|}{\lambda} \wedge 1 \). Then \(0 \leq d(A', A_i) \leq 1 \). For any \(x' \in X \), there exists \(i_0 \) such that \(x' \in [x_{i_0}, x_{i_0+1}] \). Then

\[
S_{i_0} = S_{i_0} (d(A', A_1), \ldots, d(A', A_m)) = 1 - \frac{|x' - x_{i_0}|}{\lambda},
\]

\[
S_{i_0+1} = S_{i_0+1} (d(A', A_1), \ldots, d(A', A_m)) = 1 - \frac{|x' - x_{i_0+1}|}{\lambda}.
\]

Meanwhile,

\[
S_j (d(A', A_1), \ldots, d(A', A_m)) = 1 - \frac{|x' - x_j|}{\lambda} \wedge 1 = 0,
\]

where \(j \neq i_0, i_0 + 1 \). From (9) and (14), we can obtain

\[
y'(y) = \frac{\int_c^d yB'(y) dy}{\int_c^d B'(y) dy} \approx \frac{\sum_{i=1}^m y_i B'(y_i)}{\sum_{i=1}^m B'(y_i)} = \frac{w_0^0 S_{i_0} y_{i_0} + w_{i_0+1}^0 S_{i_0+1} y_{i_0+1}}{w_{i_0}^0 S_{i_0} + w_{i_0+1}^0 S_{i_0+1}}.
\]

(18)

Let \(\phi_i(x') = w_i^0 S_i / \sum_{j=1}^m w_j^0 S_j \) for any \(i \), then \(\phi_j(x') = 0 \) (\(j \neq i_0, i_0 + 1 \)). From (18), we have

\[
y'(y) = \sum_{i=i_0}^{i_0+1} \phi_i(x') y_i = \sum_{i=1}^m \phi_i(x') y_i.
\]

Put \(f(x) = \sum_{i=1}^m \phi_i(x) y_i \). Obviously, it is a unary piecewise interpolation function that takes \(\phi_i \) (\(1 \leq i \leq m \)) as its base functions. Particularly, if \(x' = x_i \), then \(y' = y_i \). \(\blacksquare \)

NOTE 5.2. The proofs in the cases of fuzzy systems constructed by the other models and (14) are similar to that of Theorem 5.2.

LEMMA 5.1. Under the assumption of Theorem 5.1, if \(\theta \) is a normal implication operator satisfying the following four conditions:

(I.4) \(\theta(a, a) = 1 \),

(I.5) \(a < a' \Rightarrow \theta(a, b) > \theta(a', b) \),

(I.6) \(b < b' \Rightarrow \theta(a, b) \leq \theta(a, b') \),

(I.7) \(\theta(1, b) = b \),

then (15) becomes

\[
w_i(x') = \frac{w_i^0 A_i(x')}{\sum_{j=1}^m w_j^0 A_j(x')}.
\]

(19)

PROOF. Due to (I.4) and (I.5), when \(a \leq b, \theta(a, b) \geq \theta(b, b) = 1, so \(\theta(a, b) = 1 \). For any input quantity \(x' \in X \), since \(A'(x) \) is the singleton fuzzy set of it, we have

\[
\left(\bigwedge_{x \in X} \theta(A'(x), A_i(x)) \right) \lor \left(\bigwedge_{x \in X} \theta(A_i(x), A'(x)) \right)
\]

\[
= \left[\theta(1, A_i(x')) \wedge \left(\bigwedge_{x \not= x'} \theta(0, A_i(x)) \right) \right] \lor \left[\theta(A_i(x'), 1) \wedge \left(\bigwedge_{x \not= x'} \theta(0, A_i(x)) \right) \right]
\]

\[
= [\theta(1, A_i(x')) \wedge 1] \lor \left[1 \wedge \left(\bigwedge_{x \not= x'} \theta(A_i(x), 0) \right) \right]
\]

\[
= \theta(1, A_i(x')) \lor \left(\bigwedge_{x \not= x'} \theta(A_i(x), 0) \right).
\]
When $x' = x_i$, the above expression is reduced to $\theta(1, A_i(x_i)) = A_i(x_i) = 1$. When $x' \neq x_i$, the above expression is reduced to $\theta(1, A_i(x')) \vee \theta(A_i(x_i), 0) = \theta(1, A_i(x')) \vee \theta(1, 0) = A_i(x')$. In any case, $(\wedge_{x \in X} \theta(A'(x), A_i(x))) \vee (\wedge_{x \in X} \theta(A_i(x), A'(x))) = A_i(x')$. Therefore, (15) changes into (19).

Note 5.3. Dubois and Prade proposed ten properties of fuzzy implication operators in [16], simplified as D-P properties. (I.4)–(I.7) in Lemma 5.1 are just (vi), (i), (ii) and (iv) in D-P properties, respectively.

Some familiar normal implication operators [13,17] satisfy conditions of Lemma 5.1, and include Wang implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ (1 - a) \lor b, & a > b, \end{cases}$$

Lukasiewicz implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ 1 - a + b, & a > b, \end{cases}$$

Goguen implication operator

$$\theta(a, b) = \begin{cases} 1, & a = 0, \\ \frac{b}{a} \land 1, & a > 0, \end{cases}$$

Gödel implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ b, & a > b, \end{cases}$$

Dubois-Prade implication operator

$$\theta(a, b) = \begin{cases} (1 - a) \lor b, & (1 - a) \land b = 0, \\ 1, & \text{otherwise}, \end{cases}$$

$$\theta(a, b) = \begin{cases} 1, & a < 1, \\ b, & a = 1, \end{cases}$$

Modified Reichenbach implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ 1 - a + ab, & a > b, \end{cases}$$

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ (1 - a) \lor b \lor \frac{1}{2}, & 0 < b < a < 1, \\ (1 - a) \lor b, & \text{otherwise}, \end{cases}$$

$$\theta(a, b) = \begin{cases} 1 - a, & b = 0, \\ b, & a = 1, \\ 1, & \text{otherwise}, \end{cases}$$

and so on.

Theorem 5.3. Under the assumption of Theorem 5.1, if θ is a normal implication operator satisfying (I.4)–(I.7) of Lemma 5.1, then there exists a group of base functions $\mathcal{A}' = \{A'_i \mid 1 \leq i \leq m\}$ such that the single-input single-output fuzzy system based on the VWSI algorithm defined by (9) and (15) is approximately a unary piecewise interpolation function

$$f(x) = \sum_{i=1}^{m} A'_i(x)y_i,$$

and \mathcal{A}' is just a fuzzy partition of X.

Variable Weighted Synthesis 315

When $x' = x_i$, the above expression is reduced to $\theta(1, A_i(x_i)) = A_i(x_i) = 1$. When $x' \neq x_i$, the above expression is reduced to $\theta(1, A_i(x')) \lor \theta(A_i(x_i), 0) = \theta(1, A_i(x')) \lor \theta(1, 0) = A_i(x')$. In any case, $(\wedge_{x \in X} \theta(A'(x), A_i(x))) \lor (\wedge_{x \in X} \theta(A_i(x), A'(x))) = A_i(x')$. Therefore, (15) changes into (19).

Note 5.3. Dubois and Prade proposed ten properties of fuzzy implication operators in [16], simplified as D-P properties. (I.4)–(I.7) in Lemma 5.1 are just (vi), (i), (ii) and (iv) in D-P properties, respectively.

Some familiar normal implication operators [13,17] satisfy conditions of Lemma 5.1, and include Wang implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ (1 - a) \lor b, & a > b, \end{cases}$$

Lukasiewicz implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ 1 - a + b, & a > b, \end{cases}$$

Goguen implication operator

$$\theta(a, b) = \begin{cases} 1, & a = 0, \\ \frac{b}{a} \land 1, & a > 0, \end{cases}$$

Gödel implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ b, & a > b, \end{cases}$$

Dubois-Prade implication operator

$$\theta(a, b) = \begin{cases} (1 - a) \lor b, & (1 - a) \land b = 0, \\ 1, & \text{otherwise}, \end{cases}$$

$$\theta(a, b) = \begin{cases} 1, & a < 1, \\ b, & a = 1, \end{cases}$$

Modified Reichenbach implication operator

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ 1 - a + ab, & a > b, \end{cases}$$

$$\theta(a, b) = \begin{cases} 1, & a \leq b, \\ (1 - a) \lor b \lor \frac{1}{2}, & 0 < b < a < 1, \\ (1 - a) \lor b, & \text{otherwise}, \end{cases}$$

$$\theta(a, b) = \begin{cases} 1 - a, & b = 0, \\ b, & a = 1, \\ 1, & \text{otherwise}, \end{cases}$$

and so on.

Theorem 5.3. Under the assumption of Theorem 5.1, if θ is a normal implication operator satisfying (I.4)–(I.7) of Lemma 5.1, then there exists a group of base functions $\mathcal{A}' = \{A'_i \mid 1 \leq i \leq m\}$ such that the single-input single-output fuzzy system based on the VWSI algorithm defined by (9) and (15) is approximately a unary piecewise interpolation function

$$f(x) = \sum_{i=1}^{m} A'_i(x)y_i,$$

and \mathcal{A}' is just a fuzzy partition of X.

Variable Weighted Synthesis 315

PROOF. Due to Lemma 5.1 and (15), we have

\[
y' = \int_c^d y B'(y) \, dy = \frac{\sum_{i=1}^m y_i B'(y_i) h_i}{\sum_{i=1}^m B'(y_i) h_i} = \frac{\sum_{i=1}^m y_i \left(\sum_{k=1}^m \frac{w_k(A')}{\sum_{j=1}^m w_j(A')} B_k(y_i) \right) h_i}{\sum_{i=1}^m \left(\sum_{k=1}^m \frac{w_k(A')}{\sum_{j=1}^m w_j(A')} B_k(y_i) \right) h_i}
\]

Denote

\[
a_i(x') = \frac{\sum_{j=1}^m h_j w_i(A')}{\sum_{i=1}^m w_i(A') h_i} A_i(x')
\]

and

\[
a_i(x') = \frac{\sum_{i=1}^m A_i(x')}{\sum_{i=1}^m w_i(A') h_i}.
\]

Then

\[
y' \approx \sum_{i=1}^m \alpha_i(x') w_i^0 A_i(x') y_i = \sum_{i=1}^m A_i'(x') y_i.
\]

Put \(A' = \{A'_i | 1 \leq i \leq m\}\) and \(f(x) = \sum_{i=1}^m A'_i(x) y_i\). It is easy to know that \(A'\) is just a fuzzy partition of \(X\). Particularly, if \(x' = x_i\), then \(y' = y_i\).

NOTE 5.4. The proofs in the cases of fuzzy systems constructed by the other models and (15) are similar to that of Theorem 5.3.

NOTE 5.5. From Theorems 5.1 and 5.3, the fuzzy system based on (9) and (13) is equivalent to the fuzzy system based on (9) and (15). In addition, though the Mamdani implication operator \(\text{"A"}\) is not normal, (13) is a special case of (15). Hence, (13)–(17) are only sufficient conditions for (15) being a variable weight of rules such that Theorem 5.3 holds.

6. RELATIONSHIP BETWEEN VWSI SYSTEMS AND FAMILIAR FUZZY INFERENCE SYSTEMS

In this section, we prove that some other familiar fuzzy inference systems such as the Mamdani inference system, \((+,.)\)-centroid inference system, simple inference system, function inference system and characteristic expansion inference system [1–6] are equivalent to certain special fuzzy systems constructed by VWSI method.

For convenience, we discuss multi-input single-output fuzzy systems. Some necessary concepts and notations for fuzzy systems are similar to those in Section 5.

\[\prod_{i=1}^n k_i\] fuzzy inference rules are formed as follows:

If \(x_1\) is \(A_{1j_1}\) and \(x_2\) is \(A_{2j_2}\) and \cdots and \(x_n\) is \(A_{nj_n}\), then \(y\) is \(B_{j_1j_2\ldots j_n}\),

where \(j_i = 1, \ldots, k_i\) and \(i = 1, \ldots, n\).

Generally speaking, the operation \(\text{"A"}\) or \(\text{"\"}\) is used to aggregate the antecedent components, i.e., for \(x \triangleq (x_1, \ldots, x_n)\), we put \(A_{j_1\ldots j_n}(x) \triangleq \bigwedge_{i=1}^n A_{ij_i}(x_i)\) or \(A_{j_1\ldots j_n}(x) \triangleq \prod_{i=1}^n A_{ij_i}(x_i)\).

THEOREM 6.1. Under the assumption of Theorem 5.1, if \(S_{j_1\ldots j_n} \triangleq \bigwedge_{i=1}^n A_{ij_i}(x_i)\) is taken and \(w_{j_1\ldots j_n}\) are equal to each other, then the multi-input single-output fuzzy system based on the Mamdani algorithm is equivalent to the one based on the VWSI algorithm defined by (9) and (13), where \(j_i = 1, \ldots, k_i\) and \(i = 1, \ldots, n\).

PROOF. According to the Mamdani algorithm, the inference relation of the \(j_1\ldots j_n\) rule is \(R_{j_1\ldots j_n} = A_{j_1\ldots j_n} \times \cdots \times A_{nj_n} \times B_{j_1\ldots j_n}\), and the whole inference relation of \(\prod_{i=1}^n k_i\) rules is

\[
R \triangleq \bigcup_{j_1=1}^{k_1} \cdots \bigcup_{j_n=1}^{k_n} R_{j_1\ldots j_n},
\]

\[
R(x, y) = \bigvee_{j_1=1}^{k_1} \cdots \bigvee_{j_n=1}^{k_n} R_{j_1\ldots j_n}(x, y) = \bigvee_{j_1=1}^{k_1} \cdots \bigvee_{j_n=1}^{k_n} \left(\bigwedge_{i=1}^n A_{ij_i}(x_i) \wedge B_{j_1\ldots j_n}(y) \right).
\]
For a given input $x' \equiv (x'_1, \ldots, x'_n)$, we have

$$B'(y) = \bigwedge_{i=1}^{n} A'_i(x'_i) \wedge R(x, y) = \bigvee_{j_1=1}^{k_1} \cdots \bigvee_{j_n=1}^{k_n} \left(\bigwedge_{i=1}^{n} A_{ij_i}(x'_i) \wedge B_{j_1\ldots j_n}(y) \right).$$

The centroid defuzzification method is used to get the crisp output quantity

$$y' = \frac{\int_Y y B'(y) \, dy \sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} y_{j_1\ldots j_n} B'(y_{j_1\ldots j_n}) h_{j_1\ldots j_n}}{\int_Y B'(y) \, dy \sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} B'(y_{j_1\ldots j_n}) h_{j_1\ldots j_n}}.$$

In accordance with the proof of Theorem 5.1, when $S_{j_1\ldots j_n} \equiv \bigwedge_{i=1}^{n} A_{ij_i}(x_i)$ is taken and $w_0^{j_1\ldots j_n}$ are equal to each other, y' is just the crisp output quantity gotten by (9) and (13).

Theorem 6.2. Under the assumption of Theorem 5.1, if $S_{j_1\ldots j_n} \equiv \bigwedge_{i=1}^{n} A_{ij_i}(x_i)$ is taken and $w_0^{j_1\ldots j_n}$ are equal to each other, then the multi-input single-output fuzzy system based on $(+, \cdot)$-centroid algorithm is equivalent to the one based on the VWSI algorithm defined by (9) and (13), where $j_1 = 1, \ldots, k_1$ and $i = 1, \ldots, n$.

Proof. When (\vee, \wedge) in the Mamdani algorithm is replaced by $(+, \cdot)$, we obtain $(+, \cdot)$-centroid algorithm. The whole inference relation of $\bigwedge_{i=1}^{k_1} \bigvee_{j_1=1}^{k_1} A_{ij_i}(x_i)$ is taken and $w_0^{j_1\ldots j_n}$ are equal to each other, the multi-input single-output fuzzy system based on $(+, \cdot)$-centroid algorithm is equivalent to the one based on the VWSI algorithm defined by (9) and (13), where $j_1 = 1, \ldots, k_1$ and $i = 1, \ldots, n$.

\blacksquare
In accordance with the proof of Theorem 5.1, when $S_{j_1\ldots j_n} \triangleq \prod_{i=1}^{n} A_{ij_i}(x_i)$ is taken and $w_{j_1\ldots j_n}^0$ are equal to each other, y' is just the crisp output quantity gotten by (9) and (13).

Theorem 6.3. Under the assumption of Theorem 5.1, if $S_{j_1\ldots j_n} \triangleq \prod_{i=1}^{n} A_{ij_i}(x_i)$ or $S_{j_1\ldots j_n} = \bigwedge_{i=1}^{n} A_{ij_i}(x_i)$ is taken, the output fuzzy partition is equidistant, and $w_{j_1\ldots j_n}^0$ are equal to each other, then the multi-input single-output fuzzy system based on simple inference algorithm is equivalent to the one based on the VWSI algorithm defined by (9) and (13), where $j_i = 1, \ldots, k_i$ and $i = 1, \ldots, n$.

Proof. In simple inference algorithm, rule consequent fuzzy sets are replaced by some real numbers, i.e., the inference rules are as follows:

$$\text{If } x_1 \text{ is } A_{1j_1} \text{ and } x_2 \text{ is } A_{2j_2} \text{ and } \ldots \text{ and } x_n \text{ is } A_{nj_n} \text{ then } y \text{ is } y_{j_1\ldots j_n},$$

where $j_1 = 1, \ldots, k_1$ and $i = 1, \ldots, n$. For a given input $x' \triangleq (x'_1, \ldots, x'_n)$, the output quantity y' is calculated in the following steps.

Step 1. Every approach degree $\alpha_{j_1\ldots j_n}(x')$ is defined by

$$\alpha_{j_1\ldots j_n}(x') = \prod_{p=1}^{n} A_{pj_p}(x'_p)$$

Step 2.

$$y' = \frac{\sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} \alpha_{j_1\ldots j_n}(x') y_{j_1\ldots j_n}}{\sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} \alpha_{j_1\ldots j_n}(x')} \quad (23)$$

According to the proof of Theorem 5.1, if $\{y_{j_1\ldots j_n} \mid 1 \leq j_1 \leq k_1, 1 \leq i \leq n\}$ is an equidistant partition, $S_{j_1\ldots j_n} = \prod_{i=1}^{n} A_{ij_i}(x_i)$ or $S_{j_1\ldots j_n} = \bigwedge_{i=1}^{n} A_{ij_i}(x_i)$ is taken, and $w_{j_1\ldots j_n}^0$ are equal to each other, then y' is just the crisp output quantity gotten by (9) and (13).

Theorem 6.4. Under the assumption of Theorem 5.1, if the approach degree operator $g_{j_1\ldots j_n}$ in function inference algorithm is regarded as $S_{j_1\ldots j_n}$, the output fuzzy partition is equidistant, and $w_{j_1\ldots j_n}^0$ are equal to each other, then the multi-input single-output fuzzy system based on function inference algorithm is equivalent to the one based on the VWSI algorithm defined by (9) and (13), where $j_i = 1, \ldots, k_i$ and $i = 1, \ldots, n$.

Proof. The function inference method was proposed in [5], which is a generalization of the simple inference method. The inference rules are as follows:

$$\text{If } x_1 \text{ is } A_{1j_1} \text{ and } x_2 \text{ is } A_{2j_2} \text{ and } \ldots \text{ and } x_n \text{ is } A_{nj_n} \text{ then } y \text{ is } y_{j_1\ldots j_n}(x_1, \ldots, x_n),$$

where $j_i = 1, \ldots, k_i$ and $i = 1, \ldots, n$. For a given input $x' \triangleq (x'_1, \ldots, x'_n)$, the approach degree is defined by $g_{j_1\ldots j_n}$, i.e., $\alpha_{j_1\ldots j_n}(x') \triangleq g_{j_1\ldots j_n}(A_{1j_1}(x'_1), \ldots, A_{nj_n}(x'_n))$, where $g_{j_1\ldots j_n}$ is a general operator, for example, $g_{j_1\ldots j_n} = \land$ or $g_{j_1\ldots j_n} = \cdot$. Then

$$y' = \frac{\sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} \alpha_{j_1\ldots j_n}(x') y_{j_1\ldots j_n}(x')} {\sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} \alpha_{j_1\ldots j_n}(x')} \quad (24)$$

$$= \frac{\sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} g_{j_1\ldots j_n}(A_{1j_1}(x'_1), \ldots, A_{nj_n}(x'_n)) y_{j_1\ldots j_n}(x'_1, \ldots, x'_n)} {\sum_{j_1=1}^{k_1} \cdots \sum_{j_n=1}^{k_n} g_{j_1\ldots j_n}(A_{1j_1}(x'_1), \ldots, A_{nj_n}(x'_n))}.$$
According to the proof of Theorem 5.1, if \(\{y_{j_1}, \ldots, j_n \mid 1 \leq j_i \leq k_i, 1 \leq i \leq n\} \) is an equidistant partition, \(g_{j_1}, \ldots, j_n \) is regarded as \(S_{j_1}, \ldots, j_n \), \(w_{j_1}, \ldots, j_n \) are equal to each other and put \(y_{j_1}, \ldots, j_n \triangleq y_{j_1}, \ldots, j_n (x_1, \ldots, x_n) \), then the crisp output quantity is the \(y' \) gotten by (24).

NOTE 6.1. In [6], it was pointed out that the characteristic expansion inference algorithm is equivalent to the Mamdani algorithm. Therefore, the fuzzy system constructed by characteristic expansion inference algorithm is equivalent to the one based on the VWSI algorithm defined by (9) and (13).

7. A METHOD FOR DETERMINING CONSTANT WEIGHTS OF RULES AND A SIMULATION EXPERIMENT

7.1. A Method for Determining Constant Weights of Fuzzy Rules

We use the approach for extracting fuzzy rules from database, proposed in [18], to compare VWSI systems with traditional Mamdani inference systems. Specially, the constant weight of every rule in VWSI systems can be explained as a fuzzy conditional probability that the rule consequent appears when the rule antecedent happens. The concept of fuzzy probability was introduced by Zadeh in [19]. Let \((X, \mathcal{F}, P)\) be a probability space. A fuzzy set \(A\) on \(X\) is called a fuzzy event if its membership function \(A(x)\) is measurable on \((X, \mathcal{F})\). The fuzzy probability of \(A\) is defined by

\[
P(A) = \int_X A(x) dP.
\]

On the basis of the given data set \(D = \{(x_j^0, y_j^0) \mid 1 \leq j \leq q\}\) (i.e., \(D\) contains \(q\) pairs of known data), we give the estimate expression of the fuzzy conditional probability as a constant weight of the \(i^{th}\) rule

\[
w_i^0 = \frac{\sum_{j=1}^{q} A_i(x_j^0) B_i(y_j^0)}{\sum_{k=1}^{m} \sum_{j=1}^{q} A_i(x_j^0) B_k(y_j^0)}.
\]

(25)

Since \(\{B_i \mid 1 \leq i \leq m\}\) is a fuzzy partition of \(Y\), we have \(\sum_{k=1}^{m} B_k(y) = 1\) for all \(y \in Y\). Then (25) can be reduced to

\[
w_i^0 = \frac{\sum_{j=1}^{q} A_i(x_j^0) B_i(y_j^0)}{\sum_{j=1}^{q} A_i(x_j^0) \sum_{k=1}^{m} B_k(y_j^0)} = \frac{\sum_{j=1}^{q} A_i(x_j^0) B_i(y_j^0)}{\sum_{j=1}^{q} A_i(x_j^0)}.
\]

(26)

7.2. VWSI Systems in Time Series Prediction

The prediction of time series appears to be an important practical issue, and can be applied to many fields such as economics, control, signal processing, and so on. We use a VWSI system to predict Mackey-Glass chaotic time series generated by the differential equation with time delay

\[
\frac{dx(t)}{dt} = \frac{0.2x(t-\tau)}{1 + x^{10}(t-\tau)} - 0.1x(t).
\]

(27)

When \(\tau > 17\), the graph of (27) shows a chaotic action. So we choose \(\tau = 30\) [20] (see Figure 1).

The prediction of time series utilizes known time series data at moment \(t\) to predict the value at a future moment \(t + P\). In general, a mapping from \(q\) sampling points \((x(t-(q-1)I)), \ldots, x(t-I), x(t))\) to \(x(t+P)\) is constructed, where \(I\) is a time interval unit. For instance, we may choose \(q = 4\), \(I = P = 6\). Then for every moment \(t\), the input of the fuzzy system is a four-dimensional vector \(X(t) = (x(t-18), x(t-12), x(t-6), x(t))\), and the output is the predicted value \(y(t) = x(t+6)\). Accordingly, we generate 1000 input-output data as the integer moment \(t\).
varies from 118 to 1117. The first 500 data are used to generate fuzzy rules with constant weights and construct a VWSI system, and the rest 500 data are used to test the approximation effect of the new inference system.

We use triangular membership functions, commonly used in practice, for rule antecedents (refer to Figure 2). Their membership functions have the forms

\[
A_1(x) = \begin{cases}
\frac{x - x_2}{x_1 - x_2}, & x_1 \leq x \leq x_2, \\
0, & \text{otherwise},
\end{cases}
\]

\[
A_i(x) = \begin{cases}
\frac{x - x_{i-1}}{x_i - x_{i-1}}, & x_{i-1} \leq x \leq x_i, \\
\frac{x - x_{i+1}}{x_i - x_{i+1}}, & x_i \leq x \leq x_{i+1}, \\
0, & \text{otherwise},
\end{cases} \quad (i = 2, \ldots, m - 1)
\]

\[
A_m(x) = \begin{cases}
\frac{x - x_{m-1}}{x_m - x_{m-1}}, & x_{m-1} \leq x \leq x_m, \\
0, & \text{otherwise},
\end{cases}
\]

where \(x_i\) is the peak point of fuzzy set \(A_i\) (1 \(\leq i \leq m\)).
It should be noted that there are four input variables in this experiment. Generally, those four fuzzy inputs are aggregated by the operator "·" or "∧", i.e., \(A_i(x') = \prod_{k=1}^{4} A_{ik}(x'_{ik}) \) or \(A_i(x') = \bigwedge_{k=1}^{4} A_{ik}(x'_{ik}) \). For the convenience of computing, we use the former.

Figure 3 gives the mean square errors (MSE) produced by the new system and the traditional Mamdani inference system approximating a part of Mackey-Glass chaotic time series according to the different numbers of fuzzy rules. It shows that the approximation degree of those two systems is improved as the number of fuzzy rules increases. Nevertheless, for the same number of fuzzy rules, the approximation degree of the VWSI system with constant weights of rules appears to be better than that of the traditional Mamdani inference system.

![Figure 3. Comparison between mean square errors of two systems.](image)

8. CONCLUSIONS

The VWSI method was built on the basis of the principle of variable weighted synthesis in the factor spaces theory. In addition to the consideration of the relative credibility of each rule, the weight values of inference rules can be adjusted dynamically in accordance with different input quantities, and regarded as degrees of activation of inference rules. The entire inference process of VWSI method conforms to human thought, and the method can lay a theoretical foundation for studying the adaptivity mechanism of fuzzy controllers. Through analyzing the relationship between VWSI systems and other familiar fuzzy inference systems, we could conclude that VWSI method is extensively meaningful.

Reference [9] pointed out that gradient vectors of balance functions are state variable weights, and provided a general approach to construct state variable weight vectors. We only chose some simple forms of state variable weights in the present paper. We can construct more extensive state variable weights of inference rules in terms of balance functions, and then may further enrich VWSI algorithms.

REFERENCES