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to chemicals (EU, 2010; OECD, 2018a; Oredsson et al., 2019). 
Whereas much work has been devoted to the development of in 
vitro screening methods to capture biological effects (toxicody-
namics) of chemicals, insight into the absorption, distribution, 
metabolism and excretion (i.e., ADME/biokinetics) of chemi-

1  Introduction

There are clear societal and scientific needs for the development 
and validation of predictive animal-free methods for safety eval-
uations to prevent adverse effects in humans caused by exposure 
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Abstract
For almost fifteen years, the availability and regulatory acceptance of new approach methodologies (NAMs) to 
assess the absorption, distribution, metabolism and excretion (ADME/biokinetics) in chemical risk evaluations are a 
bottleneck. To enhance the field, a team of 24 experts from science, industry, and regulatory bodies, including new 
generation toxicologists, met at the Lorentz Centre in Leiden, The Netherlands. A range of possibilities for the use of 
NAMs for biokinetics in risk evaluations were formulated (for example to define species differences and human variation 
or to perform quantitative in vitro-in vivo extrapolations). To increase the regulatory use and acceptance of NAMs for 
biokinetics for these ADME considerations within risk evaluations, the development of test guidelines (protocols) and of 
overarching guidance documents is considered a critical step. To this end, a need for an expert group on biokinetics within 
the Organisation of Economic Cooperation and Development (OECD) to supervise this process was formulated. The 
workshop discussions revealed that method development is still required, particularly to adequately capture transporter 
mediated processes as well as to obtain cell models that reflect the physiology and kinetic characteristics of relevant 
organs. Developments in the fields of stem cells, organoids and organ-on-a-chip models provide promising tools to meet 
these research needs in the future. 

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views of their institutions.

https://doi.org/10.14573/altex.2003242
mailto:ans.punt@wur.nl
http://creativecommons.org/licenses/by/4.0/


Punt et al.

ALTEX 37(4), 2020       608

for biokinetics, the adoption of NAMs for biokinetic consider-
ations in regulatory risk evaluations is lagging behind (Gellatly 
and Sewell, 2019; Punt, 2018; Tan et al., 2018; Zhuang and Lu, 
2016). This challenge and the ambition of the Dutch government 
to become world leading with respect to animal-free research by 
2025 formed the starting point for Wageningen Food Safety Re-
search (WFSR) and the National Institute for Public Health and 
the Environment (RIVM) to organize a workshop on this topic 
at The Lorentz Centre in Leiden in The Netherlands in October 
2017. The general goal of the Lorentz Centre is to grant and facili-
tate scientific discussions that can lead to ground-breaking chang-
es in any specific field of research. A team of 24 experts from sci-
ence, industry, and regulatory institutions, including new genera-
tion toxicologists, came together to define a strategy to move the 
field of biokinetics forward. A priori defined goals were (1) to 

cals also plays a central role in next-generation risk evaluations 
that move away from animal experimentation and towards an-
imal-free methods (Albrecht et al., 2019; Bessems et al., 2014; 
Coecke et al., 2013; Desprez et al., 2018; Thomas et al., 2019; 
Wambaugh et al., 2018). These biokinetic data are needed for the 
adequate design of in vitro toxicity studies with respect to the ap-
plication of physiologically relevant chemical test concentrations 
and inclusion of relevant metabolites for testing. In addition, bio-
kinetic data play a crucial role in the process of quantitative in 
vitro-to-in vivo extrapolation (QIVIVE) of in vitro toxicity re-
sults to obtain equivalent oral/skin/inhalation human potency es-
timates that can be compared with human exposure to define the 
risk (Blaauboer, 2010; DeJongh et al., 1999; Louisse et al., 2017; 
Wambaugh et al., 2018; Yoon et al., 2012).

New approach methodologies (NAMs) for biokinetics include 
both in vitro approaches (experiments using preferably human tis-
sue material or cells), computational (in silico) approaches, and 
combinations thereof. Examples of different in vitro methods for 
kinetics that can be performed with animal or human tissue materi-
al are: Transwell studies using Caco-2, MDCK or LLC-PK1 mono-
layers for intestinal absorption and transporter studies, artificial 
human skin for skin absorption studies, metabolism models with 
(primary) human or animal (liver) cells or tissue fractions, plasma 
protein and tissue binding assays, and placenta transport experi-
ments with human BeWo cells (Punt et al., 2017; Strikwold et al., 
2017; Wilk-Zasadna et al., 2015). Recent research also focusses on 
the development of organ-on-a-chip models to improve the accura-
cy of individual methods by better physiological resemblance and 
to integrate the methods for different organs within one platform 
(Maschmeyer et al., 2015; McAleer et al., 2019; Prantil-Baun et al., 
2018; Santbergen et al., 2019; van der Made et al., 2019). 

Different types of computational (in silico) approaches for bio-
kinetics can be distinguished. In silico approaches are first of all 
used for predictions of the behavior of a chemical in a body based 
on the structural properties of the chemical. Examples are quan-
titative structure activity relationships (QSARs) for absorption 
(Hou et al., 2004) and different prediction models for tissue par-
titioning (Berezhkovskiy, 2004; Poulin and Theil, 2002; Rodg-
ers and Rowland, 2006). Secondly, computational approaches are 
very powerful for the integration of the various in vitro and in  
silico findings with either classical (one- or two-compartment 
models) or physiologically based kinetic (PBK)/physiologically 
based pharmacokinetic (PB(P)K) models (Bessems et al., 2014; 
Jamei, 2016; Louisse et al., 2017; Prantil-Baun et al., 2018; Punt, 
2018). For example, in vitro methods using human cells or tis-
sue fractions are generally used in combination with in silico 
calculated partition coefficients to parameterize PB(P)K models 
for predicting human biokinetics (Jamei, 2016, 2020; Jones and 
Rowland-Yeo, 2013; Wambaugh et al., 2018). 

Despite the relevance of human- (fully animal-free) and ani-
mal-derived in vitro methods and the different in silico methods 
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initiating event; NAMs, new approach methodologies; OECD, Organisation for Economic Co-operation and Development; OECD WNT, OECD working group of national co-
ordinators of the TGs programme; OHT, OECD harmonized template; PB(P)K, physiologically based (pharmaco)kinetic; qAOP, quantitative AOP; SCCS, Scientific Committee 
on Consumer Products; TG, test guideline (OECD) 

Fig. 1: Developments that are needed to increase regulatory 
use and acceptance of NAMs for biokinetics in risk 
evaluations and support a transition towards next generation 
risk evaluations that move away from animal experimentation 
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make an inventory of ADME considerations within regulatory 
risk evaluations that can be addressed using NAMs for biokinet-
ics in both current and next generation risk evaluations that move 
away from animal experimentation, (2) to define what is need-
ed to increase regulatory use and acceptance of available innova-
tive biokinetic approaches, and (3) to define opportunities for new 
scientific developments. Based on the discussions around these 
questions and an evaluation of the recent literature, recommenda-
tions (see summary Fig. 1) were made on the steps that are needed 
to achieve a better incorporation of alternative methods for bio- 
kinetics in regulatory chemical risk evaluations. 

2  Opportunities for NAMs for biokinetics in 
current and next generation risk evaluations that 
move away from animal experimentation

As the field of toxicology is moving away from “black box” ani-
mal experimentation towards approaches to better understand the 
internal concentrations of compounds in relation to their mecha-

nisms of toxicity in humans (NRC, 2007; Thomas et al., 2017), 
the potential of NAMs for biokinetics is increasingly recognized 
by regulatory bodies (ECHA, 2014; EFSA, 2014; EMA, 2018; 
FDA, 2020). Formal incorporation of these approaches in regula-
tory toxicology (for, e.g., plant protection products, pharmaceuti-
cals, chemicals or food additives) is, however, still limited (Gel-
latly and Sewell, 2019; Punt, 2018; Tan et al., 2018; Zhuang and 
Lu, 2016). To find means to increase the use of NAMs for bio-
kinetics, an inventory was made of ADME considerations with-
in regulatory risk evaluations that can be addressed with these 
approaches based on different EU regulations and guidelines in 
which the use of in vitro and in silico methods for kinetics meth-
ods is mentioned (Tab. 1, 2). Such an inventory is key to the fu-
ture development of Organisation for Economic Co-operation 
and Development (OECD) guidelines. These can be guidance 
documents (GD) on how to use alternative methods to inform 
risk evaluations and test guidelines (TG) on how to perform a 
specific in vitro biokinetic study, which are generally combined 
with OECD harmonized templates (OHT; standard data formats 
for reporting) (OECD, 2018a). 

Tab.1: Inventory of ADME considerations within EU regulatory risk evaluations that can be addressed using  
NAMs for biokinetics 

ADME consideration		 NAMs currently included in guidance	 Are biokinetic data 	
		  documents/regulations	 required?

Species 
differences  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Special 
population, 
interindividual 
human variation, 
drug-drug 
interactions 
 
 
 
 
 

– 	Are there differences in the 
profile of compound metabolites 
between the laboratory animals 
used in the toxicity study and 
humans?

–	 Are there differences in 
metabolic rate constants (rate by 
which a chemical is converted 
into its metabolites)? 
 

–	 Is the default uncertainty factor 
for species differences in kinetics 
appropriate in risk evaluations? 

–	 What is the difference in plasma/
tissue concentrations of a 
parent chemical/toxic metabolite 
between the laboratory animals 
of the toxicity study and humans 
(requires integration of in vitro 
data in kinetic models)?

–	 What is the expected plasma/
tissue concentration of a drug or 
chemical in children?

–	 Are there any subpopulations 
potentially at extra risk due to 
altered kinetics (e.g., ethnic-
related polymorphism, as a 
result of lifestyle factors such as 
smoking or obesity, or related 
to diseases like chronic kidney 
failure)?

Regulation (EU) No 283/2013 on the data 
requirements of active substances in plant 
protection products: “Comparative in vitro 
metabolism studies shall be performed on 
animal species to be used in pivotal studies  
and on human material (microsomes or 
intact cell systems) in order to determine the 
relevance of the toxicological animal data and 
to guide in the interpretation of findings and  
in further definition of the testing strategy.”  
(EC, 2013). 

Mentioned in (e.g.):
–	 SCCS Notes of Guidance for the Testing of 

Cosmetic Ingredients (SCCS, 2018).
–	 ECHA endpoint specific guidance, including 

a fictional example of using PBK modelling 
and the development of assessment factors 
(ECHA, 2017b). 

–	 Guidance on the Biocidal Products Regulation 
Volume III Human Health-Assessment and 
Evaluation (Parts B+C) (ECHA, 2017a).

EMA/CHMP/458101/2016 guideline on 
the reporting of physiologically based 
pharmacokinetic (PB(P)K) modelling and 
simulation: “Presently, the main purposes of 
PB(P)K models in regulatory submissions  
are to qualitatively and quantitatively predict 
drug-drug interactions (DDIs) and support initial 
dose selection in paediatric and first- 
in-human trials.” (EMA, 2018).  
 

Yes. However, only the 
qualitative aspects of 
species differences in 
metabolism are evalu-
ated (i.e., differences in 
types of metabolites), 
while quantitative differ-
ences in rates of meta-
bolic conversion can be 
just as important.  

No 
 
 
 
 
 
 
 
 

No, but increasingly 
included in regulatory 
dossiers (Jamei, 2016).
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ADME consideration		 NAMs currently included in guidance	  Are biokinetic data 	
		  documents/regulations	  required?

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Read-across 
 
 
 
 
 
 
 
 
 

Route-to-route 
extrapolation 
 
 
 
 
 
 

Internal exposure-
based waiving 
 
 
 
 
 

 
 
 

Dose 
extrapolation

Is the default uncertainty factor 
for human variation in kinetics 
appropriate in risk evaluations? 
 
 
 
 

Can any drug-drug interactions be 
expected? 
 
 
 
 
 

Is the selected source chemical 
appropriate for read-across, having 
similar kinetics, including similar 
metabolites? 
 
 
 
 
 
 

What is the dermal or inhalation 
equivalent exposure level of an 
oral No-Observed-Adverse-Effect 
Level? 
 
 
 
 

Is intestinal/skin/inhalation uptake 
limited, allowing to waive internal 
exposure? 
 
 
 
 

Selection of chemicals for further 
testing based on highest expected 
internal exposure.  

Extrapolation of effect levels in 
animal studies obtained at high 
doses to lower human exposures. 

–	 Possibilities for PB(P)K modelling of human 
variation are mentioned in, e.g.: SCCS Notes  
of Guidance for the Testing of Cosmetic 
Ingredients (SCCS, 2018). 

–	 ECHA endpoint specific guidance, including 
a fictional example of using PBK modelling 
and the development of assessment factors 
(ECHA, 2017b).

EMA/CHMP/458101/2016 guideline on the  
reporting of physiologically based pharma-
cokinetic (PB(P)K) modelling and simulation: 
“Presently, the main purposes of PB(P)K models 
in regulatory submissions are to qualitatively 
and quantitatively predict drug-drug interactions 
(DDIs) and support initial dose selection in 
paediatric and first-in-human trials.” (EMA, 2018). 

Mentioned in, e.g.:
–	 Regulation (EC) No 1907/2006 concerning 

the Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH): Grouping 
of substances and read-across approach –  
an illustrative example. Part 1: Introductory 
Note (ECHA, 2013).

–	 Guidance on the Biocidal Products Regulation 
Volume III Human Health Assessment and 
Evaluation (Parts B+C) (ECHA, 2017a).

Mentioned in, e.g.: 
–	 SCCS Notes of Guidance for the Testing of 

Cosmetic Ingredients (SCCS, 2018). 
–	 ECHA endpoint specific guidance, including 

a fictional example of using PBK modelling 
and the development of assessment factors 
(ECHA, 2017b). 

–	 Guidance on the Biocidal Products Regulation 
Volume III Human Health –Assessment and 
Evaluation (Parts B+C) (ECHA, 2017a).

Mentioned in, e.g.:
–	 EFSA guidance for submission for food 

additive evaluations (EFSA, 2012). 
–	 Specific rules for adaptation provided for, e.g., 

reprotox tests in Annex IX of Regulation (EC) 
No 1907/2006 concerning the Registration, 
Evaluation, Authorisation and Restriction of 
Chemicals (REACH).

Mentioned in (e.g.):
–	 EFSA guidance on the data required for the 

risk assessment of flavorings to be used in or 
on foods (EFSA, 2010). 

Mentioned in (e.g.):
–	SCCS Notes of Guidance for the Testing of 

Cosmetic Ingredients (SCCS, 2018). 
–	ECHA endpoint specific guidance, including 

a fictional example of using PBK modelling 
and the development of assessment factors 
(ECHA, 2017b).

–	Guidance on the Biocidal Products Regulation 
Volume III Human Health Assessment and 
Evaluation (Parts B+C) (ECHA, 2017a). 

No

 
 
 
 
 
 
 
No, but increasingly 
included in regulatory 
dossiers (Jamei, 2016) 
 
 
 
 

No, read-across is 
voluntary. In case of 
REACH, considering 
the possibility for 
read-across is 
mandatory. This drives 
a need for insights into 
toxicokinetics. 
 

No 
 
 
 
 
 
 
 
 

No 
 
 
 
 
 
 

No 
 
 

No
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by regulatory authorities. A recent example is EC Regulation No 
1107/2009, which requires the inclusion of in vitro metabolism  
studies (with microsomes or intact cell systems) in regulatory 
dossiers of plant protection active substances in order to deter-
mine the human relevance of the animal species chosen for the 
toxicological studies in a dossier. A recent EFSA workshop fo-
cused on the key elements to be considered for the interpretation 
of comparative in vitro metabolism studies and the minimum 
amount of information that must be obtained to satisfy the data 
requirement (EFSA, 2019). 

Stand alone in vitro/in silico kinetic data may also be used for 
exposure-based waiving of toxicity tests. An example can be 
found in the EFSA “Guidance for submission for food additive 
evaluations” (EFSA, 2012). In this guideline, it is indicated that 
“a negligible metabolic conversion of an additive by gastrointes-
tinal fluids or the gut microbiota (in vitro) and negligible absorp-
tion (in vitro), together with absence of genotoxicity, provides 
scientific justification for not undertaking higher-tier kinetic and 
toxicological studies.” Another example of the use of kinetic da-
ta for exposure-based waiving can be found within the European 
REACH legislation for industrial chemicals for some cases. With-
in REACH, there is no specific requirement to generate biokinet-
ic data (ECHA, 2017b). For chemicals that are manufactured or 
imported in quantities of 10 tons or more, an assessment needs 
to be made of the biokinetic behavior of the substance to the ex-
tent that can be derived from the relevant available information 
(Annex IX Regulation (EC) No 1907/2006). These kinetic data, 
which may include data from NAMs, can be used to guide the de-
sign of appropriate toxicity studies or to waive studies. For exam-
ple, no reproductive toxicity tests are required if a substance “is of 
low toxicological activity (no evidence of toxicity seen in any of 
the tests available), it can be proven from biokinetic data that no 
systemic absorption occurs via relevant routes of exposure (e.g., 
plasma/blood concentrations below detection limit using a sen-
sitive method and absence of the substance and of metabolites 
of the substance in urine, bile or exhaled air) and there is no or 

2.1  Opportunities in current risk evaluations
Table 1 provides a summary of ADME considerations within 
regulatory risk evaluations that can be addressed with NAMs for 
biokinetics. This overview was obtained by exploring EU guide-
lines for chemical risk evaluations within different domains (e.g., 
pharmaceuticals, chemical substances, food additives, cosmet-
ics) (ECHA, 2013, 2014, 2016, 2017a-c; EFSA, 2010, 2014; 
EMA, 2018; EU, 2010; SCCS, 2018). 

Of the different in vitro and in silico approaches that are avail-
able for biokinetics, PB(P)K modelling is the most frequently men-
tioned tool. For example, in the field of pharmaceuticals, PB(P)K  
modelling plays a significant role to support initial dose selection 
in first-in-human or pediatric trials as well as in the prediction of 
drug-drug interactions (EMA, 2018; Jamei, 2016; Sato et al., 2017; 
Shebley et al., 2018; Taskar et al., 2019). PB(P)K models with-
in this context are generally developed bottom-up, starting from 
in vitro and/or in silico kinetic data, after which the models are 
evaluated and/or fine-tuned against in vivo kinetic data. The la-
bel of several approved drugs already contains information on po-
tential drug-drug interactions obtained by applying such PB(P)K 
modelling approaches (Jamei, 2016; Sato et al., 2017; Shebley et 
al., 2018; Taskar et al., 2019). Other documents, such as the guid-
ance for testing of cosmetic ingredients by the European Scientif-
ic Committee on Consumer Safety (SCCS, 2018) and the guid-
ance on information requirements and chemical safety assessment 
by the European Chemicals Agency (ECHA) (ECHA, 2014), refer 
to (bottom-up) PB(P)K modelling as well. In those cases, possibil-
ities for the use of PB(P)K models are most frequently seen to pre-
dict species difference and/or human variation in plasma concen-
trations for refinement of the default inter/intra-species uncertainty 
factors for kinetics, or to perform dose or route-to-route extrapola-
tions. However, so far, the actual use of PB(P)K modelling to meet 
these latter regulatory topics has been limited (Gellatly and Sewell, 
2019; Punt et al., 2017; Tan et al., 2018). 

Apart from PB(P)K modelling, stand-alone in vitro kinetic da-
ta (i.e., not integrated in a kinetic model) can also be requested 

Tab. 2: Inventory of regulatory topics in next-generation risk evaluations for which insights into biokinetics (using NAMs)  
are relevant

Goal	 Regulatory topics that can be addressed a

Guiding the design of	 –  What are physiologically relevant internal exposure conditions of the chemical in humans? 
in vitro toxicity studies	 –  Which metabolites need to be taken into account in the in vitro studies? 
	 –  Does the in vitro toxicity assay have the adequate metabolic competence?
	 –  Which tissues are relevant to include in the toxicity determination?
	 –  How does the chemical behave in an in vitro system with respect to protein, lipid and plastic  
	     binding, and in terms of evaporation?
	 –  Aiding the development of novel in vitro systems like organ-on-chip systems to determine  
	     dimensions and operating conditions.

Quantitative in vitro to in vivo	 –  What are the internal levels of a chemical that are reached in a certain exposure scenario and  
extrapolations (QIVIVE)	     how do these relate to in vitro effect concentrations (forward dosimetry approach)?  
	 –  Translation of an in vitro biological effect concentration/exposure (e.g., EC10, BMC10) to an  
	     equivalent oral/skin/inhalation dose/exposure.  
	 –  Improving the interpretation of human biomonitoring studies to reconstruct internal exposure levels  
	     for exposure assessment, QIVIVE and IVIVE-PBPK.

a Topics related to human variation, route-to-route extrapolation, dose-extrapolations, read-across, and exposure-based waiving/priority setting, as described in Table 1 for 
current risk assessment procedures, remain of importance in next-generation risk evaluations. 
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trations to equivalent oral exposures) (Dancik et al., 2013; Rost-
ami-Hodjegan, 2012; Yoon et al., 2012). An example of forward 
dosimetry is the comparison of an internal exposure with in vi-
tro biological effect concentrations in so-called exposure-to-ac-
tivity ratios (EARs) (Becker et al., 2014; Dent et al., 2019). This 
approach provides predictions on whether certain in vitro biolog-
ical effects are likely to be induced in a certain exposure scenar-
io and provides a means to prioritize the key biological targets, 
focusing on those that are elicited at exposures (concentration, 
duration, frequency, delay) that are relevant for the expected in-
ternal levels. Furthermore, EARs of different compounds can be 
compared to place the exposure-activity data of a chemical rela-
tive to a known reference compound (Becker et al., 2014; Dent 
et al., 2019). In contrast to forward dosimetry, reverse dosime-
try approaches focus on the extrapolation of in vitro effective or 
benchmark concentrations (e.g., EC10, BMC10) into equivalent 
in vivo exposure-response curves (Louisse et al., 2017; Wetmore, 
2015; Yoon et al., 2012). Kinetic modelling (including PB(P)K 
modelling) plays an important role in obtaining the required in-
sights into the relation between external and internal exposure for 
QIVIVE, based either on forward or reverse dosimetry. A prereq-
uisite within the context of animal-free testing strategies is that 
these models are developed based on in vitro and/or in silico input 
data themselves (Rostami-Hodjegan, 2012). Furthermore, good 
PB(P)K modelling practice as well as the quantification of un-
certainty and variability within PB(P)K is of importance to gain 
confidence in the predictions and to estimate the credible interval 
around the predicted external dose levels that are linked to the in 
vitro effect concentrations (Jamei et al., 2009a; McNally et al., 
2018; Paini et al., 2019; Wambaugh et al., 2019). Alternatively to 
kinetic (computer) modelling, exposure measurements from hu-
man biomonitoring studies (blood, urine, or milk) could be used 
for QIVIVE, though only for chemicals that are already marketed 
(Becker et al., 2014). Also then, PB(P)K modelling can be used 
for the interpretation of the human biomonitoring data, for exam-
ple to translate a urinary concentration back to the corresponding 
blood concentration (Clewell et al., 2008; McNally et al., 2012, 
2019; Rostami-Hodjegan, 2012). 

A final role for biokinetics in next-generation risk evaluations 
is to establish freely available concentrations in in vitro assays. 
Irrespective of whether the internal predicted exposure levels are 
compared with the in vitro biological activity data based on for-
ward dosimetry or based on reverse dosimetry, it is important to 
account for potential differences between the free concentration 
of the chemical in plasma (or the relevant organ or even cell un-
der consideration) vs. the chemical in the in vitro toxicity test. 
Apart from protein and lipid binding, the free concentration of 
a chemical in an in vitro system can also be impacted by evap-
oration and/or binding to plastic or filter material (e.g., microti-
ter plates), reviewed in Kramer et al. (2015). Calculation tools to 
predict the free available concentration in an in vitro experiment 
(Armitage et al., 2014; Fischer et al., 2017; Fisher et al., 2019; 
Groothuis et al., 2015; Kramer, 2010; Zaldivar Comenges et al., 
2017) and the fraction unbound in plasma (Lobell and Sivarajah, 
2003; Yamazaki and Kanaoka, 2004) will therefore become cru-
cial tools in next-generation risk evaluations. 

no significant human exposure” (Annex IX Regulation (EC) No 
1907/2006). Given that all three requirements need to be met as a 
waiver for reproductive toxicity tests, the impact of the biokinetic 
data as such will remain limited in this context. 

A final area in which NAMs for biokinetics are emerging is 
the justification of read-across. The principle of read-across is 
to predict endpoint information for a data-poor substance by us-
ing data from (an)other related substance(s) (Cronin and Yoon, 
2019; Escher et al., 2019). The role of biokinetics in read-across 
becomes clear from different ECHA read-across guidelines for 
REACH as well as the biocidal product regulation (ECHA, 2013, 
2017a, 2017b). According to these guidelines, the similarity in the 
biokinetics (e.g., type of metabolites and speed of metabolism) be-
tween the target and source substance(s) needs to be considered in 
the justification of the read-across approach (ECHA, 2013). 

2.2  Opportunities in next generation risk evaluations 
that move away from animal experimentation
Compared with current risk evaluation procedures (Tab. 1), an 
even more important role of biokinetics is foreseen in next-gener-
ation risk evaluations that move away from animal experimenta-
tion (summarized in Tab. 2). Questions related to the extrapolation 
of animal data to humans are expected to become less important, 
but methodologies that incorporate human variation and allow 
route-to-route extrapolation, read-across and exposure-based 
waiving/priority-setting without the use of experimental animals 
will remain and may even become more important. 

In addition, new applications of biokinetics will emerge. For ex-
ample, NAMs for biokinetics will play a crucial role in the design 
of in vitro toxicity experiments. Particularly, given that not all in 
vitro biological effect assays include metabolism, it is important 
to characterize the metabolites that are formed in the human body 
and, if possible, to subsequently assess the potential toxic effects 
of these metabolites (Escher et al., 2019; Wilk-Zasadna et al., 
2015). In addition, biokinetic information provides insights into 
whether specific exposure scenarios, such as irregular peak expo-
sure concentrations, may lead to different cellular responses than 
continuous exposure to lower dose levels. In some cases there can 
also be a significant time delay between in vitro medium concen-
trations and the internal cell concentration (McAleer et al., 2019; 
Rozman and Doull, 2000). Such temporal concentration effects 
can be important to consider in the design of an in vitro toxicody-
namic experiment and the subsequent translation of the results to 
actual human exposure scenarios. Finally, PB(P)K modelling can 
also be used as a tool to guide the design of in vitro experiments, 
for example by providing insight into dimensions and operating 
conditions for organ-on-a-chip systems (Abaci and Shuler, 2015; 
Hartung et al., 2017; Sung et al., 2014). 

Another new role of biokinetics (and particularly PB(P)K mod-
elling) in next-generation risk evaluations is to put in vitro bio-
logical activity data in the context of human exposure, also called 
QIVIVE (quantitative in vitro to in vivo extrapolations). This can 
be done based on a forward dosimetry approach (i.e., comparing 
predicted or observed internal plasma or tissue levels with the in 
vitro concentration-response curves) or based on a reverse do-
simetry approach (i.e., extrapolating the in vitro effect concen-
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to take the GIVIMP guidance into account with respect to the 
critical aspects that need to be considered in the design of in vitro  
kinetic experiments in general. For regulatory use, the TGs 
should furthermore provide specific boundaries (test concentra-
tions, time-point, etc.) within which experiments need to be per-
formed to obtain results that are relevant to the human situation. 

3.2  Development of GDs 
Providing that the kinetic data are obtained with protocols that 
lead to robust and reproducible results, an important second step 
is to develop GDs that aid to systematically interpret submitted 
kinetic data (e.g., in vitro-in vivo scaling, defining uncertainties) 
and to define acceptance criteria (e.g., biological and technical 
considerations like maximum incubation times and acceptable 
concentration ranges). An example of an OECD GD in the field 
of biokinetics is the recently published OECD GD on the deter-
mination of in vitro intrinsic clearance using primary hepatocytes 
or S9 from rainbow trout and extrapolation hereof to an in vivo 
intrinsic clearance (OECD, 2018b). This GD provides informa-
tion on the selection of the in vitro test system (S9 or primary he-
patocytes), consideration of properties of the test compound (sol-
ubility), the inclusion of positive and negative controls, and how 
to use the in vitro data to meet the regulatory topic to improve 
predictions of chemical bioaccumulation in fish (OECD, 2018b). 
Similar GDs will be needed for the regulatory topics of human 
risk assessment that are included in Tables 1 and 2. However, it is 
recognized that for many of these questions the development of a 
GD may not be straightforward. 

The complexity of developing a GD can be illustrated by tak-
ing the evaluation of species differences as an example. Although 
the evaluation of species differences can be expected to be phased 
out in next-generation risk evaluations, the development of GDs 
for this regulatory topic will still be crucial in the transition to-
wards NAMs to gain confidence in outcomes by making use of 
available in vivo data for evaluation of the results. An approach 
to define species differences in kinetics based on in vivo data is 
for example to compare measured plasma concentrations and/
or AUCs of a toxic agent (parent compound or metabolite) be-
tween experimental animals and humans (corrected for differenc-
es in, e.g., dosing and protein binding) (Meek et al., 2003). To 
obtain such a comparison with NAMs is not straightforward as 
there can be various causes for differences in plasma concentra-
tions. Interspecies differences in metabolism are the best recog-
nized of these (Cao et al., 2006; Musther et al., 2014). Many me-
tabolizing enzymes, such as cytochromes P450 (Martinez et al., 
2019; Nishimuta et al., 2013), UGT (Chiu and Huskey, 1998; De-
guchi et al., 2011) and SULT (Punt et al., 2007; Wang et al., 2009) 
are differently expressed/active in rat, dog, monkey and mouse 
compared to humans. By measuring metabolic conversions with 
primary hepatocytes or tissue fractions, insights into species dif-
ferences in metabolic rates and profiles can be obtained. Howev-
er, focusing on species differences in liver metabolism may over-
look other potential kinetic processes that influence plasma con-
centrations. Expression and/or activity of intestinal transporters, 
for example, can also differ between humans and animals. While 
rodents for instance express Mdr1a and Mdr1b transporters, hu-

3  Increasing the regulatory acceptance and use

Though the possibilities for NAMs for biokinetics are mani-
fold (see above evaluation), formal inclusion is still limited due, 
amongst others, to the lack of robust and reproducible methods 
(Punt et al., 2017; Sewell et al., 2017; Tan et al., 2018; Zhuang and 
Lu, 2016). To this end, the experts at the workshop recommended 
to set up a continuous OECD expert group on biokinetics, analo-
gous to the expert groups on, e.g., genotoxicity and skin sensitiza-
tion, to stimulate and guide the generation of TGs for methods to 
generate biokinetic parameters in a robust and reproducible way 
and of GDs for their application in risk assessment procedures (see 
summary Fig. 1). In the meantime, this working group has been 
formally established. Within the context of the OECD, a GD fo-
cuses on how experimental results can be used to inform risk eval-
uations (i.e., to answer a specific regulatory question), and a TG 
focuses on how to perform a specific study (OECD, 2009). In the 
area of biokinetics, currently OECD TG 417 (with relative harmo-
nized template OHT58) describes in vivo studies, providing the 
protocol for the conduct of studies on mass balance, absorption, 
bioavailability, tissue distribution, metabolism, excretion, and  
basic kinetic parameters (e.g., Cmax, AUC) (OECD, 2010). 

3.1  Standardization and development of TGs
The experimental conditions of in vitro kinetic studies can have 
a significant impact on the kinetic parameters that are obtained 
(e.g., metabolic clearance, absorption rates). This leads to a high 
variability in the estimates for these parameters for the same 
chemical among different studies as recently shown for metabol-
ic clearance experiments (Louisse et al., 2020; Ring et al., 2011). 
One currently needs to evaluate each study in detail to find out 
whether the results are in agreement with what is expected in vi-
vo and reliable enough to use for, e.g., PB(P)K modelling (e.g., 
is the intrinsic clearance measured at concentrations below the 
Km, are the Michaelis-Menten kinetics (Km and Vmax) obtained 
at incubation conditions in which not too much of the substrate is 
depleted, which solvents were used as vehicle and at which con-
centrations, are the right cofactors added, and how was the data 
processed?). The development of standardized methods and TGs 
is needed to increase quality and transparency in the biokinetic 
results, to reduce inter-laboratory difference, and to derive kinet-
ic parameters with a high in vivo (human) relevance. Such TGs 
should include information on the principle of the test, the exper-
imental set-up, the inclusion of reference compounds, the calcu-
lation of the in vitro results (correction factors applied or model-
ling of the in vitro data), and the reporting of the results (Choi et 
al., 2019; Fisher et al., 2019; Jamei et al., 2009b). Recently, an 
OECD GD on good in vitro method practices (GIVIMP) for the 
development and implementation of in vitro methods for regu-
latory use in human safety assessment was published. GIVIMP 
addresses key aspects of good in vitro practice, including a clear 
definition of roles and responsibilities, procedures for storing and 
handling cells and tissues, ways to prepare test items and avoid 
cross-contamination, defining and describing standard operating 
procedures, and how to properly report results (OECD, 2018a). 
When developing TGs for NAMs for biokinetics, it is important 
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QIVIVE (Armitage et al., 2014; Fischer et al., 2017; Fisher et al., 
2019; Kramer, 2010; Zaldivar Comenges et al., 2017), guidance 
on their use and applicability domain effectively can be devel-
oped. A final priority can be given to developing a technical guide-
line for Caco-2 (MDCK, LLC-PK1, or PAMPA) absorption stud-
ies to measure passive intestinal permeability. Though alternatives 
to Caco-2 permeability experiments (co-cultures, 3D, medium 
flow, peristaltic stretching) have been developed (Costa and Ahlu-
walia, 2019), Caco-2 transwell studies remain the best established 
among different protocols for permeability measurement (Hu-
batsch et al., 2007) and can serve as a starting point for technical 
guidance development. Opportunities for the development of TGs 
for lung absorption experiments and transporter studies (intestine, 
kidney, lungs) are currently considered to be limited as further sci-
entific research is needed to identify physiologically relevant cells 
and define scaling methods (see Section 4.2). An OECD TG al-
ready exists for in vitro dermal absorption studies (OECD, 2004), 
and a TG on measuring induction and inhibition processes of met-
abolic enzymes is currently being developed (Bernasconi et al., 
2019; OECD, 2019). 

4.2  Opportunities for new scientific developments 
Whereas much can be achieved to increase regulatory acceptance 
and use of NAMs for biokinetics by standardization and the de-
velopment of guidelines, this is currently not possible for all as-
pects of biokinetics. Especially capturing transporter-mediated 
absorption (intestine), distribution (e.g., blood-brain barrier, pla-
centa, organ uptake) or excretion (e.g., active renal excretion, bil-
iary secretion) with NAMs is still difficult (Clerbaux et al., 2018, 
2019; Taskar et al., 2019). Clerbaux et al. (2018) performed a 
survey among seventy-three experts in the field of transporter ki-
netics to evaluate the applicability of transporter data for ADME 
considerations in regulatory risk evaluations. Respondents high-
lighted the complex interplay with metabolic enzymes and other 
transporters, species differences, lack of specific transporter sub-
strates and inhibitors, loss of cell polarity, lack of negative con-
trols, problems of inter-laboratory variability, and lack of stan-
dardized protocols as key challenges of transporter models (Cler-
baux et al., 2018, 2019). For the use of transporter data in PB(P)K  
models, scaling approaches also are needed to account for the 
quantitative difference of transporters in cell lines versus tissues 
(Clerbaux et al., 2018; Galetin et al., 2017; Taskar et al., 2019). 

Apart from the specific challenges with transporter kinetics, 
there is also a general need for new cell models to overcome 
many of the hurdles of the classically used tumor-derived cell 
lines as well as primary cell cultures. Widely used tumor-derived 
cell lines (e.g., Caco-2 intestinal cells, HepaRG or HepG2 liv-
er cells and A549 lung cells) all have shortcomings to some ex-
tent. These either relate to the expression of metabolic enzymes 
and transporters or to the barrier properties (e.g., the ability to 
grow to confluence, polarized cell layer(s), mucus secretion) 
(Ehrhardt et al., 2017; Van Breemen and Li, 2005; Wilk-Zasadna 
et al., 2015). These shortcomings affect not only kinetic studies 
(measurements of metabolism or permeability rates) but also in 
vitro toxicodynamic studies that require, for example, metabolic 
activation. In contrast to tumor-derived cell lines, primary cells 
closely mimic the physiological state of cells in vivo but can on-

mans only express one MDR1-encoded protein (P-glycoprotein, 
P-gp), and BCRP expression is high in rodent kidneys but low in 
humans (Chu et al., 2013). Differences in physiology may need to 
be accounted for as well when predicting absorption on the basis 
of NAMs, including differences in the small intestinal transit time 
(Sutton, 2004), the intestinal pH and radius (Dressman and Yama-
da, 1991), microbiome composition (Behr, 2019), and differences 
in the structure of the gastro-intestinal tract, e.g., no circular folds 
in the dog (Slatter, 2003) that affect the surface area. Differences 
in distribution in rat, mouse, dog and human have been associat-
ed with differences in protein binding and active transport into or-
gans (Grover and Benet, 2009). In case of renal clearance, species 
differences can range from 1.6- to 13-fold as a result of differenc-
es in passive renal clearance alone (Walton et al., 2004). Ideally, 
all these kinetic processes are integrated in a PB(P)K model to al-
low evaluation of species differences on plasma concentrations 
of the chemical (Musther et al., 2017). Though PB(P)K models 
can be made as complex as needed, in practice a balance must 
be found between accuracy (and therefore complexity) and sim-
plicity (ease of use) (Bois, 2010). This also needs to be kept in 
mind for the development of GDs. Rather than directly focusing 
on covering all sources of species differences in kinetics, it will 
be important first to enhance the use of individual (human-based) 
NAMs for kinetics and to make sure that these are sufficiently un-
derstood and provide robust results for application in a regulato-
ry context. In case of hepatic clearance studies, for example, the 
European Union Reference Laboratory for alternatives to animal 
testing (EURL ECVAM) recently established a systematic frame-
work to characterize in vitro methods for human hepatic meta-
bolic clearance in terms of their design, applicability and perfor-
mance (Gouliarmou et al., 2018). In addition, guidelines are need-
ed on the integration of in vitro kinetic data into in silico kinetic 
models (Paini et al., 2019). 

4  Availability of NAMs for human-relevant biokinetics 
and the opportunities of new scientific developments

4.1  Methods that are considered ready 
for the development of TGs
In Table 3, priorities are set for the methods available for different 
kinetic processes for standardization and the development of TGs 
and research needs. Particularly, the generation of standardized 
approaches and a TG for hepatic metabolic clearance with primary 
hepatocytes or hepatic microsomes/S9 is considered a high priori-
ty. Gouliarmou et al. (2018) already made a start by establishing a 
systematic framework to characterize in vitro methods for human 
hepatic metabolic clearance to provide a basis for harmonization 
within the OECD. A TG for hepatic clearance can potentially be 
developed further into TGs for metabolite identification and extra-
hepatic (i.e., intestine, kidney, lung, skin) clearance. 

The development of TGs for different in vitro and/or in silico 
approaches that predict partition coefficients, fraction unbound in 
plasma, blood-plasma ratio, and in vitro biokinetics (free fraction 
as a result of protein binding, plastic binding or evaporation) is al-
so considered relevant. Based on ample experience with the use 
of these in silico approaches in kinetic model development and 
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Liver clearance 
 
 
 
 
 
 
 
 
 

Metabolite 
identification 
 
 
 
 
 
 
 
 
 
 
 

Extrahepatic 
metabolic 
clearance and 
metabolite 
formation 
 
 
 
 
 
 
 
 

(Passive) 
intestinal 
absorption 
 
 
 
 

Tissue binding 
(fraction 
unbound 
in plasma, 
partition 
coefficients)

–	 Standardization of 
incubation methods with 
(cryopreserved) primary 
human hepatocytes or S9/
microsomes.

–	 Evaluation of the 
applicability of non-primary 
cells (e.g., HepaRG™ 
cells). 
 

–	 Standardization of 
methods that are used 
based on incubations 
with S9/microsomes/ 
(cryopreserved) primary 
hepatocytes.

–	 Higher sensitivity and 
standardization of analytical 
chemical techniques and 
improved methods to 
characterize metabolites.

–	 Applicability of non-
primary cell cultures (e.g., 
HepaRG™).

–	 Show proof of principle 
with S9/microsomes/ 
(cryopreserved) primary 
cell cultures of extrahepatic 
tissues (with a focus on 
kidney, lung, intestine and 
skin).

–	 Development of non-
primary cell cultures with 
physiologically relevant 
metabolic capacity.

–	 Contribution of the gut 
microbiota to the metabolic 
clearance of chemicals.

–	 Standardization of  
transwell absorption 
experiments (e.g., Caco-2). 

–	 Exploring value of added 
complexity (co-cultures,  
3D, medium flow,  
peristaltic stretching). 

–	 Standardization and the 
development of guidance 
documents of available 
in vitro and/or in silico 
methods. 

Hepatic metabolic clearance studies with 
(cryopreserved) primary human hepatocytes or S9/
microsomes are considered a high priority for the 
development of a TG. Well-established protocols are 
available. Hepatic clearance data are relevant to a 
large range of regulatory topics (see Tab. 1, 2) as a 
major determinant of blood and tissue concentrations 
(Cao et al., 2006; Musther et al., 2014). Potential for 
extension of the TG to HepaRG clearance studies as 
an alternative to primary cells, which are of limited 
availability.

TGs for comparative metabolite studies with  
S9/microsomes/ (cryopreserved) primary hepatocytes 
are considered a high priority, particularly as 
comparative metabolite studies are a data requirement 
within the EU regulation on plant protection products 
(EC, 2013). Potential for extension of the TG to  
HepaRG clearance studies as an alternative to primary 
cells, which are of limited availability. 
 
 
 
 
 

When TGs for hepatic metabolic clearance and 
metabolic formation are established, these can serve  
as a template for clearance measurements with  
S9/microsomes/ (cryopreserved) primary cell cultures 
of extrahepatic tissues (with a focus on kidney, lung, 
intestine and skin).  
 
 
 
 
 
 
 

Although protocols for Caco-2 transwell absorption 
studies are well established (Hubatsch et al., 2007), 
the applicability domain of a TG for these studies will 
be limited to passive absorption as challenges still exist 
in the adequate scaling of transporter-mediated influx/
efflux processes (Clerbaux et al., 2018). 

 
 
Well-established in vitro methods and in silico 
calculation tools (Peters, 2012) can form the basis for 
the development of TGs.  
 
 

–	 Species differences
–	 Human variation
–	 Route-to-route 

extrapolations
–	 QIVIVE 

 
 
 
 
 

–	 Species differences 
in type of metabolites 
(required for plant 
protection products)

–	 Read-across
–	 Guiding in vitro 

toxicity test design
–	 Identification of toxic 

agent 
 
 
 
 

–	 Species differences 
–	 Human variation
–	 Route-to-route 

extrapolations
–	 QIVIVE
–	 Guiding in vitro 

toxicity test design
–	 Identification of toxic 

agent 
 
 
 
 

–	 Route-to-route 
extrapolations

–	 Exposure based 
waiving and priority 
setting

–	 QIVIVE
–	 Guiding in vitro 

toxicity test design

–	 Species differences
–	 QIVIVE
–	 Guiding in vitro 

toxicity test design 
 

Tab. 3: Overview of the current availability of NAMs for different kinetic parameters and research needs 

Kinetic	 Research needs	 Priority for OECD TG development 	 Related regulatory 
processes			   topic (see Tab. 1, 2 and  
			   references therein)a

a The mentioned in vitro and in silico methods for different kinetic processes should be considered as providing parts of the information that 
is needed to answer the mentioned regulatory topics. An integrated approach (combined in vitro and in silico approaches) will be needed to 
cover the regulatory topics as a whole.
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pounds to increase the expression of intestinal markers and 
pharmacokinetic-related genes (Onozato et al., 2018), 

–	 HepaRG cells as a metabolically competent tumor cell line 
that provides promising results with respect to intrinsic hepat-
ic clearance measurements (Zanelli et al., 2012) and metabol-
ic activation of chemicals in toxicity studies (Louisse et al., 
2019),

–	 spheroids from primary hepatocytes or HepaRG cells that ex-
press relevant bile acid transporters (Hendriks et al., 2016), 

–	 three-dimensional cultures from primary alveolar cells (Huang 
and Hsu, 2014),

–	 multi-organ platforms (fluidic coupling of different organs-
on-a-chip) that allow, for example, to mimic the effect of liver 
metabolic activation/detoxification on other target organs (e.g., 
McAleer et al., 2019; Wang et al., 2018). 

–	 the combination of cells or organoids derived from iPSCs, 
ESCs or ASCs in microfluidic systems, showing that particu-
larly the combination of novel cell sources with new culturing 
techniques may improve the metabolic and transporter compe-
tence of cells in vitro as a result of shear stress (e.g., Homan et 
al., 2019; Starokozhko et al., 2018). 

ly be kept in culture for a limited time. Hence, developments are 
needed to overcome these different challenges. 

New technologies involving telomerase overexpression in pri-
mary cells, induced pluripotent stem cells (iPSCs), embryon-
ic stem cells (ESCs), or adult stem cells (ASCs) as well as new 
culturing techniques like 3D spheroid or organoid cultures and 
organ-on-a-chip technology are expected to provide novel solu-
tions in the field of NAMs for biokinetics. 

Relevant examples include the following developments: 
–	 a non-cancerous human renal proximal tubular cell line, 

RPTEC/TERT1, that has been utilized successfully for several 
long-term kinetic studies of cyclosporine A, cisplatin and ade-
fovir, showing promising results due to the expression of many 
relevant transporters and metabolizing enzymes (Aschauer et 
al., 2015; Wilmes et al., 2015), 

–	 bioengineered kidney tubule, intestinal tubule and bile ducts 
obtained by culturing immortalized cell lines or ASCs on col-
lagen-coated hollow fiber (Chen et al., 2018; Faria et al., 2019; 
Jochems et al., 2019), 

–	 alternatives to Caco-2 cells, such as intestinal organoids from 
iPSCs, differentiated in the presence of small-molecule com-

In vitro 
biokinetics 
(fate of a 
compound 
in an in vitro 
assay)

(Passive) lung 
absorption 
 
 
 
 
 

Transporter 
mediated 
absorption 
or excretion 
processes 
 
 
 

Induction 
and inhibition 
processes 
of metabolic 
enzymes

Dermal 
absorption

–	 Standardization and 
development of guidance 
documents for available 
calculators based on. 
physicochemical properties 

–	 Development of non-
primary cell cultures with 
physiologically relevant 
transporter activity and 
metabolic capacity. 
 
 

–	 Development of in vitro 
methods that contain 
physiologically relevant 
transporter activity 
(required for intestine, 
kidney, liver, placenta, 
blood-brain barrier).

–	 Development of adequate 
scaling methods.

Various in silico tools are available for animals and 
humans with different degrees of complexity but 
outcomes may vary depending on the applicability 
domain (Groothuis et al., 2015). 

 
 
Availability of in vitro tools is still limited. Calu-3 
monolayer assays are currently the most promising for 
regulatory use (Ong et al., 2013).  
 
 
 

 
Low priority due to limitations in currently available 
methods as described in Section 4.2 (Clerbaux et al., 
2018, 2019), current capabilities and challenges are 
highlighted in a recent review (Taskar et al., 2019). 
 
 
 
 

Currently being developed (Bernasconi et al., 2019; 
OECD, 2019b). CYP induction/inhibition can be seen 
as biomarker for metabolic competence of cells and as 
potential mechanism of action.  

OECD TG 428 already exists.

–	 QIVIVE
–	 Guiding in vitro 

toxicity test design 
 
 

–	 Route-to-route 
extrapolations

–	 Exposure based 
waiving and priority 
setting

–	 QIVIVE
–	 Guiding in vitro 

toxicity test design

–	 Species differences 
–	 Human variation
–	 Route-to-route 

extrapolations
–	 QIVIVE
–	 Guiding in vitro 

toxicity test design 
 

–	 Human variation, 
including drug-drug 
interactions

–	 Species differences 

–	 Route-to-route 
extrapolations

–	 QIVIVE
–	 Guiding in vitro 

toxicity test design

Kinetic	 Research needs	 Priority for OECD TG development 	 Related regulatory 
processes			   topic (see Tab. 1, 2 and  
			   references therein)a
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tation of NAMs for biokinetics in current regulatory risk assess-
ment are to 
–	 evaluate interspecies differences, 
–	 simulate special populations and human interindividual vari-

ability, 
–	 perform read-across, 
–	 perform route-to-route extrapolations,
–	 set priorities (e.g., exposure-based waiving), 
–	 perform dose extrapolations, and
–	 guide in vivo toxicity test selection and design. 
When switching to a fully animal-free regulatory risk assessment 
for humans in the future, these methods will be necessary to also 
–	 guide in vitro toxicity test selection and design, and 
–	 enable QIVIVE.
Given the importance of NAMs for biokinetics in a successful 
transition towards next-generation toxicity testing strategies, 
both regulatory and scientific experience with in vitro/in silico 
biokinetic approaches must increase. To facilitate the use of hu-
man-relevant NAMs for biokinetics, GDs are needed that pro-
vide information on
–	 how NAMs for biokinetics should be designed to address a 

regulatory topic, including, for example, how the different pa-
rameters should be scaled and integrated in a kinetic model, 

–	 the essential kinetic parameters that are needed to address the 
regulatory topic, and 

–	 the applicability domain of the different methods available for 
each of these parameters, 

–	 the use of different existing in silico tools to calculate, e.g., 
partition coefficient, fraction unbound plasma or blood:plasma 
ratios, and

–	 how to link NAMs for biokinetics and for toxicodynamics for 
risk assessment purposes. 

In addition, the validation of NAMs for biokinetics and the de-
velopment of OECD TGs (on how to perform a specific bioki-
netic study) is important. At the workshop, the development of 
OECD TGs was prioritized based on the availability of current 
methods and research needs. It was recognized that OECD TGs 
are required for:
–	 intrinsic clearance and identification of metabolites (liver and, 

at later stages, also other organs), 
–	 in vitro approaches for tissue binding (e.g., fraction unbound 

plasma, blood:plasma ratio), and
–	 (passive) intestinal absorption (at later stages also passive and 

active permeation into other organs). In case of in vitro skin 
absorption, a TG already exists, which may need to be devel-
oped further. 

Before TGs can be developed for each of these kinetic process-
es, protocols are needed that lead to robust and reproducible re-
sults. Moreover, it is advised to have a continuous OECD ex-
pert group to perform this work on GDs and TGs. In the mean-
time, the OECD Expert Group on Toxicokinetics (previously Ad 
hoc OECD Expert Group on Biotransformation) has been estab-
lished. 

Furthermore, it was concluded that method development is re-
quired to 
–	 adequately address transporter mediated absorption (intestine, 

lung), distribution (e.g., blood-brain barrier, placenta, organ 

Although these examples show that in vitro approaches that 
better reflect human physiology are emerging fast, the applicabil-
ity of these approaches to obtain kinetic parameters still needs be 
explored (see summary Fig. 1). 

5  Integration of NAMs for biokinetics in a next-
generation risk assessment framework

New developments in animal-free methods for biokinetics should 
not stand by themselves. Efforts are needed to seamlessly con-
nect different approaches within next-generation risk assessment, 
particularly to link the biokinetics and the adverse effects (tox-
icodynamics) of a chemical. With next generation risk assess-
ment frameworks, methods like high-throughput transcriptom-
ic and high-content imaging followed by more specific assays 
play a crucial role in the screening of chemicals for biological 
effects (Thomas et al., 2019). As long as the results of these as-
says provide quantitative information (e.g., concentration/expo-
sure response curves), kinetic data can be linked to these biolog-
ical effect assays to obtain equivalent oral/skin/inhalation human 
potency estimates that can be compared with human exposure es-
timates to define the risk. 

For the use of in vitro biological effect data and QIVIVE, in vitro 
toxicity studies should be able to pick up all relevant interactions 
with biological targets or pathways. The adverse outcome pathway 
(AOP) framework currently provides the most effective frame-
work to organize and describe biological effects in terms of molec-
ular initiating events (MIEs), key events (KEs), and key event re-
lationships (KERs) in relation to an adverse outcome (Leist et al., 
2017; Vinken et al., 2017). At present, a direct link between bioki-
netics (including QIVIVE) and AOPs is not straightforward. Con-
sideration of biokinetics is not incorporated directly into an AOP 
description, particularly given that AOPs are not chemical-specif-
ic. In addition, AOPs are currently mainly qualitative in nature, 
providing (narrative) descriptions of the KERs, i.e., the relation be-
tween MIEs, KEs, and an adverse outcome (Edwards et al., 2015; 
Vinken, 2018). Though qualitative AOPs are relevant for hazard 
identification, moving towards the use of AOPs in risk evaluations 
also requires quantitative dose-response and time-course infor-
mation. A relevant new development in this respect are so-called 
quantitative AOP (qAOP) approaches that focus on the simulation 
of the dynamic processes linking a MIE with an adverse outcome 
using different modelling approaches (Conolly et al., 2017; Schul-
tz and Watanabe, 2018; Zgheib et al., 2019). Such qAOPs can be 
linked to PB(P)K modelling results. The in vitro exposure that is 
expected to perturb a MIE or KE would then provide a starting 
point to estimate an external exposure scenario of possible con-
cern. Therefore, the development of qAOPs will be an important 
next step to link biokinetics and toxicodynamics within next-gen-
eration risk assessment (Edwards et al., 2015; Vinken, 2018). 

6  Conclusion

Figure 1 provides a schematic overview of the workshop results. 
Overall, it can be concluded that opportunities for the implemen-
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