25.5 A Zero-Crossing Based 8b, 200MS/s Pipelined ADC

Lane Brooks and Hae-Seung Lee

Massachusetts Institute of Technology
Outline

- Motivation
- Review of Op-amp & Comparator-Based Circuits
- Introduction of Zero-Crossing Based Circuits
- Implementation Details
- Performance Results
- Conclusion
Motivation

- Technology scaling is making opamp-based SC circuit design increasingly difficult
- Op-amp design issues
 - Decreasing voltage supplies
 - Reduces signal swing
 - Requires increase in capacitance to maintain SNR
 - Decreasing intrinsic device gain
 - Cascode gain stages
 - Exacerbates low swing problem
 - Cascade gain stages
 - Stability versus bandwidth/power tradeoff
Comparator Based Circuits

• Comparator Based Switched Capacitor\(^1\) (CBSC) Circuits:
 – Eliminate op-amps and stability issues
 – Utilize architectures similar to op-amp based circuits
 • Works with ADCs, DACs, Filters, Amplifiers, etc.
 – Amenable to scaled technologies
 – Operate more power-efficiently

Op-amp Based Switched-Capacitor Charge Transfer Phase

- Op-amp forces virtual ground condition
- Exponential settling to virtual ground
Comparator-Based Switched-Capacitor Charge Transfer Phase

- Current source sweeps the output voltage
- Comparator **detects** virtual ground condition and turns off current source
- Correct output voltage is sampled on C_L
CBSC Observation

- A general purpose comparator must compare two arbitrary voltages
- CBSC comparators:
 - Do not have arbitrary inputs
 - Have inputs that are constant slope voltage ramps
 - Perform a zero-crossing detection

Sample CBSC Inputs
Zero-Crossing Based Circuits (ZCBC)

- CBSC circuits generalize to Zero-Crossing Based Circuits (ZCBC)
 - Zero-Crossing Detector (ZCD) replaces comparator
Dynamic ZCBC Transfer Phase

- C_1 and C_2 sample the input signal in a previous sampling phase
- **Transfer phase goal**: Charge C_L to the voltage that realizes the virtual ground condition on v_X
Dynamic ZCBC Implementation

- ϕ_I initializes charge transfer
 - v_p gets reset high
 - v_o gets reset low
 - v_x gets pushed down

![Diagram of ZCBC Implementation]
Dynamic ZCBC Implementation

- Current source turns on
 - v_o and v_x start ramping
- v_x ramps until it turns on M_2
 - M_2 pulls v_p low
 - Sampling switch M_1 turns off
 - Bottom-plate sampling
Dynamic Zero-Crossing Detector

- Not suitable as a general purpose comparator
 - Switching threshold depends on input waveform
- Fast
- Simple
- Rail-to-rail swing
- Amenable to scaling
- Energy efficient - draws no static current
Dynamic Zero-Crossing Detector Limitations

- Inherently single-ended
 - Suitable for low to medium resolutions
- The offset is ramp-rate, temperature, and process dependent
 - An auto-zeroing circuit can null these dependencies
Simplified ZCBC Pipelined ADC Schematic

Stage k

Transfer Phase

Stage k+1

Sample Phase
Current Source Splitting

- Switches S_1 and S_2 cause non-linearities and limits output swing
- Splitting the current source up removes the series switches
- Switches S_3 and S_4 remove current mismatch
- All other switches are connected to DC voltages and do not contribute non-linearities.
Bit Decision Comparators

• Bit decisions comparators (BDC) provide a coarse quantization of the output voltage v_o

• When implemented using clocked comparators, they lie in the critical path
 – They make their decision after one stage ends ramping and before the next stage can begin.
 – Meta-stability issues can arise if they are not given ample time to make their decision
 – Requires the design of a fast clocked comparator
Bit Decision Flip-Flops

- The time at which v_P switches is proportional to the output voltage.
- Sampling v_P with a **Bit Decision Flip-Flop (BDFF)** provides a coarse quantization.
- Analogous to a single-slope ADC.
Complete ZCBC Schematic

Stage k

Transfer Phase

Stage k+1

Sampling Phase
BDFF Phase Generation

- A Voltage Controlled Delay Line (VCDL) generates the bit decision clock phase
- A charge pump controls v_G to set the delay
BDDFF Feedback Loop

- Use bit decision threshold $V_{\text{REF}/4}$ as input into a replica ZCBC stage.
- The bit decision D out of the replica stage indicates if ϕ_{BD} is ahead or behind.
- D adjusts the VCDL delay each clock cycle.
- The small amount of jitter on ϕ_{BD} in steady-state is not problematic because of over-range protection.
Bit Decision Flip-Flop Discussion

• Implementing the BDC as a flip-flop removes it from the critical path
 – The bit decisions are made in parallel with the voltage ramp and are ready by the time the transfer phase ends
 – Eliminates meta-stability issues
 – Eliminates the need for a fast clocked comparator
 – A standard flip-flop suffices

• A 1.5 bit/stage ADC requires 2 bit decision phases for $\pm V_{REF}/4$
 – A single ZCBC stage is switched between 2 VCDLs

• This method does not work for the 1st stage
 – Clocked comparators are used for the 1st stage
CBSC vs ZCBC

Original CBSC Comparator Input Stage

This ZCBC Zero-Crossing Detector
CBSC vs ZCBC

<table>
<thead>
<tr>
<th></th>
<th>Original CBSC(^1)</th>
<th>This ZCBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>(2V_{DD}I_D T_C)</td>
<td>(V_{DD}I_D \Delta T_Z)</td>
</tr>
<tr>
<td>Noise Bandwidth</td>
<td>(\frac{1}{2\alpha T_C})</td>
<td>(\frac{1}{2\Delta T_Z})</td>
</tr>
<tr>
<td>Noise Spectral Density</td>
<td>(\frac{8kT}{3I_D}(V_{GS} - V_T))</td>
<td>(\frac{4kT}{3I_D}(V_{GS} - V_T))</td>
</tr>
</tbody>
</table>

\[\text{Energy} = \frac{16}{3}kTV_{DD}(V_{GS} - V_T)\]
\[\text{Noise Energy Product} \ (\alpha = 0.5) \ = \frac{2}{3}kTV_{DD}(V_{GS} - V_T)\]

- Theoretical 8x better performance from this ZCBC
 - This ZCBC only requires a single gain stage
 - Original CBSC can be fully differential

Chip Micrograph

- 0.18um CMOS
- 0.05mm²
Measured Results - Linearity

100MS/s DNL (8 bit)

200MS/s DNL (8 bit)

100MS/s INL (8 bit)

200MS/s INL (8 bit)
Measured Results – Frequency Response

$f_s = 100\text{MHz}$
ENOB = 6.9b

$f_s = 200\text{MHz}$
ENOB = 6.4b
Measured Results – Power Consumption

• The complete ADC draws NO static current.
 – The current sources provide the transfer charge only.
 – The DZCD consumes only the power necessary to switch the sampling switch.

• Only dynamic CV^2f power is consumed.
ADC Performance Summary

<table>
<thead>
<tr>
<th></th>
<th>100MHz</th>
<th>200MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Freq.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Range</td>
<td>1V</td>
<td>1V</td>
</tr>
<tr>
<td>DNL</td>
<td>+/- 0.50 LSB</td>
<td>+/- 0.75 LSB</td>
</tr>
<tr>
<td>INL</td>
<td>+/- 0.75 LSB</td>
<td>+/- 1.00 LSB</td>
</tr>
<tr>
<td>ENOB</td>
<td>6.9b</td>
<td>6.4b</td>
</tr>
<tr>
<td>Power</td>
<td>4.5mW</td>
<td>8.5mW</td>
</tr>
<tr>
<td>FOM ((P/2^{ENOB}/2f_{in}))</td>
<td>0.38 pJ/step</td>
<td>0.51 pJ/step</td>
</tr>
</tbody>
</table>
Measured Results – FOM Comparison

1. ADCs without calibration power estimates excluded from comparison
2. FOM = P/2^ENOB/(2*fin)
3. Data courtesy of Brian Ginsberg
FOM Remarks

• 66% of the power consumption is from the digital power supply
 — Technology scaling will significantly improve the FOM

• The noise floor is more than 4x higher than theoretical and simulated results predict
 — Noise coupling from the I/O's is a problem
 — Deep NWELL, better packaging, etc. will help
 — Not all issues with this architecture are known
 — Work is underway to improve noise rejection and to reach theoretical performance.
Conclusions

• Introduced **Zero-Crossing Based Circuits** as a generalization of CBSC circuits
• Introduced an energy efficient **Dynamic Zero-Crossing Detector**
• Introduced **Current Source Splitting** to eliminate series switches and improve linearity
• Replaced clocked comparators with **Bit Decision Flip-Flops** to improve speed
• Demonstrated these techniques with an 8b, 200MS/s ZCBC Pipelined ADC
Acknowledgements

- MIT Center for Integrated Circuits and Systems (CICS) for funding
- National Defense Science and Engineering Graduate (NDSEG) Fellowship for funding