
Broadcast Encryption Scheme π ?

Nam-Su Jho, Jung Hee Cheon, Myung-Hwan Kim, and Eun Sun Yoo

ISaC and Department of Mathematical Sciences, Seoul National University,
Seoul 151-747, Korea

{ drake, jhcheon, mhkim, eunsun}@math.snu.ac.kr

Abstract. We propose a new broadcast encryption scheme π based on the idea of
‘one key per each punctured interval’. Let N and r be the numbers of total users and
revoked users, respectively. In our scheme with p-punctured c-intervals, the transmis-
sion overhead is asymptotically r

p+1 as r grows. We also introduce two variants of

our scheme to improve the efficiency for small r. Our scheme is very flexible with two
parameters p and c. We may take p as large as possible if a user device allows a large
key storage, and set c as small as possible if the storage size and the computing power
is limited. Our scheme also possesses another remarkable feature that any number
of new users can join at any time without key refreshment, which is not possible in
other known practical schemes.

1 Introduction

Broadcast encryption (BE) is a cryptographic method for a center to efficiently
broadcast digital contents to a large set of users so that only non-revoked users
can decrypt the contents. BE has a wide range of applications such as internet or
mobile broadcast of movies, news or games, pay TV, and even CD or DVD, to name
a few.
In broadcast encryption, the center distributes to each user u the set Ku of keys,

called the user key set of u, in the system setup stage. We assume that the user
keys are not updated afterwards, that is, user keys are stateless. A session is a time
interval during which only one encrypted message (digital contents) is broadcasted.
The session key, say SK, is the key used to encrypt the contents of the session.
In order to broadcast a message M , the center encrypts M using the session key
SK and broadcasts the encrypted message together with a header, which contains
encryptions of SK and the information for non-revoked users to recover SK. In
other words, the center broadcasts

〈 header ; ESK(M) 〉,

where ESK(M) is a symmetric encryption of M by SK. Then, every non-revoked
user u computes F (Ku, header) = SK and decrypts ESK(M) with SK, where F is
a predefined algorithm. But for any revoked user v, F (Kv, header) should not render
SK. Furthermore, there should be no polynomial time algorithm that outputs SK
even with all the revoked user keys and the header as input.
The length of the header, the computing time of F and the size of a user key

are called the transmission overhead, the computation cost and the storage size,
respectively. The main issue of broadcast encryption is to minimize the transmission
overhead with practical computation cost and storage size.

? This is the version submitted to Eurocrypt’05

2

The notion of broadcast encryption was first introduced by Berkovits[2] in 1991
using polynomial interpolation and vector based secret sharing. Fiat and Naor[7]
in 1993 suggested a formal definition of broadcast encryption and proposed a sys-
tematic method of broadcast encryption. The polynomial interpolation method was
improved by Naor and Pinkas[14] in 2000 to allow multiple usage. The first prac-
tical broadcast encryption scheme was proposed in 2001 by Naor et al.[13], called
the Subset Difference (SD) method. This was improved by Halevi and Shamir[11] in
2002 by adopting the notion of layers and thereby the improved scheme is called
the Layered Subset Difference (LSD) method. Both SD and LSD are based on tree
structure and they are the best known broadcast schemes up to now. To be more
precise, let N be the total number of users and r be the number of revoked users.
The SD scheme requires 2r transmission overhead and O(log2 N) storage size for
each user. The computation cost is only O(logN) computations of one-way permu-
tations. The LSD scheme reduces the storage size to O(log3/2 N) while keeping the
computation cost same. But the transmission overhead increases to 4r in LSD. For
other interesting recent articles on broadcast encryption, we refer the readers [8],
[3].
In this paper, we propose a new broadcast encryption scheme based on the idea

of “one key per each punctured interval”. It has been a general belief that at least one
key per each revoked user should be included in the overhead and hence r seems to
be the lower bound of the transmission overhead in any broadcast encryption scheme
with reasonable computation cost and storage size. In our scheme with p-punctured

c-intervals, however, the transmission overhead is about
r

p+1 +
N−r

c which breaks

the barrier of r, for the first time under our knowledge if r is not too small, even
when p = 1, where c is a predetermined constant and r is not too small. Although we
set c = 100 or 1000 for comparison purpose here, we can choose any c that is suitable
for other purposes. The computation cost is very cheap with only c−1 computations
of one-way permutations. The storage size is O(cp+1), which is practical for most
user devices if p is small. Our scheme is very flexible with two parameters p and
c. If a user device allows a large key storage like set-top boxes and DVD players,
we may take p as large as possible to reduce the transmission overhead, which is
much more expensive. If a user device has limited storage and computing power like
smart cards and sensers, then we may set c as small as possible. Another remarkable
feature of our scheme is that it does not have to preset the total number of users -
any number of additional users can join at any time, which is not possible in tree
based schemes.
Our idea is to put all the users on a straight line and divide the line into subin-

tervals of length at most c beginning and ending with non-revoked users containing
p or less revoked users in between. Then, to each of such intervals, the center as-
signs just one key, which can be derived by all non-revoked users in the interval, for
decrypting the session key.
For practical purpose, we introduce two variances of our scheme to improve the

efficiency for very small r: one is based on layered structure and the other is based
on tree structure. Compared with SD and LSD, both beat them in the transmission
overhead. As for the the storage size, ours are better than to SD when p = 0 and a
little bit worse when p ≥ 1.

3

This paper is organized as follows : In Section 2, we propose our scheme with
p-punctured intervals together with efficiency and security analysis. In Section 3,
we introduce layers to our scheme. We also suggest a scheme using tree structure
of punctured circles. In Section 4, we compare our schemes with SD and LSD and
discuss some practical issues. We give concluding remarks in Section 5. Detailed
proofs of lemmas and theorems are provided in Appendix.

2 The Punctured Interval Scheme π

2.1 Framework

Let L be a straight line with N dots (users) on it, where N is the number of total
users. In our scheme, each user is indexed by an integer k ∈ [1, N] and he/she is
represented by the k-th dot, denoted by uk, in the line L. Consider L as the set of N
users and define S(cond) to be the set of all subsets of L satisfying a given condition
cond. Assign each subset in S(cond) one key, called a subset key that can be derived
by each user in the subset using his/her user keys. For each session, the center finds
as minimal as possible disjoint subsets S1, S2, . . . , Sm in S(cond), whose union covers
all non-revoked users, with m as small as possible. And then the center encrypts the
session key SK with the subset keys of those Sµ’s, respectively. Thesem encryptions
of SK together with information on Sµ’s form the header. This number m is usually
defined to be the transmission overhead.

Encryption In each session, the center finds disjoint subsets S1, S2, . . . , Sm in
S(cond), whose union covers all non-revoked users, and their corresponding subset
keys K1,K2, . . . ,Km. The center then encrypts the session key SK and a message
M with Kµ’s and SK, respectively, and broadcasts

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm(SK) ; ESK(M) 〉,

where infoµ is the information of on the subset Sµ and E is a symmetric encryption
algorithm like AES for example.

Decryption Receiving the encrypted message

〈 info1, info2, . . . , infom ; C1, C2, . . . , Cm ; M
′ 〉,

each non-revoked user u first finds the subset Sµ that he/she belongs and the corre-
sponding subset key Kµ. With this, u computes DKµ(Cµ) = SK and DSK(M

′) =M
in order.

2.2 Punctured Intervals

The main reason of introducing the notion of punctured intervals is to reduce the
number m of disjoint subsets S1, S2, . . . , Sm ∈ S(cond), whose union covers all non-
revoked users, as small as possible.

4

Let p ≥ 0 and c > 0 be integers. By a p-punctured c-interval we mean a subset
of c or less consecutive users starting from and ending at non-revoked users and
containing p or less revoked users. Let S(p ; c) be the set of all p-punctured c-intervals.
In each session, the p-punctured c-intervals are to be determined under the fol-

lowing rule :

• The first p-punctured c-interval starts from the leftmost non-revoked user, and
each of the following starts from the first non-revoked user after the last non-
revoked user of the previous.

• Each p-punctured c-interval contains the maximal possible number of users.

Fig.1 illustrates how to make p-punctured c-intervals with an example when
p = 1, c = 6 :

e e e e e e e e e e e e e e e e e e e e¡@ ¡@ ¡@ ¡@ ¡@

µ ´ µ ´ µ ́ª
Fig. 1. 1-punctured 6-intervals

The p-punctured c-interval starting from ui and ending at uj with ux1 , . . . , uxq

revoked users is denoted by Pi,j;x1,...,xq or Pi,j;X in short for X = {x1, . . . , xq}, where
1 ≤ j − i+ 1 ≤ c, 0 ≤ q ≤ p, and i < x1 < · · · < xq < j if there are revoked users.

2.3 Punctured Interval Scheme (p ; c)-π

In this subsection, we propose the punctured interval broadcast encryption scheme
(p ; c)-π (PI - Punctured Interval). We assign just one key to each p-punctured c-
interval, which can be easily derived by all non-revoked users in that interval, and
construct key chains using one-way permutations in order to reduce the storage size.

Key Generation Let ht : {0, 1}
` → {0, 1}` be one-way permutations for t =

0, 1, . . . , p, where ` is the key length. To assign one key to each p-punctured inter-
val, we randomly choose N keys K1,1, K2,2, . . . , KN,N to be given to u1, . . . , uN ,
respectively. From each Ki,i the center constructs the one-way key chains under the
following rule : For any possible p-punctured c-interval P starting from ui given,

• The one-way key chain consists only of the keys of all non-revoked users in P .
There are no keys of the revoked users in the chain.

• For any non-revoked user uk ∈ P , if the next user uk+1 ∈ P is also non-revoked,
then just apply h0 to the key of uk to obtain the key of uk+1.

• If the next t users are revoked and the user uk+t+1 ∈ P is non-revoked, then
apply ht to the key of uk to obtain the key of uk+t+1, where 1 ≤ t ≤ p.

5

e e e e e e e e e e e e e e e e e e e e¡@ ¡@ ¡@ ¡@ ¡@ ¡@ ¡@ ¡@ ¡@ ¡@

ª
h0

µ ´
h3

µ ´
h2

ª
h0

ª
h0

µ ´
h1

µ ´
h4

±°
h0

ª
h0

Fig. 2. The key chain of a 10-punctured 20-interval

The following example illustrates how to construct the key chain of a given punctured
interval (with p = 10, c = 20) :
In the key chain of P = Pi,j;x1,...,xq , the key of a non-revoked user uk ∈ P is denoted
by Ki,k;x1,...,xt , where i < x1 < · · · < xt < k < xt+1 < · · · < xq and 0 ≤ t ≤ q ≤ p.
For examples,

K5,11 = h6
0(K5,5) ; K5,11;7 = h3

0h1h0(K5,5) ; K4,11;5,6,7,9,10 = h2h3(K4,4) ;
K3,11;4,5,7,8 = h2

0h
2
2(K3,3) ; K3,11;4,5,6,7,9 = h0h1h4(K3,3) ;

The center assigns these keys to users so that the user uk receives Kk,k and all
possible Ki,k;x1,...,xt ’s, where i < x1 < x2 < · · · < xt < k with 0 ≤ t ≤ p and
2 ≤ k − i+ 1 ≤ c.

The following figure describes the key assignment in the scheme (3; 5)-π for u5 :

- - - - -

- -

- - -

- - - -

- -

- -

- - -

- -

no punctured

1-punctured

2-punctured

3-punctured

key chain for
assigned
to u5

P1,5

P1,5;4

P1,5;3

P1,5;2

P1,5;2,4

P1,5;3,4

P1,5;2,3

P1,5;2,3,4

K1,1 K1,2 K1,3 K1,4 K1,5

K1,5;4

K1,5;3K1,4;3

K1,5;2K1,4;2K1,3;2

K1,5;2,4

K1,5;3,4

K1,5;2,3K1,4;2,3

K1,5;2,3,4

h0 h0 h0 h0

h0

h0h0

h0

h1

h1

h1

h1

h2

h2

h3

Fig. 3. One-way key chains starting from K1,1, where c = 5

Encryption For each session, the center divides L into disjoint p-punctured c-
intervals P1, . . . , Pm ∈ S(p ;c), whose union covers all the non-revoked users, under
the rule described in Subsection 2.2. Let P = Pi,j;x1,...,xq be one of Pµ’s. The last key
Ki,j;x1,...,xq of the key chain corresponding to P is called the interval key of P . Let’s
denote the interval key of Pµ by Kµ for each µ = 1, 2 . . . ,m, just for convenience.

6

Then the center broadcasts :

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm(SK) ; ESK(M) 〉,

where infoµ is information on Pµ, the µ-th interval starting from uiµ and ending at
ujµ with qµ revoked users. For each µ, infoµ consists of iµ, `µ, `µ,1, . . . , `µ,qµ , where
`µ = jµ− iµ+1 and `µ,1, . . . , `µ,qµ are the distances from uiµ to the first, . . . , to the
last revoked users of Pµ, respectively. The starting position iµ can be represented
by logN bits and the `’s are at most log c bits. So the size of all info’s is m(logN +
p log c), which will be ignored when computing the transmission overhead because
it is negligible compared to the size of all EK(SK)’s.

Decryption Receiving the encrypted message, each non-revoked user uk first lo-
cates the punctured interval that he/she belongs using the info’s. Let the punctured
interval be Pi,j;x1,...,xq , where i ≤ k ≤ j, k 6= x1, . . . , xq. Then uk can find Ki,j;x1,...,xq

as follows:

• Find t for which xt < k < xt+1, where 0 ≤ t ≤ q. Here, t = 0 and t = q mean
that there is no revoked user before and after uk, respectively.

• Choose Ki,k;x1,...,xt from the assigned user keys.
• Starting from Ki,k;x1,...,xt , apply one-way permutation hi’s under the rule de-
scribed in Key Generation until the second subscript reaches to j.

• The resulting key is then Ki,j;x1,...,xq .

With this, uk decrypts EKi,j;x1,...,xq
(SK) and ESK(M) to obtain the session key

SK and the message M , respectively, in order.

2.4 Efficiency

We analyze efficiency - the transmission overhead, the computation cost and the
storage size - of the scheme (p ; c)-π.
The transmission overhead of the scheme (p ; c)-π is

TO(p ; c)(N, r) =

⌊

r

p+ 1

⌋

+

⌈

N − (p+ 2)br/(p+ 1)c

c

⌉

,

where N and r are the total number and revoked users, respectively.
In order to obtain this bound, we need the following theorem, which is proved

in Appendix A.1.

Theorem 1. Let N and r be as above. Then the number of disjoint 1-punctured
c-intervals in S(1 ; c), constructed under the rule described in Subsection 2.2, is at

most

TO(1 ; c)(N, r) = br/2c+

⌈

N − 3br/2c

c

⌉

.

In the scheme (2 ; c)-π, it can be easily shown by a similar argument that

TO(2 ; c)(N, r) = br/3c+

⌈

N − 4br/3c

c

⌉

,

7

and inductively, we can obtain the formula for TO(p ; c)(N, r) We ignore the size of
all info’s less than m(logN + p log c) (bits), which is negligible.
It is trivial that the computation cost is at most c− 1 computations of one-way

permutations, that is,
CC(p ; c) = c− 1,

which is independent of N and r. The storage size of each user is

SS(p ; c) =

p
∑

k=0

(

1

(k + 1)!

k+1
∏

i=1

(c− i)

)

+ 1,

which is also independent of N and r. The formula for SS(p ; c) will also be proved
in Appendix A.2.

2.5 Security

Note that even a non-revoked user cannot compute the interval keys of the other
punctured intervals. Those who do not belong to any punctured interval are the
revoked ones and they can never access to the session key. Neither those revoked
users who belong to punctured intervals can access to their interval keys because
they cannot invert the one-way permutations.
The only way to compute the interval key Ki,j;x1,...,xq of Pi,j;x1,...,xq is to obtain

one of the keys in the key chain explained in Subsection 2.3. However, no revoked
user is assigned a key in the key chain and hence they cannot compute the interval
key even though they all collude. Furthermore, the interval keys of previous sessions
when the user was not revoked do not help at all in the present session, in which
he/she is revoked, because the revocation of him/her results in a totally new key
chain.

3 Practical Variances

The scheme (p ; c)-π has smaller transmission overhead than the best known schemes
such as SD and LSD. But when the number r of the revoked users is smaller than
N
2c , our scheme is less efficient than SD. For practical purpose, this case should also
be considered. We introduce two variants of the (p ; c)-π scheme whose transmission
overhead is similar to that of SD if r is small, and to that of the (p ; c)-π scheme
otherwise.

3.1 Layered Punctured Interval Scheme

The scheme (p ; c)-π is less efficient than SD when r is small. This is mainly because
of long intervals consisting of non-revoked users which require several keys while
covering no revoked users at all. To deal with this case, we introduce another set of
user keys, each of which covers a long interval. To reduce the number of keys, we
restrict the starting points of long intervals to some special nodes (users) on the line
such that the distance between every neighboring nodes, called node-distance is c.
This process can be repeated by d − 1 more times taking special nodes with node
distances are c2, c3, . . . , cd−1 or cd, respectively, for a positive integer d. We call this
scheme by d-layered p-punctured c-interval scheme or the (p ; c)-πd scheme.

8

Layered Structure As in the (p ; c) − π scheme, the set of all N users are ar-
ranged on a long line L. Given a positive integer d (< logc N − 1), we consider
d layers above the line L. The first layer L1 consists of N1 = dNc e − 1 users

u1, uc+1, . . . , u(N1−1)c+1. Inductively, the t-th layer Lt consists of Nt = d
Nt−1

c e − 1
users u1, uct+1, . . . , u(Nt−1)ct+1 for 1 < t ≤ d. We define layered intervals of length
ct in the layer Lt by

LP
(t)
i = {uk|(i− 1)c

t + 1 ≤ k ≤ ict}. (1)

Key Assignment First, the center assigns a random key LK
(t)
i to LP

(t)
i for each i

and gives it to all members of LP
(t)
i . Next, it constructs a one-way key chain starting

from LK
(t)
i . Let g1, . . . , gd : {0, 1}

` → {0, 1}` be one-way permutations and h = h0

in (p ; c)-π. Given k with ict ≤ k ≤ (i+ c− 1)ct, LK
(t)
i,k is defined by

LK
(t)
i,k = he0 ◦ ge11 ◦ · · · ◦ gett (LK

(t)
i) (2)

where k − ict = etc
t + et−1c

t−1 + · · ·+ e1t+ e0 (0 ≤ ei < c) is a c-ary expansion of
k − ict.
Let us consider the layered keys for the user uk in the t-th layer. Assume k =

etc
t + · · ·+ e1c+ e0 for 0 ≤ e0, e1, . . . , et−1 < c and et ≥ 0. Then the center takes j

with et + 1− (c− 1) ≤ j ≤ et + 1 and gives to the user uk all the user keys LKj;kτ

where k0 = e0 and kτ = b(
k
cτ + 1)cc

τ for 1 ≤ τ ≤ t.
The center assigns these keys to the user uk along with the interval keys for the

scheme (p; c)− π. Hence the total number of keys for each user is

SS(p ; c) +

d
∑

t=1

{(c− 1)(t+ 1) + 1} ≤ SS(p ; c) +
cd(d+ 3)

2
.

Encryption/Decryption If there is no layered interval consisting of all non-
revoked users, the center encrypts the session key just as in the scheme (p ; c)-π.
Otherwise, we can save the transmission overhead by using layered keys. First the
center marks all the layered intervals at each layer which has at least one revoked

user as revoked intervals. Next, it finds the leftmost non-revoked interval, say LP
(d)
i ,

in the d-th layer. Then the session key is encrypted by LK
(d)
i,k , where uk+1 is the first

revoked user after uicd with k ≤ (i+ c)cd. The center then marks all the users from
u(i−1)ct+1 to uk and the layered intervals containing at least one of them revoked.
This process is repeated for the next non-revoked interval. If there is no non-revoked
interval in the d-th layer, go to (d− 1)-st layer and repeat the same procedure and
so on. Finally, if all layered intervals at each layer are revoked, then the scheme
(p ; c)-π is applied for the remaining non-revoked users.
Note that each non-revoked user uk can decrypt the session key by an interval

key of (p ; c)-π or a layered key. In order to obtain the key (to decrypt the session
key) it costs at most c − 1 and t(c − 1) computations of one-way permutations,
respectively. Hence the computation cost is at most d(c − 1) computations of one-
way permutations.

9

Transmission Overhead First we estimate the transmission overhead for (p ; c)-
π1. If there is no revoked user, then d

N
c2
e layered intervals cover entire straight line

L. By inserting one revoked user to an interval, the interval is divided to at most 3
intervals including punctured or long intervals. So the transmission overhead is at
most dN

c2
e+2r. Trivially, the transmission overhead of this scheme cannot be larger

than that of punctured interval scheme. So we can conclude that the transmission

overhead is at most Min{dN
c2
e+ 2r , d r2e+

⌈

N−d3r/2e
c

⌉

}.

Theorem 2. The (p ; c)-π1 scheme with r revoked users among N=cd+1 users has

Min{dN
c2
e+ 2r , d r2e+

⌈

N−d3r/2e
c

⌉

} transmission overhead.

The transmission overhead of (p ; c)-πd for d ≥ 2 can be similarly estimated. That
is, for small r, the graph is a dashed line with a steeper slope starting at (0, dN

c2
e)

3.2 Tree based Punctured Circle Scheme (TPC scheme)

We can easily modify a linear structure to a circular structure by bending and gluing
two ends of a line. If we glue two ends of a p-punctured c-interval, we can make a p-
punctured c-circle. So from our (p; c)-π scheme, we can obtain a p-punctured c-circle
scheme in which the user index is defined modulo c with the set of representatives
{1, 2, . . . , c}. For example, in the 0-punctured c-circle scheme the one-way key chain
starting from ui is

Ki,i,Ki,(i+1 mod c) = h(Ki,i), . . . ,Ki,(i+c−1 mod c) = hc−1(Ki,i).

In a p-punctured c-circle, we define an interval and an interval key to be those of a
p-punctured c-interval by fixing a starting node. We assume than the each circle has
one special node. The starting node is the special node if there is no revoked user in
the circle, or the next node of the first revoked node otherwise. The key assignment,
encryption and decryption are similar to those of the (p ; c)-π scheme.
This variant itself has no remarkable advantage over the scheme (p ; c)-π. But

if we combine this idea with tree structure then we can reduce the transmission
overhead further. Let us consider a complete c-ary tree of depth d+ 1 such that all
children of each internal node at each level form a circle with c points at the next
level. The root node is considered in level zero. Each user is assigned to one leaf
node of the tree. The node keys are assigned to the nodes in a circle in level t by
the 0-punctured c-circle scheme if 1 ≤ t < d, and by the p-punctured c-circle scheme
if t = d. And each user is given all the keys assigned to its ancestor nodes. So, the
storage size of each user equals to SS(p;c) + c(d− 1).
In this model, each node with at least one revoked descendant is considered to

be revoked. For encryption, the center first marks all the revoked nodes at each
level. Then it locates intervals of consecutive non-revoked nodes in each circle and
encrypts the session key by the interval keys. This process is done from level 1
to level d − 1. The nodes whose ancestor belong to those intervals are regarded as
revoked, because all descendants of such nodes can obtain the session key from those
interval keys. Finally, in the d-th level, we use the (p; c)-π scheme for each circle. So,
every privileged user can obtain the session key with at most c− 2 computations of
one-way permutations.

10

…
Fig. 4. Structure of tree based circles

With this variation, we lose an advantage of the (p ; c)-π scheme that user addi-
tion is easy even after the system launches. However, (p ; c)-TPC scheme has slightly
better performance than the (p ; c)-πd scheme when r is small. Especially, the com-
putation cost is c− 2 computations of one-way permutations which is much smaller
than that of the (p ; c)-πd scheme. The transmission overhead appears to be a piece-
wise linear function of r such that f(0) = 1, f(ct/2) = 1

2c
t(d − 1) for 0 ≤ t ≤ d− 1

and f(r) = r/2 + 3N
4c when r ≥ cd−1

2 . The detailed complexity is given below. The
proof can be found in Appendix A.3.

Theorem 3. The (p ; c)-TPC scheme with r revoked users among N=cd users has

the following transmission overhead:

TO =

dr if r ≤ c/2
...

...

(d− t)r +
ct

2
if ct/2 < r ≤ ct+1/4 for 1 ≤ t ≤ d− 2

(d− t)r +
ct

2
−

⌈

r − ct+1/4

c/2

⌉

if ct+1/4 < r ≤ ct+1/2 for 1 ≤ t ≤ d− 2

...
...

r

p+ 1
+
2p+ 1

2p+ 2
cd−1 if cd−1/2 < r

4 Discussion

4.1 Comparison

We present a comparison of our proposed schemes with the best known schemes.
Table 4.1 shows the complexity of the storage sizes, the transmission overhead
and the computation costs of our schemes, SD and LSD when N = 108 and r

11

is 0.1, 0.5, 1, 5, 10 and 20% of N . In the table, we assume that every user key is 128
bits.

Table 1. Examples when N = 108

Scheme Storage TO (Mbits) CC

r revoked (KBytes) 0.1% 0.5% 1% 5% 10% 20%

(0; 100)− π 1.60 141 191 253 755 1380 2640 100

(1; 100)− π 79.2 134 159 190 438 749 1370 100

(0; 100)− π1 4.80 26.9 129 253 755 1380 2640 198

(1; 100)− π1 82.4 26.9 129 190 438 749 1370 198

(0; 100)-TPC 6.40 26.2 128 192 704 1340 2624 99

(1; 100)-TPC 84.0 26.2 128 160 416 736 1380 99

SD 11.7 25.6 128 256 1280 2560 5120 27

LSD 2.24 51.2 256 512 2560 5120 10240 27

Figure 5 shows the comparison of the worst-case transmission overheads by
graphs when the revocation rate ranges from 0% to 3%. Among the graphs, the
dotted line represents the transmission overhead of the scheme (1 ; 100)-π1. The
dotted graph is very close to that of SD for small r. It has steeper slope than the
graph of (1; 100)-π, but a lower y-intercept at dNc e. As we mentioned above, the
layered π scheme improves the transmission overhead when the revocation rate is
small. For large r, it has the same transmission overhead as that of the scheme
(p ; c)-π.
Figure 6 is the comparison of the average-case transmission overhead. This com-

parison is done by computer simulation by randomly choosing revoked users. Note
that the average-case transmission overhead is 1.25 r for SD, r for the (0, c)−π and
asymptotically 0.5r for (1 ; c) − π and (1 ; c) − π1. Generally, it approaches to r/p
for (p ; c)-π.

- r

N
× 100%

6
TO

-

-1·106

-

-2·106

-

-3·106

-

-4·106

-

-

-

5·106

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡

SD(2r)

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
LSD(4r)

©©
©©

©©
©©

©©
©©
©

(0; 100)-π

»»»
»»»

»»»
»»»

»
(1; 100)-π

(1; 100)-TPC

(1; 100)-π1

»»»
»»»

»»»
»»

(((((
(((((

(((
(1; 1000)-π

»»»
»»»

»»»
»»»

»

(2; 1000)-π

Fig. 5. TO for N = 1 · 108 in the worst case

- r

N
× 100%

6
TO

-

-1·106

-

-2·106

-

-3·106

-

-4·106

-

-

-

5·106

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

""
""
""
""
""
""
""

SD 1.25r

»»»»³³
³³³³

³³³
³!!

!!
!!

(0; 100)-π

b b b b b
b b

b b

((((((((
((((((

(1; 100)-π

p r r r r r r r
r

""
©©!!

³³»»»
ÃÃÃÃÃ

ÃÃÃÃ

♦ (1; 100)-π1

♦
♦
♦
♦
♦

♦
♦

♦
♦

»»»»»»
ÃÃÃÃÃ

ÃÃÃÃÃ
ÃÃÃÃ

4 (1; 100)-TPC
4 4 4 4 4

4
4

4
4

Fig. 6. TO for N = 1 · 108 in average case

12

4.2 Practical Considerations

User Addition Our broadcast schemes (p ; c)-π and (p ; c)-πd have a great ad-
vantage for user additions. In SD or LSD, once the system has launched, no user
can be added without updating the user keys. Thus, all potential users should be
considered when the system is designed, because the system can be out of service
if more users than the preset number are joined. On the other hand, our scheme
π allows any number of user additions without changing the keys of the previous
users. To add one new user to the system, the center places him/her at the end of
the line, computes the corresponding keys and sends them to the user. This process
requires neither interaction nor key update of other users. Note that the (p; c)-TPC
scheme does not have this property.

User Replacement User replacement is a more complicated problem than user
addition. User replacement is to remove a permanently revoked user, and add a new
user at that position. In general, user replacement is not possible without user key
update, which is not allowed for many systems. But when it is allowed, the (p ; c)-π
scheme can perform the replacement with small overhead : One replacement requires
key update of at most 2c− 1 users. For the (p ; c)-π1 scheme, it becomes 2c

2− 1. In
the (p; c)-TPC, all users must update at least one user key as in SD and LSD.

Flexibility On the contrary of the tree-based schemes, our scheme possesses lots
of flexibility of system performance. By varying the system parameter, one can
achieve very small transmission overhead or very small storage size. If the storage
size and the computation cost are restricted as in smart cards, we may use the
(0; c) − π scheme with small c which requires for each user to store only c keys.
The computation costs are at most c−1 computation of one-way permutations. For
example, if we take c = 20, it requires only 20 keys for each user and at average
9.5 computation of one-way permutations for each session while the transmission
overhead is r + dN−r

20 e. In [8] log k restriction was introduced for the storage size.
Our scheme is bits in as good as any other schemes to this restriction. On the other
hand, if the user device allows large storage like set-top boxes, PC’s and CD or DVD
players, and the transmission is expensive, then one can use (p ; c)-πd scheme for
large c, in which the transmission overhead approaches rapidly to r/p.

Traitor Tracing Given a pirate decoder, a traitor tracing mechanism is a method
to find at least one of the colluders who participated in the construction of the pirate
decoder, called traitors. We assume that we obtain a pirate decoder consisting of
(a part of) the user keys of traitors and the pirate decoder correctly decodes with
probability greater than the threshold, say 0.5. Then our scheme admits ‘black box’
tracing by the same tracing algorithm using the subset tracing procedure as in the
SD scheme. Moreover in our scheme, we can divide each c-interval into two almost
equal sized subsets. One is a subset containing from the first user to the dc/2e-th
user and the other is the rest. So the bifurcation value of our scheme is 1/2 which
is better than that of SD. The number of iterations is also smaller than that of SD.
Thus the traitor tracing in our scheme is slightly more efficient than that in SD. For
more details, see [13].

13

5 Conclusion

In this paper, we proposed a broadcast encryption scheme based on the idea ‘one key
for p-punctured c-interval’. Our scheme has about 1/3 transmission overhead than
SD when p = 1. For the case of small revoked users, we proposed two variants of
our scheme: one is based on layer structure and the other is based on tree structure.
Both have about the same complexity as SD for small r.
Moreover, our scheme has some additional properties. First, the user addition is

free without any key update of the previous users. Second, we have many flexibility
on the system efficiency. The system can be optimized to have best efficiency for
any of the three parameters of broadcast encryption the transmission overhead, the
computation cost and the storage size.
The (p ; c)-π scheme has asymptotically r/p transmission overhead. It would be

interesting to design a broadcast encryption scheme with rε transmission overhead
for ε < 1, if not log r.

References

1. J. Anzai, N. Matsuzaki and T. Matsumoto, A quick key distribution scheme with “Entity Re-
vocation”, Advances in Cryptology - Asiacrypt’99, Lecture Notes in Computer Science 1716,
pp.333-347.

2. S. Berkovits, How to Broadcast a secret, Advances in Cryptology - Eurocrypt’91, Lecture Notes
in Computer Science 547, pp.536-541.

3. D. Boneh and A. Silverberg, Applications of Multilinear Forms to Cryptography, Contemporary
Mathematics 324, American Mathematical Society, pp.71-90.

4. B. Chor, A. Fiat and M. Noar, Tracing Traitors, Advances in Cryptology CRYPTO’94, Lecture
Notes in Computer Science 839, pp. 257-270.

5. G. Chick and S. Tavares, Flexible access control with master keys, Advances in Cryptology -
Crypto’89, Lecture Notes in Computer Science, pp.316-322.

6. P. D’Aroco and D.R. Stinson, Fault Tolerant and Distributed Broadcast Encrytion, CT - RSA’03,
Lecture Notes in Computer Science 2612, pp.263-280.

7. A. Fiat and M. Naor, Broadcast Encryption, Advances in Cryptology - Crypto’93, Lecture Notes
in Computer Science 773, pp.480-491.

8. M.T. Goodrich, J.Z. Sun and R. Tamassia, Efficient Tree-Based Revocation in Groups of Low-
State Devices, Advances in Cryptology - Crypto’04, Lecture Notes in Computer Science 3152,
pp.511-527.

9. J. Garay, J. Staddon and A. Wool, Long-Lived Broadcast Encryption, Advances in Cryptology -
Crypto’00, Lecture Notes in Computer Science 1880, pp.333-352.

10. E. Gafni, J.staddon and Y.L. Yin, Efficient Methods for Integrating Traceability and Broadcast
Encryption, Advances in Cryptology - CRYPTO’99, Lecture Notes in Computer Science 1666,
pp.372-387.

11. D. Halevi and A. Shamir, The LSD Broadcast Encryption Scheme, Advances in Crytology -
Crypto’02, Lecture Notes in Computer Science 2442, pp.47-60.

12. R. Kumar, S. Rajagopalan and A. Sahai, Coding Constructions for blacklisting problems without
Computational Assumptions, Advances in Cryptology - Crypto’99, Lecture Notes in Computer
Science 1666, pp.609-623.

13. D. Naor, M. Naor and J. Lotspiech, Revocation and Tracing Schemes for Stateless Receivers,
Advances in Cryptology - Crypto’01, Lecture Notes in Computer Science 2139, pp.41-62.

14. M. Naor and B. Pinkas, Efficient Trace and Revoke Schemes, Financial Cryptography’00, Lec-
ture Notes in Computer Science.

15. C.K. Wong, M. Gouda and S.S. Lam, Secure Group Communication using Key Graphs, ACM
SIGGCOM’98 ACM.

16. M. Luby and J. Staddon, Combinatorial Bounds for Broadcast Encryption, Advances in Cryp-
tology - Eurocrypt’98, Lecture Notes in Computer Science 1403, pp.512-526.

14

Appendix

A.1 Transmission Overhead of (p ; c)-π

We regard N users on the line L as a string in {0, 1}N , where revoked and
non-revoked users are represented by 0’s and 1’s, respectively. Let

– S : the set of all strings of 0’s and 1’s of length N
– T1||T2 : the concatenation of strings T1 and T2

– |S| : the length of a string S
– |S|i : the number of i’s in a string S, where i ∈ {0, 1}

Let A(1;c) be the following algorithm :

– Input : S ∈ S

– Output : A(1;c)(S) = {S1, S2, . . . , Sm}, where Sµ’s are 1-punctured c-intervals (in
S(1;c)) determined under the rule described in Subsection 2.2 such that

S = O0||S1||O1||S2||O2|| · · · ||Sm||Om

for suitable Oµ’s, strings of 0’s of length ≥ 0.

Definition 1. Given S, S ′ ∈ S, we define S ≤(1;c) S ′ if |A(1;c)(S)| ≤ |A(1;c)(S
′)|,

and S ≡(1;c) S ′ if S ≤(1;c) S ′ and S ′ ≤(1;c) S .

Definition 2. Given a string S ∈ S, O||A||I is called a reduced form of S if

(1) S ≤(1;c) O||A||I
(2) |S| = |O|+ |A|+ |I| and |S|1 = |A|1 + |I|
where A is a string of ‘100’ possibly with ‘10’ at the end, O is a string of 0’s and I
is a string of 1’s.

We now introduce an algorithm that find a reduced form for any string S ∈ S.
Let S ∈ S, A(1;c)(S) = {S1, S2, . . . , Sm} and S = O0||S1||O1||S2||O2|| · · · ||Sm||Om.
Note that every Sµ ∈ A(1;c)(S) contains at most one 0 in its interior between 1’s.
Suppose |Oµ| = n ≥ 3 for some 1 ≤ µ < m. Then

O0|| · · · ||Sµ||0
n||Sµ+1|| · · · ||Om ≡(1;c) 0

n−2||O0|| · · · ||Sµ||Sµ+1|| · · · ||Om.

Similarly,
O0||S1|| · · · ||Sm||Om ≡(1;c) Om||O0||S1|| · · · ||Sm.

The numbers of 0’s and 1’s in both sides are the same, respectively, for both formulas
above. So we may assume that Om is an empty string and |Oµ| ≤ 2 for each 1 ≤
µ < m while O = O0 absorbs all those exceeding 0’s. We now let S

′
µ = Sµ||Oµ for

1 ≤ µ ≤ m.

Reduction Algorithm

– Input : S ∈ S

– Output : O||A||I

15

1. m = |A(1;c)(S)|

2. T = A = I : empty strings

3. While m > 0

while |T |0 < 2 and m > 0
T = S ′m||T
m = m− 1

reduction 1 (if |T |0 = 2)

while T = 1i01j01k or T = 1i001j

A′ = 100
T = 1i+j+k−1 or T = 1i+j−1, resp.

reduction 2 (if |T |0 = 3)

while T = 1i01j01k01l or T = 1i001j01k or 1i01j001k

A′ = 100
T = 1i01j+k+l−1 or T = 1i+j−101k or 1i01j+k−1, resp.

reduction 3 (if |T |0 = 4)

while T = 1i01j001k01l

A′ = 100100
T = 1i+j+k+l−2

A = A||A′

4. While |T |0 = 1 (i.e., T = 1
i01j)

A = A||10
T = 1i+j−1

5. Output O||A||I, where I = T

Lemma 1. The output string O||A||I of the reduction algorithm is a reduced form

of the input string S.

Proof. Observe that the string O is the collection of all 0’s that have no influence
on the number of 1-punctured c-intervals of S. Each string ‘100’ in A corresponds
to a 1-punctured c-interval of the form ‘10’. The value d(|I| + ε)/ce is the number
of 1-punctured c-intervals in I or in 10||I when ε = 0 or 2, respectively. Here, ε = 0
or 2 if A ends with ‘100’ or ‘10’, respectively. So the total number of 1-punctured
c-intervals is

|A(1;c)(O||A||I)| =
|A| − ε

3
+

⌈

|I|+ ε)

c

⌉

.

This number is obviously bigger than or equals to |A(1;c)(S)| because in each
reduction step in the reduction algorithm the number of 1-punctured c-intervals is
non-decreasing. Furthermore, the numbers of 0’s and 1’s in S and in O||A||I are
kept same, respectively. This prove that the output O||A||I is a reduced form of the
input S. ut

Proof of Theorem 1 By the reduction algorithm and the lemma above, it is
obvious that the number of 1-punctured c-intervals is maximal when O is an empty

16

string, that is, S is of the form A||I. The number of 0’s in S is r and all are contained
in A. Since each string ‘100’ determines a 1-punctured c-interval of the form ‘10’,
every two 0’s corresponds to one 1-punctured c-interval. There may be one more
0 from the string ‘10’ at the end of A. So, the number of 1-punctured c-intervals
corresponding to ‘100’s in A is br/2c. Now the remaining string on the right is either
I or 10||I, whose length is exactly N − 3br/2c. Since this string contains at most
one 0, it contains exactly d(N − 3br/2c)/ce 1-punctured c-intervals. This proves the
theorem.

A.2 Storage Size of (p ; c)-π

We count the number of keys of the form Ki,k;X for the user uk. Let νs denote
the number of keys of the form Ki,k;X with |X| = s.

– ν0 = c

– ν1

the number of new keys in the chain of length c : c− 2
the number of new keys in the chain of length c− 1 : c− 3
. . . . So,

ν1 = (c− 2) + (c− 3) + · · ·+ 1 =
(c− 1)(c− 2)

2
=

(

c− 1

2

)

.

– ν2

the number of new keys in the chain of length c :
(

c−2
2

)

the number of new keys in the chain of length c− 1 :
(

c−3
2

)

. . . . So,

ν2 =

(

c− 2

2

)

+

(

c− 3

2

)

+ · · ·+

(

2

2

)

=
(c− 1)(c− 2)(c− 3)

6
=

(

c− 1

3

)

.

– In general,

νp =

(

c− 2

p

)

+

(

c− 3

p

)

+ · · ·+

(

p

p

)

=
1

(p+ 1)!

p+1
∏

t=1

(c− t) =

(

c− 1

p+ 1

)

.

Therefore the storage size of the scheme (p ; c)-π is

SS(p ; c) =

p
∑

k=0

νk =

p
∑

k=0

(

1

(k + 1)!

k+1
∏

i=1

(c− i)

)

+ 1 =

p+1
∑

k=0

(

c− 1

k

)

.

A.3 Transmission Overhead in (p ; c)-πd

Consider the followings:

1. Assume that up to t-th layer are used.
2. If r = 0, then the transmission overhead equals to N/ct.

17

3. Revoking one user the number of intervals is increased by at most t + 1, where
r ≤ cd−t+1/2.

4. So TO ≤ N/ct + (t+ 1)r = cd−t+1 + (t+ 1)r.

This is a rough bound with restricted range of r. We can conclude that the
transmission overhead of (p ; c)-πd for specific r is less than or equal to the minimum
value of such bounds for r.

A.4 Transmission Overhead in TPC

Proof of Theorem 3. If there is no revoked user, then with one subset the center
can send session key to all users. If r = 1, then there is one revoked node in each
level(total d subset is required). When another user is revoked, the worst case is
that two revoked users have no common ancestor and the ancestors in the first level
are not neighbor of each. In this case total 2d subsets are required. In this manner,
we obtain the first formula for 1 ≤ r ≤ c/2.
We can obtain the second and the third formulas using induction on t. Assume

that they hold for t < τ . So, r = cτ/2 implies that

TO ≤ (d− τ + 1)r +
cτ−1

2
− d

r − cτ/4

c/2
e = (d− τ + 1)

cτ

2
.

When cτ/2 < r ≤ cτ+1/4, the worst case is when all circle in the τ -th level contains
c/2 revoked nodes and c/2 non-revoked users alternatively (this circle is called a
saturated circle), and new revoked user is inserted to the (τ+1)-st level. The revoked
user is inserted to the τ -th level means that when one revoked user is inserted in a
tree, the highest ancestor of the revoked which is changed to revoked node is in the
τ -th level. For each inserted revoked user, d− τ more subsets are needed. So,

(d− τ + 1)
cτ

2
+ (d− τ)(r −

cτ

2
) = (d− τ)r +

cτ

2

and r = cτ+1/4 implies that

TO ≤ (d− τ)r +
cτ

2
= (d− τ)

cτ+1

4
+

cτ

2
.

When cτ+1/4 < r ≤ cτ+1/2, the worst case is as follows: The first additional
revoked user is inserted to the τ -th level so that there is only one circle in the
(τ + 1)-st level which contains revoked node but not saturated. Next (c/2) − 1
revoked users are inserted to the (τ +1)-st level to make the above circle saturated.
As a result of inserting, all nodes of the τ -th level are revoked and all circles of the
(τ + 1)-st level are saturated. So,

TO ≤ (d− τ)
cτ+1

4
+

cτ

2
+ (d− τ)(r −

cτ+1

4
)− d

r − (cτ+1)/4

c/2
e

= (d− τ)r +
cτ

2
− d

r − (cτ+1)/4

c/2
e.

18

Since the d-th level uses p-punctured scheme, the formula is different from the
above levels. In the d-th level, for p+1 revoked users, one subset is needed. Therefore,

TO ≤ cd−1 +
1

p+ 1
(r −

cd−1

2
) =

r

p+ 1
+
2p+ 1

2p+ 2
cd−1

