Improving the Similarity Search of Tandem Mass Spectra using Metric Access Methods

Jiří Novák, Tomáš Skopal, David Hoksza and Jakub Lokoč
Program of Presentation

- Introduction

- Tandem Mass Spectrometry (MS/MS)
 - basic principles
 - existing methods for interpretation of the mass spectra
 - common problems of interpretation

- Similarity Search Approaches
 - angle distance (cosine similarity)
 - parametrised Hausdorff distance
 - TriGen

- Experiments

- Conclusions and Future Work
Introduction

- **biological motivation**
 - all organisms – DNA – proteins

- **proteins**
 - cells function and structure
 - basic blocks – amino acids
 - linear sequence of amino acids
 (“linear sequence over 20-letter subset of the English alphabet”)

- **peptides**
 - short sequences
Tandem Mass Spectrometry (MS/MS)

- Method for unknown protein sequences identification
 - Proteins are split into peptides (one spectrum for each peptide is captured)
 - Peptides are split into fragments
 - Mass to charge ratio (x axis); intensity of occurrence (y axis)
 - y-ions (“from the right”); b-ions (“from the left”)

```
MGLSDGEWQLVLNVWGKVEADIPGHGQEVILIRLFKGHPETLE
KFDKFKHKLKSEDEMKASEDLK...
```
Interpretation of Spectra

- main idea: different amino acids ~ different masses

- graph approach “de novo”
 - direct spectra interpretation using graph algorithms
 - many paths in graph represent many peptide sequences corresponding to an experimental spectrum; quality of identification is about 30%

- database approach
 - search database of already known protein sequences
 - theoretical spectra are generated from stored sequences and compared with experimental spectra
Typical Problems of Interpretation

- noise
 - up to 80% of peaks
 - peaks of fragment ions with unpredictable chemical structure

- single amino acids (or groups) with similar masses can be mistaken

- some peaks important for identification (y or b-ions) are missing
 - fragment ions do not arise

- modifications of amino acids
 - amino acids masses are changed
cosine similarity approaches are commonly mentioned in literature
high-dimensional boolean vectors; compact representation \(<7, 13, 18, 23, 27, 34> \)
bad indexability

- precursor mass
 - mass of a peptide before splitting (known as an additional information)
- precursor mass filter
 - spectra are indexed by their precursor mass
- \(d'_A = d_A + \) precursor mass filter
 - indexable very well
 - it supports only spectra without chemical modifications
Parametrised Hausdorff Distance (d_{HP})

- for each number in the compact representation, the number with minimum difference in the other vector is found
- the average of n^{th} roots from the set of minima is computed
- d_{HP} can be also combined with precursor mass filter (for the spectra without chemical modifications)
Parametrised Hausdorff Distance (d_{HP})

- increasing n in n^{th} root function
 - the impact of noise peaks is lower (i.e., the similarity between the spectra is modeled better)
 - the distance is semimetric ($n \geq 2$)
 - the indexability is worse

![Graph showing the impact of root index on correctness and distance frequency.](image-url)
controls the metricity (T-error) of the function v
- the ratio of triplets, which do NOT satisfy the triangle inequality

T-modifier
- either concave or convex increasing function
- e.g., Fractional-Power (FP) or Rational-Bézier-Quadratic (RBQ) modifier
- concave function ($w > 0$)
 - increases the number of triplets
 - indexability is worse
 - exact search, but slower
- convex function ($w < 0$)
 - decreases the number of triplets
 - indexability is better
 - approximate search, but faster

M-tree, Pivot Table

\[
FP(v, w) = \begin{cases}
 v^{\frac{1}{1+w}} & \text{for } w > 0 \\
 v^{1-w} & \text{for } w \leq 0
\end{cases}
\]
Indexability of d_{HP} and d_{A}

- d_{HP} – the indexability is better with increasing T-error tolerance
- d_{A} – about 35% of all pairwise distances in $d_{A}=1$ (uncorrectable)
- d'_{HP} and d'_{A} – indexable very well
Average Query Time

- d_{HP} — 1.6x faster than sequential scan
- d_A — 2.5x slower
- d'_{HP} and d'_{A} — 32.9x faster and 19.8x faster
Correctness of Identification - kNN Queries

- Correct peptide sequences are cumulated among a few nearest neighbors
- 1-NN taken from the 100NN result is more likely to be correct than when taking 1-NN from 10NN result
- e.g., at T-error tol. 0.06, correctness 75%, speed-up 1.7x, DC ratio 9.7%
- 1.4x higher for d_{HP} than d_A
- d'_{HP} 85.7% and d'_{A} 89.6%
- the Pivot table is faster than M-tree as long as all its blocks are stored in main memory, otherwise it becomes inefficient (moreover, it is outperformed by sequential scan)
- distance computations are misleading for Pivot tables
Conclusions

- **parametrised Hausdorff distance** (d_{HP})
 - models the similarity among spectra very well
 - can be utilized by MAMs when TriGen algorithm is employed
 - if the T-error is higher, then indexability is much better, the search is faster and correctness of interpretation is a little lower

- **angle distance** (d_A)
 - we verified that it has limitations for utilization by MAMs

- **d'_{HP} or d'_{A}** (in combination with the precursor mass filter)
 - indexable very well
 - an extension for mass spectra with chemical modifications may be very hard
Future Work

- dealing with modifications in the mass spectra - precursor mass of modified peptides can differ by more than a few tens to hundreds Daltons (e.g., M+16)

- PM-tree, ...

- d_{HP} seems to be suitable for particular kinds of modifications without an improvement

- NM+16INTFVPSGK
- IYFM+16AGSSK
- NSLESYAFNM+16K

- 30% correctness (1 NN)
- 50% (10NN)
- 84% (5000NN)

- d'_{HP} and d'_{A} ??

- ~ 60,000 peptides at 1,500 Da
- interval of precursor mass would be extended ~ 60,000 x 16
Mass spectrometry (18.2 %)