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Abstract—Kalman Filter is used in system estimation 

applications today like state estimation, load flow analysis, 

harmonic estimation, digital signal processing, sensor 

integration, Navigational Systems, etc. In using a Kalman Filter 

the user has to give the parameters relating the estimates of 

process and measurement noise along with system state 

modeling. The values of process and measurement noise 

covariance are usually not available beforehand and have to be 

estimated, usually by hit or trial method. This involves heavy 

computation, as two variables have to be estimated for optimal 

filtering independently. For multi-state systems this value 

further increases the computation time. This paper presents the 

application of Kalman Filter to a simple one state problem. This 

paper, through using simulations, finds relationships between 

the two different parameters Q (Process Noise Covariance) and 

R (Measurement Noise Covariance). This results in reduction of 

computation time. The proposed scheme’s low complexity and 

robustness makes it practical for real implementations. 

 
Index Terms—Estimator, kalman error analysis, kalman 

filter, kalman optimization, measurement noise covariance, 

state estimation, process noise covariance.  

 

I. INTRODUCTION 

Kalman Filter is a digital filter used to filter noise on a 

series of measurements observed over a time interval. 

Kalman Filter named after Rudolf E. Kálmán who published 

a paper “A new approach to linear filtering and prediction 

problems”[1] in 1960, recent advancements have been made 

and various other filters such as Extended Kalman Filter 

(EKF) and Unscented Kalman Filter (UKF) have been 

derived from it. It is an algorithm used to solve the linear 

quadratic Gaussian (LQG) estimation problem. It operates 

recursively on the data stream of a dynamic system to give an 

optimum estimate of the current system state. It has numerous 

applications in various fields like Power System state 

estimation [2], [3], Aircraft Guidance and navigational 

control systems. The Kalman filter algorithm is based on two 

steps; first the prediction step in which the current estimate of 

state variables, with random noise included is given. The 

prediction step only involves the data measurement before 

the time at which system state is to be calculated. These 

estimates are used along with the measurement, with random 

Gaussian noise, to give the correct state of the system. The 

algorithm works by using a weighted average model on the 

predicted value and the current value. The more certain 
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measurement is given more weight. The filter works in the 

discrete time domain. Implementations are available for 

continuous time version, called Kalman-Bucy filter. 

Extended Kalman Filter (EKF) can be used for Extended 

Kalman Filter. Another variant, the Unscented Kalman Filter 

(UKF) [4] is used when state transition and observation 

models are highly non-linear i.e. cases in which EKF gives 

poor performance. Also Kalman filter has been proved to 

give excellent results in the sensor data fusion [5] and there 

have been various algorithms for it using Kalman Filter and 

Fuzzy logic specially. Kalman filter in sensor data fusion 

treats one sensor data as measurement and other as prediction. 

It has been very frequently used to integrate GPS (Global 

Positioning System) and IMU (Inertial Measurement Unit; 

Gyroscope, Accelerometer, Magnetometer) [6] systems 

employed in various vehicles both Airborne and terrestrial 

automated vehicles. Kalman filter has also been successfully 

implemented in the coal flow problem [7] in Thermal Power 

plant to optimize the coal input for given power production. 

However the modeling of the problem is difficult in practical 

implementation especially but Kalman filter is known to give 

very satisfactory and reliable results in various practical 

problems of Electrical and Electronics engineering. 

 

II. NOMENCLATURE 

 xk System State Matrix  
 wk Process Noise 
 zk Measurement Result Matrix 
 vk Measurement Noise 

 k State Transition Matrix 
 Pk State Error Covariance Matrix 
 Hk Measurement transition Matrix 
 Kk Kalman Gain 
 Q  Process Noise Covariance 
 R  Measurement Noise Covariance 
 E  Expectation Operator 

 

III. SYSTEM MODEL 

System modeled in this paper is a single state system. For 

the sake of simplicity we have only focused on Kalman 

Filter’s performance and computation, so we have assumed 

state transition matrix and measurement state matrix to be 

unity. The process noise added is White Gaussian noise with 

signal to noise ratio equal to -15. Similarly, the measurement 

noise is also White Gaussian noise with signal to noise ratio 

equal to -15. Now system equation equations can be given as 
 

1k k kX x W                                       (1) 
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k k kZ x V                                  (2) 

 

 
Fig. 1. Block diagram 

 

IV. KALMAN FILTER MATHEMATICAL FORMULATION 

A. Equations [8] 

1) System dynamic model 

k k k kz H x v                                      (3) 

 = 0,k kv n Q                                      (4) 

The above equations represent how our system is modeled. 

 is the state transition matrix. wk is the process noise. It is 

assumed to be zero mean Gaussian noise 

2) Measurement model 

k k k kz H x v                                      (5) 

 = 0,k kv n Q                                      (6) 

It is assumed that measurement is related to state by the 

above equation, where H is the measurement sensitivity 

matrix and vk is the measurement noise. This is also assumed 

to be white Gaussian noise (zero mean). 

3) Initial conditions 
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                                         (7) 
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                                 (8) 

P0 is the priori covariance matrix. It is initialized as above. 

Expectation of x is assumed to be optimal estimate of initial 

value. 

4) Independence assumptions 

  0
T

k j
E w for k and jv                         (9) 

The process noise and measurement noise are assumed to 

be independent of each other 

5) State estimate extrapolation 

x̂
k

= F
k
x̂
k-1

(+)                              (10) 

This equation represents the prediction step of Kalman 

Filter. As we do not know about the particular value of noise 

signal and any other estimate of the system, we take the 

prediction value using our state transition matrix. The above 

can include control input as well, if necessary or required. 

6) Error covariance extrapolation 

   1 1 1 1

T

k k k k kp p Q                     (11) 

This step models the effect of time on covariance matrix of 

estimation certainty as a function of previous posteriori value 

Pk-1. 

7) State Estimate observational update 

     


    ˆ ˆ ˆ ( )kk k k kkx x xZ H           (12) 

This equation gives the Kalman output of the current 

signal. Kk is the Kalman gain, which represents the relative 

weight of the past measurements, based on system modeling 

and on the current measure input through the sensor 

measurement 

8) Error covariance update 

   



 

    
1

k kk KP K H P                    (13) 

Error covariance is updated in this equation using Kalman 

gain and posteriori value. This implements the effect that 

conditioning on the measurement has on the covariance 

matrix of estimation uncertainty. 

9) Kalman gain matrix 

   
 

    
 

1

k

T T
k K k kk k

K P H P RH H      (14) 

In this equation the Kalman Gain (Kk) is updated using the 

new values generated during this particular set of 

measurements. 

As all the parameters are recursively computed based on 

its previous value, the previous on its previous value till 

initial condition, the Kalman filter incorporates the 

information obtained by all the previous values in its 

prediction. It does so without actually storing that data and 

uses simple equations in a loop, making it computationally 

inexpensive. It is also necessary to point out that Kalman gain 

and error covariance equations are independent of actual 

observations. These parameters can be used to obtain 

preliminary information about the estimator performance. 

Since algorithm is recursive so it can be implemented 

computationally as the length of the matrix doesn’t increase 

with time and this is very helpful in the problems with 

multi-state or multidimensional problems. 

B. Algorithm for the Kalman Implementation in This 

Paper 

 
Fig. 2. Flowchart 
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Fig. 3. R/Q=1 

 

V. COMPUTER SIMULATION TESTS 

A modeling of a simple 1-dimensinal dynamic system with 

both H and Φ=1 was done in MATLAB; the Kalman Filter 

was run for 1000 iterations in each simulation. The signal 

supplied was a discrete step wave of amplitude 10 and 20 

units in the first and second parts of the iterations. Noise was 

added to both measurement and process with signal to noise 

ratio= -15db. The simulations were run for different values of 

Q and R. Tests were conducted on the MATLAB software. 

 

VI. SIMULATION RESULTS 

In Fig. 3 to Fig. 6, Q is kept constant and value of R is 

changed for each simulation. In Fig. 3, with Q=0.01 and 

R=0.01, we find that the Kalman output (blue line) of the 

measurement signal (green line), the sensor data converges 

quickly to the signal (red line) i.e. it reaches the true state in 

less number of iterations. However the Kalman output has 

very high ripple content and output data may be treated as 

inconclusive. Although better than the noisy input, the 

Kalman filter output does not give adequate results. In the 

next Fig. 4 with Q=0.01 and R=20*0.01, it was seen that 

Kalman output shows a much better noise free data, however 

this time it take more number of iterations to converge. 

Further increasing the ratio R/Q to 80, we have good Kalman 

filter output with noise reduced between amplitudes ±2 from 

the previous ±3. It is observed that further increase in the 

ratio R/Q from 80 the ripple or noise decrement is not 

significant however on the other hand time for convergence 

i.e. number of iteration taken by Kalman to estimate the 

system within the expected confidence intervals increase 

rapidly. In the Fig. 4 we can see that the noise filtered is not 

of significant decrement but the time for convergence of the 

estimator has changed from 20 to 40 iterations. Now further 

increase will offset by late convergence of Kalman filter 

without significant noise filtering so an optimal value of the 

ratio R/Q was obtained from plotting the error versus R/Q 

depending upon the confidence intervals required. In Fig. 7, 

we find that using error function that is sum of square of all 

vector elements subtracted from the actual state. Error 

function can be changed depending on whether we require a 

filter that has fast convergence rate or lesser noise ratio. 

Depending on the requirements we can modify our error 

function accordingly by assigning different weights to error 

before and after convergence.  

 
Fig. 4. R/Q=20 

 

 
Fig. 5. R/Q=80 

 

 
Fig. 6. R/Q=120 

 

VII. ESTIMATION OF PROCESS NOISE (Q) AND 

MEASUREMENT NOISE(R) COVARIANCE 

In the Kalman filter, the weight of the current data and 

recursively computed predicted value is calculated on the 

bases of two matrices supplied by the user. These matrices, 

represented in equation (4) and (6) as Q and R, are process 

noise and measurement noise covariance respectively. These 

matrices depend on noise in signal. However as we do not 

know the noise distribution exactly prior to the experiment, 

the estimation of Q and R can be done using various 

algorithms like Auto-covariance Least Square Method [9], 

[10] and Riccati’s Equation [8]. However, frequently hit and 

trial method is used. 

 

 
Fig. 7. Error versus R/Q 
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TABLE I 

 Q R/Q Iterations Noise Amp (±) 

Fig 3 0.01 1 4 7 

Fig 4 0.01 20 10 5 

Fig 5 0.01 80 35 3 

Fig 6 0.01 120 50 1.5 

 

VIII. ERROR ANALYSIS AND OPTIMIZING ALGORITHM 

Since in the Kalman Filter main problem lies in 

Optimizing and calculating the error with respect to the 

actual state, in this paper we have applied an Algorithm that 

considers both the convergence period i.e. the number of 

iterations and over the time deviation from the actual or true 

state. The error function used in this paper is: 

Error(R/Q) = (Estimated-Actual)2                 (15) 

Where the Error plotted is the function of R/Q. As seen 

from the Fig. 7 we conclude that the optimal value is at R/Q 

approximately equal to 80. This Algorithm since takes into 

account of all the data of the state it in fact penalises the error 

function for both the optimizing fields i.e. the in late 

convergence and lesser noise reduction. It is found that while 

using this function we were able to analyse and hence 

optimize our Kalman filter for single state. 

 

IX. DISCUSSION 

Based on the results of simulations obtained, the Kalman 

filter (and its derivatives EKF, UKF) can be used in many 

different applications such as Artificial Intelligence, Digital 

Signal Processing, Image Processing, Communication 

Systems, Navigation Systems, Sensor Integration etc. Many 

of these systems are one state dynamic system so the 

algorithm used here can be directly applied to the 

measurements and sensor data by modelling the system 

correctly. Kalman Filter can be suitably modified and tuned 

(i.e. R/Q estimation) for any application to give the correct 

balance between convergence time and noise reduction as 

stated in this paper. Using the Algorithm in this paper for the 

Kalman Optimization we have concluded that optimality can 

be obtained for even multi-state and multi-sensor problems. 

This allows the Kalman filter to be a ubiquitous tool due to its 

computational efficiency, low memory requirements and 

ease of use.  

 

X. RESULTS AND CONCLUSIONS 

The Kalman filter output showed different values of 

convergence time and noise reduction for varying R/Q. The 

increasing values of this ratio gave better noise reduction. 

However this advantage is offset by the increase in 

convergence time. Hence in any application, based on 

requirements the correct value of R/Q has to be estimated for 

the filter to work in an efficient and optimal manner. Based 

on the results of simulation, the estimation of R/Q using hit 

and trial method should be very much simplified as we have 

reduced the two variable (Q and R) estimation problem to one 

variable (R/Q) estimation problem We have found in our 

problem that ratio (R/Q) be equal to 80. 
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