Transmeta's Crusoe:

Cool Chips for Mobile Computing

David R. Ditzel Chief Executive Officer Transmeta Corporation

Transmeta, Crusoe, Code Morphing and LongRun are trademarks of Transmeta Corporation

Agenda

Transmeta's Crusoe Technology

Crusoe Microprocessors

Introduction of a new Crusoe processor

Hardware support features for Dynamic Translation

A few Crusoe Systems

What are the big problems for designers of Mobile Computers that need to talk to the Internet?

Heat

High performance processors take 10 to 20 watts Makes battery life unacceptably short.

Compatibility with the Internet Need x86 compatibility to run PC Software Web based software - such as macromedia flash Browser plug-ins (plug-ins are tiny x86 programs)

Performance

Need PC desktop levels of performance for good experience

Transmeta's Crusoe Chip can solve these problems

Crusoe is a Family of Mobile Internet Processors

Low Power - for long battery life -- no fans

Compatible - with all x86 PC software

High Performance - for Internet applications

- Streaming video (eg MPEG-4)
- Macromedia Flash

How is Crusoe able to achieve these goals?

Crusoe is the first microprocessor whose instruction set is implemented entirely with Software

Transmeta's Vision: A Software Based Microprocessor

- New Idea: software could be an integral part of a microprocessor
- A combined hardware/software solution could have many benefits
 - Simpler hardware chips
 - Easier to design and debug chips
 - Smaller design teams with shorter design times
 - No worry about backward compatibility in hardware
 - Less costly to manufacture smaller chips
 - Simpler chips would run cooler

Plus software could LEARN as it ran – the first SMART processor

Crusoe Technology and Benefits

Crusoe is the sum of

Code Morphing Software

Code Morphing Software

- Dynamic x86 to VLIW translator
- Software optimized execution
- Learns and improves with time

VLIW Processor

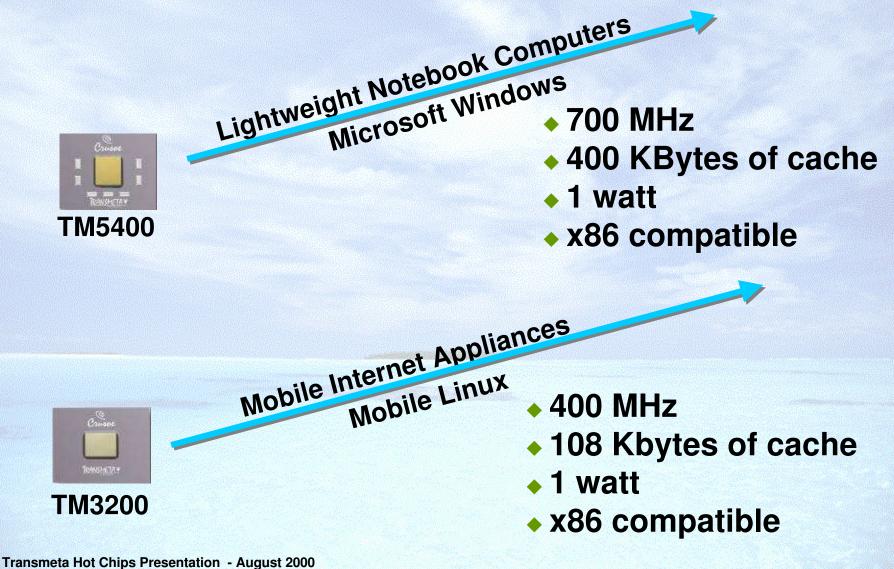
- 128-bit Very Long Instruction Word
 - Simple and fast Engine
 - Significant reduction in transistors

3 4

Transmeta Hot Chips Presentation - August 2000

Low Power

x86 Compatibility

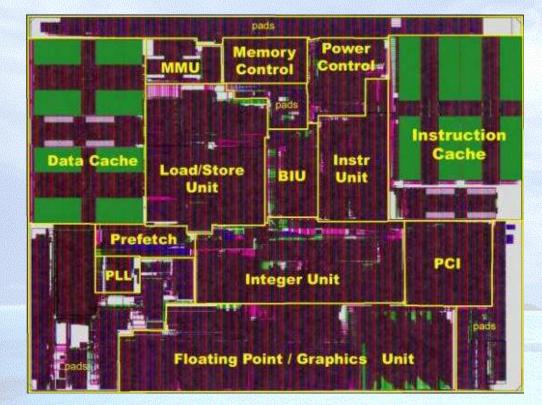

PC

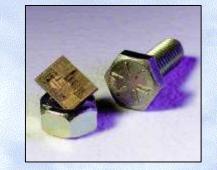
Performance

Conventional HW vs Crusoe HW+SW

Crusoe		
VLIW Silicon	Code Morphing	
Hardware	Software	
simple decode	x86 decoding	
	instruction grouping	
	instruction scheduling	
	bypass scheduling	
	register renaming	
	address mode synthesis	
in-order executio	n	
	speculative execution	
arithmetic functio	Ins	
register files		
	software libraries	
caches		
	fp stack	
	code optimization	
	VLIW Silicon Hardware simple decode in-order executio arithmetic function register files	

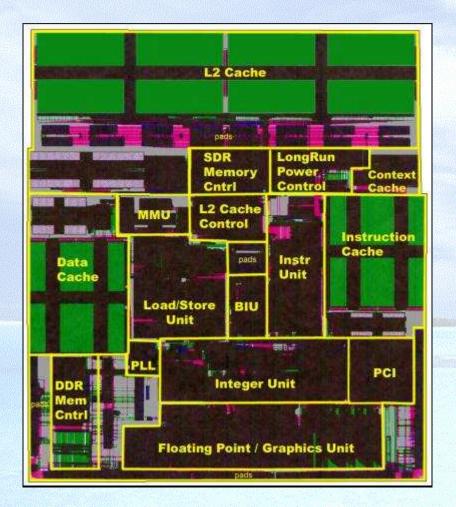
The First Two Crusoe Processors


TM5600: A New Crusoe Processor



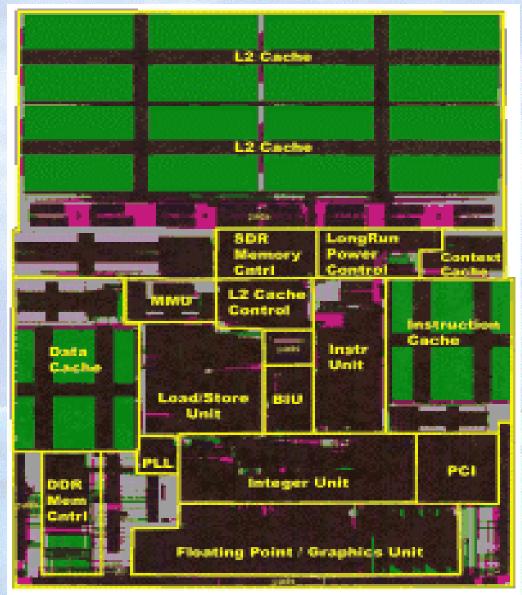
- New TM5600 Crusoe Processor
- Same package pinout as TM5400
- 700 MHz operation with LongRun
- 656 KBytes of on-chip cache
- L2 increased to 512K bytes
- Performance increases by ~20% at same MHz
- Power reduced by ~10%

TM3200 for Mobile Internet Devices

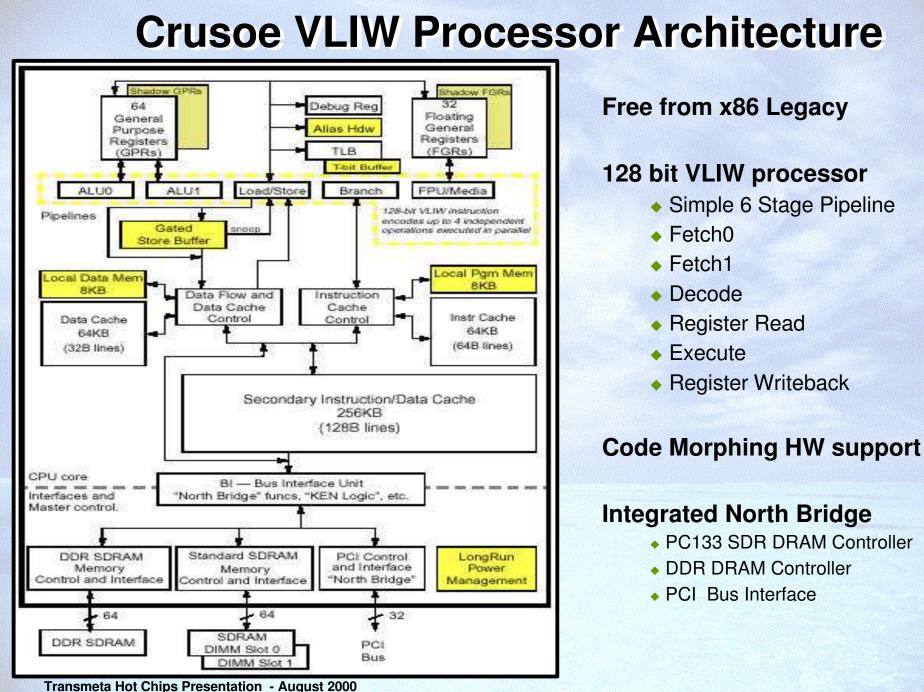


TM22000

	<u>1 W3200</u>
Frequency Range	333-400 MHz
L1 Cache	96KB
L2 Cache	
Main Memory	PC133 SDRAM
Upgrade Memory	
North Bridge	Integrated
Package	474 BGA
Fab Partner	IBM
Process Technology	.22u
Die Size	77 mm ²
Sample	Now
Production	Now
	The second s


TM5400 for 2-4 Lb. Ultra-Light PCs

	<u>TM5400</u>
Frequency Range	500 – 700 MHz
L1 Cache	128K
L2 Cache	256K
Main Memory	DDR or SDRAM
Upgrade Memory	SDRAM
North Bridge	Integrated
Package	474 BGA
Tab Dautuan	
Fab Partner	IBM
Process Technology	.18u
Die Size	73mm ²
Sample	Now
Production	Now


TM5600 for 2-4 Lb. Full Featured Notebooks

TMEGOO

	<u>100961011</u>
Frequency Range	500 – 700 MHz
L1 Cache	128K
L2 Cache	512K
Main Memory	DDR or SDRAM
Upgrade Memory	SDRAM
North Bridge	Integrated
Package	474 BGA
Fab Partner	IBM
Process Technology	.18u
Die Size	88 mm ²
Sample	Now
Production	Now

Crusoe VLIW Processor Instruction Formats

Csw	Memory	Compute	ALU0	32 bit immed.
▲ 128-bit Molecule →				
Csw	Memory	Compute	ALU0	Branch

← 32-bit Atom →

C = 1 bit Commit instruction

sw = 2 bits for software use

Memory = Load or Store

ALU operations are 3 address register to register ops with 64 general registers

Compute = ALU1, Floating Point or Multimedia op

С	Memory	Compute
C	ALU0	Compute
C	ALU0	32 bit immed.
С	ALU0	Branch

Crusoe's Hardware Support for Dynamic Instruction Translation

or

How to make life easier for software

Traditional Code Generation Headaches

Life would be so much easier if it weren't for:

- Not enough registers
- Branches (basic blocks too short)
- Pointers
- Interrupts
- Faults
- Need to preserve original program order
- Self modifying code

Crusoe's hardware has support for all of the above

Basic Support

Lots of Registers

- 64 Integer Registers
- 32 Floating Point Registers

Lots of Cache

- 64 KB Level 1 Instruction Cache
- 64 KB Level 1 Data Cache
- 512 KB Level 2 combined I+D Cache
- 8 KB software managed local data memory
- 8 KB software managed local instruction memory

Simple pipeline

- 1 128-bit VLIW instruction (molecule) per clock
- Up to 4 atoms (RISC like op) per molecule
- So Software can tell the cost of an instruction!

Crusoe: Forgiveness and Time Travel

On typical procesors, code generation must be very conservative

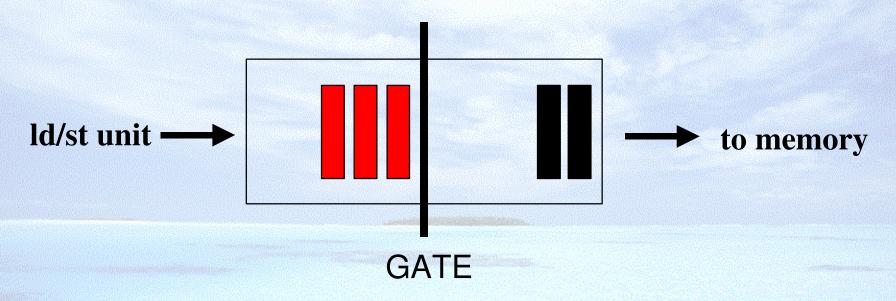
- Must generate code that is "correct" in all cases
- Very rare circumstances ruin opportunities for optimization
 e.g. memory aliases of two pointers
 e.g. unexpected faults
- Less data in registers, more loads and stores
- Less speculation
- Result is less optimal code

Crusoe encourages aggressive optimization and speculation

- If rare circumstances happen:
 - Give forgiveness
 - Travel back in time to before the exceptional event
 - Redo the event with more conservative code generation

Advanced Hardware Support

- Shadowed Register Files
- Gated Store Buffer
- Commit / rollback instructions
- Alias hardware
- Compare and Trap instructions
 Select instructions


Shadowed Register Files

- Two copies of registers: working and shadow.
 - 64 Integer registers with 48 shadows
 - 32 Floating point registers with 16 shadows
- Normal atoms read/write working registers
- ◆ commit and rollback atoms copy working ↔ shadow

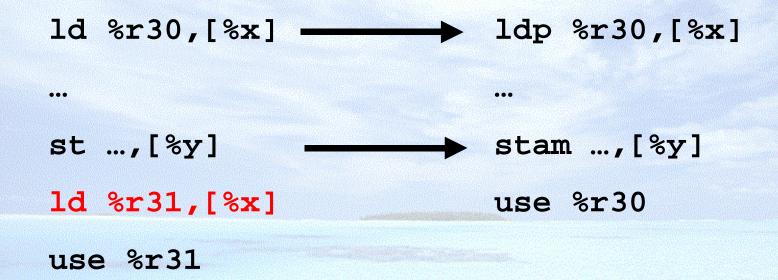
Gated Store Buffer

- Similar to traditional write buffer, except...
- GATE delays stores until next commit instr
- or Rollback instruction can undo stores


Load / Store Reordering

Reordering register-register ALU ops is easy
 Reordering loads and stores: harder
 Need knowledge about memory addresses

The above transformation FAILS if pointers x equals y, so this optimization is rarely used


Crusoe Alias Hardware

- Crusoe has unique Alias detection hardware
- Software uses special Id/st atoms when reordering
- Trap if memory regions overlap
- Ex: load protects memory, store checks
- Software can take corrective action, but rare

Correctness can be guaranteed, and easy to use

Crusoe Alias Hardware (e.g. #2) Alias hardware can allow software to safely *eliminate* memory operations

Correctness can be guaranteed, and easy to use

Multi-block Example

x86 (IA-32) Instruction Mix

```
1. movl %ecx,$0x3
    2. jmp lbl1
IbI1:
    3. movl %edx,0x2fc(%ebp)
    4. movl %eax,0x304(%ebp)
    5. movl %esi,$0x0
    6. cmpl %edx,%eax
    7. movl 0x40(%esp,1),$0x0
    8. jle skip1
    9. movl %esi,$0x1
skip1:
   10. movl 0x6c(%esp,1),%esi
   11. cmpl %edx,%eax
   12. movl %eax,$0x1
   13. jl skip2
   14. xorl %eax,%eax
skip2:
   15. movl %esi,0x308(%ebp)
   16. movl %edi,0x300(%ebp)
   17. movl 0x7c(%esp,1),%eax
   18. cmpl %esi,%edi
   19. movl %eax,$0x0
   20. jnl exit1
exit2:
```

"Morphed" (128-bit) VLIW Instructions

```
1. addi %r39,%ebp,0x2fc;commit
2. addi %r38,%ebp,0x304
3. ld %edx,[%r39]; add %r27,%r38,4; add %r26,%r38,-4
4. ld %r31,[%r38]; add %r35,0,1; add %r36,%esp,0x40
5. ldp %esi,[%r27]; add %r33,%esp,0x6c; sub.c %null,%edx,%r31
6. ldp %edi,[%r26]; sel #le %r32,0,%r35;
7. stam 0,[%r36]; sel #l %r24,%r35,0; add %r25,%esp,0x7c
8. stam %r32,[%r33];add %ecx,0,3; sub.c %null,%esi,%edi
9. st %r24,[%r25]; or %eax,0,0; brcc #lt,<exit2>
```

```
10. br <exit1>
```

Crusoe can be used in a Range of Mobile Computers

Crusoe in Mobile Internet Computers

Mobile Client Web tablet

Thin+light Mobile PC Full featured Mobile PC

Crusoe Offers Advantages for Mobile Internet Computing

- Size and weight
- No noisy fans

Battery life

LongRun power management

Low power

is the key

