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Abstract: Many structured light scanning systems based on temporal
pattern codification produce dense and robust results on static scenes
but behave very poorly when applied to dynamic scenes in which objects
are allowed to move or to deform during the acquisition process. The
main reason for this lies in the wrong combination of encoded corre-
spondence information because the same point in the projector pattern
sequence can map to different points within the camera images due to
depth changes over time. We present a novel approach suitable for mea-
suring and compensating such kind of pattern motion. The described
technique can be combined with existing active range scanning systems
designed for static surface reconstruction making them applicable for
the dynamic case. We demonstrate the benefits of our method by inte-
grating it into a gray code based structured light scanner, which runs
at thirty 3d scans per second.
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1 Introduction

A structured light scanner typically consists of a projector-camera pair. Differ-
ent light patterns are projected onto the scene such that the projector column can
be reconstructed at every pixel in the acquired camera images. Different calibra-
tion methods (Zhang, Z., 2000; Rocchini, C., Cignoni, P.,Montani, C. , Pingi, P.
and Scopigno, R., 2001) are used to map camera pixels to 3d rays and projector
columns to 3d planes. Simple ray-plane intersection finally yields 3d surface points.

The projector column can be coded in one pattern via spatial correspondences
(i.e. one-shot approaches), in several patterns multiplexed over time (i.e. gray
code), in light intensity (i.e. phase shift) or in a combination of these approaches.
The purely spatial coding of projector columns in one-shot approaches is at first
sight very attractive because of high frame rates and very simple realization in
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hardware. On the other hand it is extremely hard to deal with textured surfaces and
depth discontinuities. Therefore time-multiplexing of several patterns is necessary
for most applications. For static scenes time-multiplexing is a well established
approach. Application to dynamic scenes is much more complicated as the temporal
correspondence is destroyed by the motion of the projector patterns in the camera
images, which is induced by the scene motion.

Partial compensation of the pattern motions are possible by coding the column
information in intensity changes as done by the stripe boundary code approach
(Hall-Holt, O., Rusinkiewicz, S., 2001). Intensity edges are detected and matched
over time. This allows the compensation of pattern motions that are in the order
of the stripe widths. But faster motions cannot be compensated.

In this paper we propose a motion compensation scheme that introduces an
additional tracking pattern in between the structured light patterns. The special
tracking pattern is optimized for maximal tracking performance. Although more
patterns have to be acquired in our approach, the improved tracking allows 3d
scanning of dynamic scenes with faster motions.

After a discussion of related work, we analyze the different problems introduced
by scene motion in multi-pattern structured light methods. Then we design a good
tracking pattern and validate its effectiveness. Scanning results are shown in section
4 before the conclusions in section 5.

2 Related Work

A wide variety of techniques has been presented for the problem of 3d shape
acquisition (Mouaddib, E., Batlle, J. and Salvia, J., 1997; Salvi, J., Pages, J. and
Batlle, J., 2004; Blais, F., 2004). One of the most studied methods in this area
is stereovision. Depth estimations are done by triangulation; therefore it is neces-
sary to find spatial correspondences between a pair of stereo images. An overview
of many different algorithms for this task can be found in (Scharstein, D. and
Szeliski, R., 2002). Especially interesting is the work by (Davis, J., Ramamoorthi,
R. and Rusinkiewicz, S. 2003) and (Zhang, L., Curless, B. and Seitz, S. M., 2003)
who extent existing stereo-matching techniques into the time domain to increase
robustness. In principal stereovision is capable of handling dynamic scenes.

Another common way to reduce matching ambiguity and computational com-
plexity is to exchange one camera by a projector, illuminating the scene with light
patterns to simplify the search for correspondences. One-shot scanner would pro-
duce the smallest error introduced by motion because they reduce the time for
measuring on a minimum. Beside this, they are forced with the problem to put
all reconstruction information into one pattern leading to a trade off between sam-
pling density and robustness. (Carrihill, B., Hummel, R., 1985) use an intensity
ramp to directly encode positions, resulting in noisy scans with limited resolutions.
Other methods like (Maruyama, M. and Abe, S., 1989), (Vuylsteke, P. and Oost-
erlinck, A., 1990) and (Koninckx, T. P., Griesser, A. and Van Gool, L. 2003) rely
on neighbourhood coding. In these cases, markers like stripes, or other templates
associated with a spatially encoded identifier are used. (Zhang, L., Curless, B. and
Seitz, S. M.) use colour codification. (Adan, Antonio, Molina, Fernando, Vazquez,
Andres S. and Luis Morena, 2005) apply stereo matching algorithms to find cor-
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respondences between a projected noise pattern and the acquired camera image.
Most of the multi-pattern scanners are designed for static scenes. Binary and gray
code sequences rely on temporal code sequence of on and off pixel states to encode
projector columns (Mouaddib, E., Batlle, J. and Salvia, J. 1997).

Another popular method called ”‘phase-shift”’ projects a set of at least three
phase-shifted sinusoidal patterns (Wust, C. and Capson, D. W. 1991), (Song Zhang
and Peisen Huang, 2004). For reconstruction the global phase positions have to be
recovered at each point. This method is very popular because of its high accuracy.
To acquire dynamic scenes multi-pattern sequences must be capable of taking mo-
tion into account. (Hall-Holt, O., Rusinkiewicz, S. 2001) address this problem by
tracking stripe boundaries. (Weise, T., Leibe, B. and Van Gool, L., 2007) propose
a real-time hybrid stereo phase-shift method with automatic motion compensation.
This is done by analysis of the motion error on pixel level. The proposed ap-
proach on the other hand can be combined with all multi-pattern structured light
approaches and we demonstrate this at the example of a gray-code scanner.

3 Reconstruction with Motion Compensation

Let us first introduce some notation to describe time-multiplexed structured
lights approaches. Let P1, . . . , Pn be the n different light patterns and Cs

1 , . . . , Cs
n

the acquired camera images of successive sequences indexed through s. Each struc-
tured light approach comes with a decoding procedure that allows reconstruction
of the projector column j from the different camera images at each pixel location
(x, y)

j(x, y) = rec (Cs
1(x, y), . . . , Cs

n(x, y))

In the next two subsections we analyze the two major sources for reconstruction
errors introduced due to motion during the acquisition process.

3.1 Object and Pattern Motion

Figure 1 illustrates the two different kinds of motions that result in the camera
images from the motion of the scene. On the left side the plane is moving in
tangential direction to the right. The surface motion becomes visible through the
motion of the surface texture in the camera image. The corresponding motion is
denoted with vt and illustrated with dotted arrows. The 3d geometry does not
change and the illustrated point of the projector pattern stays fixed in the camera
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Figure 1 Illustration of texture and pattern motion.
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image yielding a pattern motion of vp = 0. On the right side the plane is moving in
normal direction. This time both the surface point and the projector point move
in the camera image, but with different velocities vt 6= vp.

While in static scenes information from successive patterns project to the pixel
in the camera images, dynamic scenes induce pattern motion that have to be tracked
in order to ensure combining the correct reconstruction information from multiple
patterns.

3.2 Pattern Separation

Texture motion also complicates the task of separating the structured patterns
from the rest of the camera images. This task also involves the removal of influ-
ences from surface texture, ambient illuminations, intensity changes due to surface
orientation, etc.. Normally this is done by capturing an on- and an off-reference
pattern Pon/Poff . The acquired reference images Con/Coff are used to find non-
illuminated regions like shadows or background, to estimate per pixel thresholds
for binarization and allow normalizing scene-based intensity variations.

In dynamic acquisition on- an off-camera-images change over time due to texture
motion. Therefore on- and off-references need to be introduced in between each
pattern to guarantee good pattern separation, resulting in the pattern sequence
Pon, P1, Poff , P2, ..., Pn, Poff .

3.3 Motion Compensation
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Figure 2 Steps in pattern motion estimation in a sequence of reconstruction patterns.

For the correct 3d reconstruction we only need to know the pattern motion
vp(x, y) for each pixel. We estimate vp(x, y) by interleaving a tracking pattern PT

after each reference frame resulting in the pattern sequence Pon, PT , P1, Poff , PT ,
P2,...,Pon, PT , Pn, Poff . Although we further increase the number of patterns, the
better tracking performance on the optimized tracking pattern PT allows to acquire
faster scene motions. From each successive pair of synchronously captured tracking
camera images CT we use an optical flow algorithm (Bouguet, J.-Y., 2000) to es-
timate the displacement fields Fi→j from the i-th acquired pattern CT to the j-th
pattern CT as illustrated in Figure 2 without the on- and off-patterns for briefness.
But for reconstruction we are interested in the motion within the acquired recon-
struction sequence C1, C2, . . . , Cn. Assuming that the motion from one tracking
pattern to the next can be approximated as linear enables us to calculate inter-
mediate displacement fields via vector field interpolation. Projector columns can
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finally be reconstructed via

j(x, y) = rec
(

Cs
1(x, y), Cs

2 (FCs

1
→Cs

2
(x, y)), . . . , Cs

n(FCs

1
→Cs

n

(x, y))
)

.

If the optical flow algorithm fails to estimate the motion of the tracking pattern
safely due to depth discontinuities no surface point is reconstructed. Typically the
order in which the different reconstruction patterns are acquired is not important,
if it is possible to reorder them correctly afterwards. This allows a sliding window
approach that reconstructs for any n successive coding patterns one 3d scan in the
following manner:

j1(x, y) = rec
(

Cs
1(x, y), Cs

2(FCs

1
→Cs

2
(x, y)), . . . , Cs

n(FCs

1
→Cs

n

(x, y))
)

j2(x, y) = rec
(

Cs+1

1 (FCs

2
→C

s+1

1

(x, y)), Cs
2(x, y), . . . , Cs

n(FCs

2
→Cs

n

(x, y))
)

j3(x, y) = rec
(

Cs+1

1
(FCs

3
→Cs+1

1

(x, y)), Cs+1

2
(FCs

3
→Cs+1

2

(x, y)), Cs
3 (x, y), . . .

)
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3.4 Designing a Tracking Pattern

Good tracking via optical flow can only be achieved at positions where changes
in image intensity occur and only along the direction of change. Therefore, the
intensity gradient field of the tracking pattern should contain many changes in
length and direction. Especially corners are good features to track. To make the
tracking robust against fast motions it is important to integrate dense features at
different scales such that Perlin- or wavelet-noise patterns should be a good choice.
To validate our considerations we compared four tracking patterns. Zooms of small
regions of these patterns are shown in figure 3 a-d). All the patterns are pure
black and white images as they can be most robustly separated with the on- and
off-reference images and on the other hand because our high speed DLP-projector
only allows projection of black and white images.
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Figure 3 Different tracking patterns: a) binary noise on a coarse pixel grid, b) densely
non-uniform distributed circles, c) multiple densely non-uniform distributed primitives, d)
Binarized Perlin-noise using an error-diffusion dithering method. Right: Mean tracking
error measured as distance between tracked and ground-truth pattern position in pixel.

We compared the tracking quality on a synthetic scene of a rotating bunny
simulating the projector with a projective texture and the camera with a ray tracer
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that accounts for lambertian illumination, depth-of-field and shadows. The diagram
on the right of Figure 3 shows the tracking error for different rotation angles between
tracked images. We chose a rotation to produce many different kinds of pattern
velocities and accelerations. Tracking errors are measured as follows: For each
camera pixel in the first frame, we looked up the ground-truth pattern position and
calculate the distances to the projector position in the second frame at the tracked
position. Then we calculate the mean over all error. The errors in the row ‘no
compensation’ are measured without tracking. We can see that all patterns are
able to reduce the errors introduced by motion. The best results are achieved with
the dithered Perlin-noise pattern. It is also remarkable that the error using motion
compensation is increasing much slower than it is introduced by faster rotations.

4 Experimental Results

Figure 4 An acquired moving plane with (top row) and without (bottom row) motion
compensation. Right: Zoomed views of the second reconstruction.

Based on the described ideas we built up a scanner system consisting of a high
speed projector and a high speed camera. We integrate a 10 bit gray code method
into our compensation framework. Because our optical flow estimator is not able
to do its calculation in real-time we have to store the cameras images and perform
offline calculations. This may be improved by using faster algorithms (Bruhn, A.,
Weickert, J., Feddern, C., Kohlberger, T. , and Schnörr, C., 2003), (Jose L. Mar-
tin and Aitzol Zuloaga and Carlos Cuadrado and Jesus Laizaro and Unai Bidarte,
2005). We do several scans on comparable moving scenes once measured with
and once measured without using our motion compensation scheme. We use se-
tups constructed with a small step motor for being able to reproduce scenes with
equal motions. The first comparison depicted in figure 4 shows reconstructions of
a moving plane. Camera frames are acquired at a rate of 90 fps. This leads to a
reconstruction speed of 30 scans per second in the motion compensation scheme
because every third pattern is a reconstruction pattern. Because the tracking pat-
tern is not used in the version without compensation this sequence produces 60
scans per second. Figure 5 contains the result of scanning a rotating bust placed
on a turntable. Like before we measure two equal movements one with and one
without motion compensation. In both scans without motion compensation the
effects of wrong decoded projector column positions can be recognized. Enabling
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Figure 5 An acquired rotating bust with (top row) and without (bottom row) motion
compensation. Right: Zoomed views of the second reconstruction.

motion compensation increases the quality of the reconstruction by avoiding or at
least reducing the effects of motion. Although the acquisition of one complete se-
quence takes longer time, because of the additional tracking pattern, the results
are significantly better than without compensation. We also noticed that scanning
with motion compensation often increases the local sampling density. This can be
explained by the fact, that our gray code reconstructor discards points if bits of
the binary code can not be classified clearly as on or off. This normally happens
on blurry stripe borders. When such borders start to move more code words are
affected by these regions.

5 Conclusion and future work

In this work we presented a motion compensation technique, which makes it
possible to use existing multi shot methods for the acquisition of dynamic scenes.
This is done by correcting the changes in pattern positions estimated with the help
of an interleaved tracking pattern. We demonstrate the benefits of our method by
enabling the gray code method to scan moving objects at a rate of 30 reconstruc-
tions per second acquiring images at the rate of 90 fps. Future work will investigate
the improvements which can be achieved by using more advanced optical flow al-
gorithms to increase calculation speed and tracking accuracy and handling of flow
discontinuities. It would be useful to integrate the proposed tracking into other
sequences and also into one shot scanner to make their measurements more stable.
Instead of interpolating the pattern flow fields, they can be projected and measured
at the same time using different colours. This would reduce the number of needed
patterns but may also introduce problems for textured objects.
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