MODIFICATIONS OF THE “CENTRAL-METHOD” TO CONSTRUCT STEINER TRIPLE SYSTEMS

H. ZEITLER
Mathematisches Institut, Universität Bayreuth, D-8580 Bayreuth, Postfach 101251, F.R. Germany

0. Introduction

0.1. Steiner triple systems

Let \(V \) with \(|V| = v \) be a finite set and \(B \) a set of 3-subsets of \(V \). The elements of \(V \) are called points, those of \(B \) lines. If any 2-subset of \(V \) is contained in exactly one line, then the pair \((V, B) \) is called a Steiner triple system of order \(v \), in short \(\text{STS}(v) \). Each point lies on exactly \(r = \frac{1}{2}(v - 1) \) lines and we have \(|B| = b = \frac{1}{3}v(v - 1) \). The condition \(v = 7, 9 + 6n, n \in \mathbb{N}_0 \), is necessary and sufficient for the existence of \(\text{STS}(v) \) (the trivial cases \(v = 1, v = 3 \) are excluded). The set of these “admissible” numbers, of these “Steiner numbers” is denoted by \(\text{STS} \).

0.2. Ovals in \(\text{STS}(v) \)

A non-empty subset \(O \subset V \) in a \(\text{STS}(v) \) is called an oval if each point of \(O \) lies on exactly one tangent and each other line of the \(\text{STS}(v) \) has at most two points in common with \(O \). A line is called a tangent if it meets \(O \) in exactly one point. If there are exactly two intersection points or if there is no intersection point then we have a secant or a passant respectively. The points of \(O \) are called on-points, the points of the tangents which are not on-points are called ex-points and the remaining points in-points. With respect to an oval \(O \) there are exactly \(r \) tangents, \(\frac{1}{2}r(r - 1) \) secants, \(\frac{1}{2}r(r - 1) \) passants and we have \(|O| = r \). The number of tangents through an ex-point is even iff \(r \) is even.

0.3. Special ovals in \(\text{STS}(v) \)

An oval \(O_K \) is called a knot oval if all tangents have exactly one point \(Z \) in common. \(Z \) is called the knot of the oval. Each ex-point different from \(Z \) lies on exactly one tangent and there are no in-points. It is known that there exist systems \(\text{STS}(v) \) with a knot oval if and only if \(v \in \text{HSTS} := \{7, 15 + 12n, n \in \mathbb{N}_0 \} \). \[2\]. Sometimes the set \(H = O_K \cup \{Z\} \) is called a hyperoval. The complement of \(H \) together with the passants of \(O_K \) forms a subsystem \(\text{STS}(r) \). It is possible to prove...