A NOTE ON CAREFUL PACKING OF A GRAPH

M. Woźniak

Instytut Matematyki AGH
al. Mickiewicza 30, 30–059 Kraków, Poland

Abstract

Let G be a simple graph of order n and size $e(G)$. It is well known that if $e(G) \leq n - 2$, then there is an edge-disjoint placement of two copies of G into K_n. We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into $K_n \setminus C_n$.

Keywords: packing of graphs

1991 Mathematics Subject Classification: 05C70

1. Introduction

We shall use standard graph theory notation. We consider only finite, undirected graphs of order $n = |V(G)|$ and size $e(G) = |E(G)|$. All graphs will be assumed to have neither loops nor multiple edges.

For graphs G and H we denote by $G \cup H$ the vertex disjoint union of graphs G and H and kG stands for the disjoint union of k copies of the graph G.

Suppose G_1, \ldots, G_k are graphs of order n. We say that there is a packing of G_1, \ldots, G_k (into the complete graph K_n) if there exist injections $\alpha_i : V(G_i) \rightarrow V(K_n), \ i = 1, \ldots, k,$ such that $\alpha_i^*(E(G_i)) \cap \alpha_j^*(E(G_j)) = \emptyset$ for $i \neq j$, where the map $\alpha_i^* : E(G_i) \rightarrow E(K_n)$ is induced by α_i.

A packing of k copies of a graph G will be called a k-placement of G. A packing of two copies of G i.e. a 2-placement is an embedding of G (in its complement \overline{G}). So, an embedding of a graph G is a permutation

1This paper was partially supported by Polish Research Grant KBN 2 P 301 050 031
σ on \(V(G) \) such that if an edge \(xy \) belongs to \(E(G) \) then \(\sigma(x)\sigma(y) \) does not belong to \(E(G) \).

A careful packing of a graph \(G \) is a packing of \(C_n \) and two copies of \(G \) into the complete graph. In others words this is an edge-disjoint placement of two copies of \(G \) into \(K_n \setminus C_n \). Geometrically speaking, if we identify the cycle \(C_n \) with a convex \(n \)–gon on the plane, the careful packing of \(G \) means the possibility to draw (edge-disjointly) two copies of \(G \) using only the internal edges.

The following theorem was proved, independently, in [2], [4] and [7].

Theorem 1. Let \(G = (V, E) \) be a graph of order \(n \). If \(|E(G)| \leq n - 2 \), then \(G \) can be embedded in its complement \(\overline{G} \).

The example of the star \(K_{1,n-1} \) shows that Theorem 1 cannot be improved by increasing the size of \(G \).

This result have been improved in many ways. For instance, the following theorem completely characterizes those graphs with \(n \) vertices and \(n - 1 \) edges which are embeddable ([5], [6]).

Theorem 2. Let \(G = (V, E) \) be a graph of order \(n \). If \(|E(G)| \leq n - 1 \), then either \(G \) is embeddable or \(G \) is isomorphic to one of the following graphs : \(K_{1,n-1} \), \(K_{1,n-4} \cup K_3 \) for \(n \geq 8 \), \(K_1 \cup 2K_3 \), \(K_1 \cup C_4 \), \(K_1 \cup K_3 \) and \(K_2 \cup K_3 \).

Remark. For other generalization and improvements of Theorem 2 see for instance [8], [9] or [10]. The general references here are [11] and [1] (see also [12]).

Our purpose is to prove the following

Theorem 3. Let \(G \) be a graph of order \(n \), \(n \geq 6 \). If \(e(G) \leq n - 2 \), then there exists a careful packing of \(G \) except for two graphs of order 6: \(K_3 \cup K_2 \cup K_1 \) and \(C_4 \cup 2K_1 \), and for two families of graphs: \(K_{1,n-2} \cup K_1 \) and \(K_{1,n-3} \cup K_2 \).

The proof the theorem is given in the next section.

Corollary 4. Let \(G \) be a graph of order \(n \), \(n \geq 3 \). If \(e(G) \leq n - 3 \), then there exists a careful packing of \(G \).
A note on careful packing of a graph

Proof. The corollary is evident for \(n = 3 \) and 4 and easy to verify for \(n = 5 \). For \(n \geq 6 \) it follows from Theorem 3.

We finish this section with some remarks.

Observe first that if we want to pack two copies of a graph \(G \) together with the cycle \(C_n \), then the following necessary condition must hold:

\[
\Delta(G) + \delta(G) \leq n - 3.
\]

For, the vertex \(u \) with \(d(u) = \Delta(G) \) must be placed with another vertex of \(G \) and with a vertex of \(C_n \) of degree 2. Another evident, necessary condition is determined by the number of edges in the complete graph \(K_n \).

We must have \(2(n - 2) + n \leq \binom{n}{2} \) which implies \(n \geq 6 \).

So, from this point of view, there are only two “small” exceptional graphs in Theorem 3.

Since it is very easy to find a 2-placement for exceptional graphs of Theorem 3, so this theorem is an improvement of Theorem 1. On the other hand, Corollary 4 can also be considered as an improvement of the following theorem of Ore (cf.[3]).

Theorem 5. If \(G \) is a simple graph of order \(n \geq 3 \) and \(e(G) > \left(\frac{n-1}{2} \right) + 1 \), then \(G \) is Hamiltonian.

Indeed, restated in terms of packing, Theorem 5 states that if \(G \) is a graph of order \(n \), \(n \geq 3 \), and \(e(G) \leq n - 3 \), then there is a packing of \(G \) into \(K_n \setminus C_n \), whereas Corollary 4 ensures a packing of two copies of \(G \) into \(K_n \setminus C_n \).

2. Proof

We start with some simple observations formulated as lemmas.

Lemma 6. Let \(G \) be a graph composed of the cycle \(C_k \) and one vertex, say \(u \), not on the cycle. Denote by \(|N(u,C_k)| \) the number of edges connecting \(u \) with \(C_k \). If \(|N(u,C_k)| > \frac{k}{2} \), then the cycle \(C_k \) can be extended to a cycle of length \(k + 1 \) passing through \(u \).

Lemma 7. Let \(G \) be a graph composed of the cycle \(C_k \) and two vertices, say \(u, v \), not on the cycle. If
1. \(uv \in E(G) \),
2. \(|N(u, C_k)| \geq 1, \ |N(v, C_k)| \geq 1 \),
3. \(|N(u, C_k)| + |N(v, C_k)| \geq k + 1 \),

then the cycle \(C_k \) can be extended to a cycle of length \(k+2 \) passing through \(u \) and \(v \).

Proof. It is easy to see that at least one of the neighbours of the vertex \(v \) on the cycle \(C_k \) has as its neighbour on the cycle \(C_k \), a vertex connected by an edge with the vertex \(u \). The possibility to extend the cycle \(C_k \) to the cycle \(C_{k+2} \) is now evident.

Lemma 8. If the graph \(G \) has an end-vertex, say \(x \), adjacent to the vertex, say \(y \), of degree \(d(y) \geq \frac{n-1}{2} \) and there is a careful packing of \(G' = G \setminus \{x\} \), then there is a careful packing of the graph \(G \).

Proof. Observe first that in the careful packing of \(G' \) the image of \(y \) is distinct from \(y \). Indeed, otherwise we would have too many edges adjacent to \(y \) in \(K_{n-1} \) (two edges of \(C_{n-1} \) and at least \(n-2 \) edges belonging to two copies of \(G' \)).

Thus it is easy to extend the packing of \(G' \) (by putting \(x \) on \(x \)) and then to extend \(C_{n-1} \) by applying Lemma 6 to the complement of the graph \(G \).

Proof of Theorem 3. In the remainder of this section we adopt the following convention: Given a careful packing of a graph \(G \), we say that an edge \(e \) of \(K_n \) is black or blue if it belongs to the first or second copy of \(G \), respectively, and that an edge \(e \) of \(K_n \) is red if it belongs to the corresponding cycle \(C_n \).

The proof is by induction on \(n \). Without loss of generality we may assume that all the graphs under consideration are of maximum size \(n-2 \). Let us start with small values of \(n \) i.e. \(n = 6 \) and \(n = 7 \). It is easy to see that there are five graphs of order 6 and size 4 which are not exceptional: \(K_1 \cup P_5 \), \(K_1 \cup S'_5 \), \(K_2 \cup P_4 \), \(2P_3 \) and \(2K_1 \cup (S_3 + e) \). The careful packings of these graphs are depicted in Figure 1 (the edges of \(C_6 \) are not marked). Observe that they can be used to obtain the careful packings of \((n, n-2) \)-graphs for \(n = 7 \). We can also use Lemma 8. The details are left to the reader.
Suppose now that the theorem is true for all \(n' < n \) and let \(G \) be an \((n, n-2)\)-graph. Assume also that \(G \) is not one of the exceptional graphs. We shall consider two main cases.

Case 1. \(G \) has two independent end-edges.
Denote the independent end-edges of \(G \) by \(uu' \) and \(vv' \), \(u, v \) being the corresponding end-vertices of \(G \). Consider now the graph \(G' = G \setminus \{u, v\} \).
Suppose that there exists a careful packing for \(G' \), say \(\sigma' \). It is easy to extend the bijection \(\sigma' \) to a packing of \(G \). Moreover, since the edge \(uv \) is neither black nor blue, we can consider it as a red one. We assign the red colour also to \(n-4 \) edges connecting \(u \) with \(C_{n-2} \) and to \(n-4 \) edges connecting \(v \) with \(C_{n-2} \). By Lemma 7 (with \(k = n - 2 \)) the careful packing of \(G \) exists. The case where \(G' \) is an exceptional graph will be considered below as **Case 3**.

Case 2. \(G \) has not two independent end-edges.
Since \(G \) has at least two tree components, the above condition implies that at least one of them is trivial and the other is a star. Let \(u \) be an isolated vertex of \(G \) and let \(x \) be a vertex defined by
\[
d_G(x) = \min\{d_G(y) : y \in V(G), d_G(y) \geq 2\}
\]
We consider the graph \(G' = G \setminus \{u, x\} \). Suppose that \(G' \) is not one of the exceptional graphs; other cases are considered below as Case 3. Then there exists a careful packing for \(G' \), say \(\sigma' \). It is evident that by putting \(x \) on \(u \) and \(u \) on \(x \) we extend \(\sigma' \) to a packing of \(G \). We may assume that the vertices \(x \) and \(u \) send \(n - 2 - d(x) \) red edges to the red cycle \(C_{n-2} \) contained in \(G' \). We can apply Lemma 7 and obtain a careful packing of \(G \) if \(2(n - 2 - d_G(x)) \geq n - 1 \). Hence \(n - 3 \geq 2d_G(x) \).

Thus, we may assume that

\[
(*): \quad d_G(x) \geq \frac{n - 2}{2}
\]

So, for \(n \geq 7, d_G(x) \geq 3 \). Consider first the case where \(G \) has two trivial components.

Case 2 (a) \(G \) has two isolated vertices, say \(u, v \).

Consider first the case \(n = 8 \). The case by case examination shows that: either \(G \) contains an end-vertex such that we can apply Lemma 8, or \(G \) is such that the graph \(G' = G \setminus \{u, x\} \) is exceptional (see Case 3). So, we may assume that \(n \geq 9 \). Consider now the graph \(G_1 = G \setminus \{u, v, x\} \). If \(G_1 \) is not one of the exceptional graphs, we can apply the induction hypothesis. Let \(\sigma_1 \) be a careful packing of \(G_1 \). Denote by \(y_1 \) a vertex of \(G_1 \) non adjacent to \(x \) (such a vertex exists by the definition of \(x \)). Without loss of generality we may assume that \(y_1 \) is the first vertex on the red cycle \(y_1, y_2, \ldots, y_{n-3} \) corresponding to the careful packing of \(G_1 \). Then the cycle \(xy_1y_2 \ldots y_{n-3}uvx \) can be considered as a red cycle of the careful packing of \(G \), say \(\sigma \), obtained from \(\sigma' \) by putting \(\sigma(x) = v, \sigma(v) = x, \sigma(u) = u \) and \(\sigma(w) = \sigma'(w) \) for \(w \in V(G) \setminus \{u, v, x\} \).

Case 2 (b) \(G \) has only one isolated vertex.

Hence \(G \) is of the form \(K_1 \cup K_1,r \cup R \) where \(r \geq 1 \) and the graph \(R \) has no isolated vertices. Moreover, since by Case 1, \(R \) contains no end-vertices we may assume, by (*), that either all vertices of \(R \) are of a degree greater than or equal to \(\frac{n-2}{2} \), or \(R \) is empty. In the first case, for \(n > 6 \), this contradicts the fact that the average degree of \(R \) is equal to 2. In the second case \(G \) is exceptional, a contradiction.

Case 3. \(G' \) is one of the exceptional graphs, where \(G' \) denotes one of the graphs defined in Cases 1 or 2 \((n \geq 8) \).

We shall need some additional notations. Namely, by \(S_p' \) we denote a tree of order \(p \) obtained by subdividing one of the edges of the star \(K_{1,p-2} \) and by \((K_{1,p-1} + e) \) we denote, as usually, the graph of order \(p \) obtained by adding one edge to the edge-set of the star \(K_{1,p-1} \).
A note on careful packing of a graph

Without loss of generality we may assume that every other choice of two or three (for $n \geq 9$) vertices in a way described in Cases 1 and 2 leads also to one of the exceptional graphs. Of course, we can proceed as in Case 2 also in the case where the graph G has two independent end-edges.

Recall that G itself is not an exceptional graph.

The case by case examination shows that then G belongs to one of the following families of graphs: $P_3 \cup K_{1,n-4}$, $K_1 \cup S_{n-1}^l$, $2K_1 \cup (K_{1,n-3} + e)$, $K_1 \cup K_3 \cup K_{1,n-5}$, or $n = 8$ and G is isomorphic to $4K_1 \cup K_4$, $2K_1 \cup 2K_3$, $2K_2 \cup C_4$, $K_2 \cup P_3 \cup C_3$ or $3K_1 \cup K_{2,3}$.

Observe that in all graphs belonging to the above mentioned families, except for $K_1 \cup K_3 \cup K_{1,3}$, there is a vertex of a degree greater than or equal to $n - 4$, so we can apply Lemma 8 (since $n \geq 8$).

The careful packings of $4K_1 \cup K_4$, $2K_2 \cup C_4$ or $2K_1 \cup 2K_3$ are very symmetric and easy to find.

The careful packing of $K_2 \cup P_3 \cup C_3$ as well as the careful packing of $K_1 \cup K_3 \cup K_{1,3}$ are depicted in Fig. 2.

Finally, the careful packing of $3K_1 \cup K_{2,3}$ can be easily obtained from the careful packing of $2K_1 \cup K_{1,3}$ into K_6.

This completes the proof of the theorem.

References

Figure 2. Careful packing of $K_2 \cup P_3 \cup C_3$ and $K_1 \cup K_{1,3} \cup C_3$

Received 26 April 1994
Revised 14 July 1994