
Dependent type theory as the initial category with
families

Internship at Chalmers University of Technology, with Peter
Dybjer and Thierry Coquand

Simon Castellan

December 8, 2014



Introduction

Initiality:

I a term of ring theory (eg. 1 + 1) → a unique object in any
ring.

I a simply typed λ-term → a unique object in a CCC

Goal: extension of this result to dependent type theory

I Main problem: several derivations for a typing judgement →
coherence problem

Contribution: an original way of solving this problem



Overview

Coherence problem already solved by [Str91] and [Cur93].
Streicher’s way:

1 Define an annotated syntax
2 Solve the coherence problem there
3 Prove the equivalence with the usual syntax.

Problem with this approach:

1 Definition on untyped terms
2 Annotations are ad-hoc.

Our way:

1 Define a fully annotated syntax
2 Solve completely the problem (as in [Cur93], but less

technical)
3 Prove the equivalence.



Table of contents

The calculus (with annotations)

Coherence property

Semantics

The calculus (without annotations)



Martin-Löf’s Logical Framework

I Extension of simply type λ-calculus with dependant types,
namely:

I dependent product: Π(x : A)B or Π(A,B)
I universe: type set and a decoding function el(x).
I polymorphism: Π(x : set)(el(x)⇒ el(x))

I Extends Curry-Howard to first order predicate logic
I Terms appear in types (via el) ⇒ computation at the level of

types
I Type casting: t : A and A = A′ then t : A′

I Typing judgement Γ ` t : A along with equality judgement
Γ ` t = t ′ : A



Explicit substitutions

Application for dependent product

Γ ` t : Π(x : A)B Γ ` u : A

Γ ` t u : B{u/x}

⇒ Substitutions becomes part of the syntax.

I Substitution: Γ ` f : ∆ “f implements ∆ in Γ”.
I Key operations of substitutions:

1 projection: Γ · A ` p : Γ
2 extension: f : Γ→ ∆ and Γ ` t : A → 〈f , a〉 : Γ→ ∆ · A

I Contravariance: ∆ ` t : A + Γ ` f : ∆ ⇒ Γ ` t[f ] : A[f ].



How much annotations

Traditional typing rule:

Γ · A ` t : B

Γ ` λ(t) : A→ B

Γ,A,B are implicit. Fully explicit rule:

Γ ` Γ ` A Γ · A ` B Γ · A ` t : B

Γ ` λ(Γ,A,B, t) : A→ B

I Less space for derivations.



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Type constructors:

I set(Γ) (universe)
I Π(Γ,A,B) (dependent product without variable)
I A[f ]Γ∆

Typing rule for dependent product

Γ ` Γ ` A Γ · A ` B

Γ ` Π(Γ,A,B)



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Type constructors:

I set(Γ) (universe)
I Π(Γ,A,B) (dependent product without variable)
I A[f ]Γ∆

Typing rule for dependent product

Γ ` Γ ` A Γ · A ` B

Γ ` Π(Γ,A,B)



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Type constructors:

I set(Γ) (universe)
I Π(Γ,A,B) (dependent product without variable)
I A[f ]Γ∆

Typing rule for substitutions on types

Γ ` ∆ ` ∆ ` A Γ ` f : ∆

Γ ` A[f ]



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:

I λ(Γ,A,B, t) (λ-abstraction)
I ap(Γ,A,B, t) (unary application)
I q(Γ,A) (zeroth de Bruijn variable)
I (t : A)[f ]Γ∆ (substitution)

Typing rule for dependent product

Γ ` Γ ` A Γ · A ` B

Γ ` Π(Γ,A,B)



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:

I λ(Γ,A,B, t) (λ-abstraction)
I ap(Γ,A,B, t) (unary application)
I q(Γ,A) (zeroth de Bruijn variable)
I (t : A)[f ]Γ∆ (substitution)

Typing rule for λ-abstraction

Γ ` Γ ` A Γ · A ` B Γ · A ` t : B

Γ ` λ(Γ,A,B, t) : Π(Γ,A,B)



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:

I λ(Γ,A,B, t) (λ-abstraction)
I ap(Γ,A,B, t) (unary application)
I q(Γ,A) (zeroth de Bruijn variable)
I (t : A)[f ]Γ∆ (substitution)

Type casting

Γ = Γ′ ` Γ ` A = A′ Γ ` t : A

Γ′ ` t : A′



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:

I λ(Γ,A,B, t) (λ-abstraction)
I ap(Γ,A,B, t) (unary application)
I q(Γ,A) (zeroth de Bruijn variable)
I (t : A)[f ]Γ∆ (substitution)

Term equality (β)

Γ · A ` t : B

Γ · A ` t = ap(λ(t)) : B



Syntax of our calculus

I 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:

I λ(Γ,A,B, t) (λ-abstraction)
I ap(Γ,A,B, t) (unary application)
I q(Γ,A) (zeroth de Bruijn variable)
I (t : A)[f ]Γ∆ (substitution)

Term equality (η)

Γ ` t : Π(Γ,A,B)

Γ ` t = λ(ap(t)) : Π(Γ,A,B)



Compressing derivations
I δ 7→ δz : compressing derivations by

1 transitivity of equality
...

Γ′′ ` A Γ′ = Γ′′ `
Γ′ ` A Γ = Γ′ `

Γ ` A →

...
Γ′′ ` A Γ = Γ′′

Γ ` A

2
@2

reflexivity

...
Γ ` A Γ = Γ `

Γ ` A
→

...
Γ ` A

Theorem
Let δ and δ′ be two derivations of a judgement J. We have
δz ≡ δ′z .

I Wrong in Streicher’s calculus due to lack of annotations.



Coherence lemma

Goal: a definition on derivations → definition on judgements.
Interpretation: A map ϕ : D → X such that

ϕ

(
δ : Γ ` t : A Γ ` A = A′

Γ ` t : A′

)
= ϕ(δ)

Theorem
Any interpretation ϕ : D → X defined on derivations yields a map
ϕ̄ : J → X defined on typing judgements such that whenever δ : J
then ϕ(δ) = ϕ̄(J)



Categories with families (CwF)

I Categorical semantics centered around contexts and
substitutions as morphisms between contexts: definitional
equality becomes equality in a CwF

I Category of CwFs
I Example: term model T: quotient of syntax by definitional

equality.
I Goal: initiality of T



Initiality of T

Let C be a CwF.

1 Interpretation in any CwF: a map J·K from the syntax to C

t
δΓ : Γ ` δA : Γ ` A δB : Γ · A ` B

Γ ` Π(Γ,A,B)

|

= Π(JδΓK, JδAK, JδBK)

2 Extends to a morphism of CwFs: J·K : T→ C
for instance F ([Γ `]) = JΓ `K

3 Uniqueness: there is a unique map from T to C .

⇒ T is an initial object.



Syntax and term model

I We now consider the same calculus but without the extra
annotations.

Type constructors:

I set (universe)
I Π(A,B) (dependent product without variable)
I A[f ] (substitution)

I Ti : the implicit term model
I Stripping operator s from T to Ti

I Goal: s : T ∼= Ti



Syntax and term model

I We now consider the same calculus but without the extra
annotations.

Type constructors:

I set (universe)
I Π(A,B) (dependent product without variable)
I A[f ] (substitution)

I Ti : the implicit term model
I Stripping operator s from T to Ti

I Goal: s : T ∼= Ti



Syntax and term model

I We now consider the same calculus but without the extra
annotations.

Term constructors:

I λ(t) (λ-abstraction)
I ap(t) (unary application)
I q (variable)
I t[f ] (substitution)

I Ti : the implicit term model
I Stripping operator s from T to Ti

I Goal: s : T ∼= Ti



Syntax and term model

I We now consider the same calculus but without the extra
annotations.

Term constructors:

I λ(t) (λ-abstraction)
I ap(t) (unary application)
I q (variable)
I t[f ] (substitution)

I Ti : the implicit term model
I Stripping operator s from T to Ti

I Goal: s : T ∼= Ti



s is one-to-one

I Injectivity of s: if s(Γ) = s(Γ′) then Γ = Γ′ `.
I hard part, reflexivity case: if s(Γ) ≡ s(Γ′) then Γ = Γ′ `.
I We need normalisation, because of the substitution rule:

Γ ` f : ∆ ∆ ` t : A

Γ ` t[f ] : A[f ]

No ∆ in conclusion.

1 Prove the result for normal term which only substitutions in
specific situtions.

2 Prove that the result extend to non-normal terms.

I s has an inverse Ti → T.
1 By induction: build a right inverse t : Ti → T (s ◦ t = IdTi )
2 By initiality of T , we know that t ◦ s = IdT

→ Ti is initial.



Conclusion

I Original method: fully annotated syntax
I Extension to other dialects (and GAT)
I Third initial CwF: semantic domain (normalization by

evaluation)



Biblio

P.L. Curien.
Substitution up to isomorphism.
Fundamenta Informaticae, 19(1-2):51–85, 1993.

T. Streicher.
Semantics of type theory: correctness, completeness, and
independence results.
Birkhauser Boston Inc., 1991.


	The calculus (with annotations)
	Coherence property
	Semantics
	The calculus (without annotations)

