Dependent type theory as the initial category with
families

Internship at Chalmers University of Technology, with Peter
Dybjer and Thierry Coquand

Simon Castellan

December 8, 2014

Introduction

Initiality:
> a term of ring theory (eg. 1+ 1) — a unique object in any
ring.
» a simply typed A\-term — a unique object in a CCC

Goal: extension of this result to dependent type theory

» Main problem: several derivations for a typing judgement —
coherence problem

Contribution: an original way of solving this problem

Overview
Coherence problem already solved by [Str91] and [Cur93].
Streicher's way:
1 Define an annotated syntax
2 Solve the coherence problem there

3 Prove the equivalence with the usual syntax.

Problem with this approach:

1 Definition on untyped terms

2 Annotations are ad-hoc.

Our way:
1 Define a fully annotated syntax
2 Solve completely the problem (as in [Cur93], but less
technical)

3 Prove the equivalence.

Table of contents

The calculus (with annotations)

Coherence property

Semantics

The calculus (without annotations)

Martin-Lof's Logical Framework

» Extension of simply type A-calculus with dependant types,
namely:
» dependent product: M(x : A)B or M(A, B)
> universe: type set and a decoding function el(x).
» polymorphism: M(x : set)(el(x) = el(x))

» Extends Curry-Howard to first order predicate logic

» Terms appear in types (via el) = computation at the level of
types

» Type casting: t: Aand A= A then t: A’

» Typing judgement I' - t : A along with equality judgement
Frt=t:A

Explicit substitutions

Application for dependent product

N=t:MN(x:AB NFu:A
et u:B{u/x}

= Substitutions becomes part of the syntax.
» Substitution: T+ f: A “f implements A in ",
» Key operations of substitutions:

1 projection: [- Ak p:T
2 extension: f: T > AandlTHt:A— (f,a): T > A-A

» Contravariance: AFt: A+ TkFf:A=TLFt[f]:A[f]

How much annotations

Traditional typing rule:

r-A-t:B
FEA(t):A— B

I, A, B are implicit. Fully explicit rule:

I r=A M-A-B MNAFt:B

F-AT,AB,t):A— B

» Less space for derivations.

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Type constructors:

» set(I") (universe)
» (T, A, B) (dependent product without variable)
> Alfl

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Type constructors:

» set(I") (universe)
» [1(I', A, B) (dependent product without variable)
> Alfl

Typing rule for dependent product

- THA T-AFB
[+ N(T, A, B)

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Type constructors:

» set(I") (universe)
» (T, A, B) (dependent product without variable)
> Alfl)

Typing rule for substitutions on types

= AF AFA Fr=f:A
M= A[f]

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:
» (I, A, B, t) (A-abstraction)
» ap(l, A, B, t) (unary application)
» q(I', A) (zeroth de Bruijn variable)
> (t: A)[f]’ (substitution)

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:
» A\(I', A, B, t) (A-abstraction)
» ap(l, A, B, t) (unary application)
» q(I', A) (zeroth de Bruijn variable)
> (t: A)[f]’ (substitution)

Typing rule for A-abstraction

r- TFA T-AFB T-A+-t:B
FEAT,A B, t): 0(T, A B)

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:
» (I, A, B, t) (A-abstraction)
» ap(l, A, B, t) (unary application)
» q(I', A) (zeroth de Bruijn variable)
> (t: A)[f]’ (substitution)
Type casting
=Mk THA=A TFrt:A
M-t A

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:
» (I, A, B, t) (A-abstraction)
» ap(l, A, B, t) (unary application)
» q(I', A) (zeroth de Bruijn variable)
> (t: A)[f]’ (substitution)
Term equality (53)
MNArt:B
MNAkt=ap(A(t)):B

Syntax of our calculus

» 8 judgements: typing and equality for contexts, types, terms,
substitutions.

Term constructors:
» (I, A, B, t) (A-abstraction)
» ap(l, A, B, t) (unary application)
» q(I', A) (zeroth de Bruijn variable)
> (t: A)[f]’ (substitution)
Term equality ()
M-t:0(T,A B)
M-t = Aap(t)) : N(T, A, B)

Compressing derivations

» § — d%: compressing derivations by
1 transitivity of equality

MEA =T+

e A r=r'r A M=

I—//

M-A — r-A

@2
reflexivity

TFA =l
STFA
rFA

Theorem
Let § and &' be two derivations of a judgement J. We have
sz 12

Coherence lemma

Goal: a definition on derivations — definition on judgements.
Interpretation: A map ¢ : Z — X such that

S:iTEtiA THA=AN
v ret:A = #(9)

Theorem
Any interpretation ¢ : 9 — X defined on derivations yields a map
@ : _# — X defined on typing judgements such that whenever ¢ : J

then () = ¢(J)

Categories with families (CwF)

» Categorical semantics centered around contexts and
substitutions as morphisms between contexts: definitional
equality becomes equality in a CwF

» Category of CwFs

» Example: term model T: quotient of syntax by definitional
equality.

» Goal: initiality of T

Initiality of T

Let € be a CwF.

1 Interpretation in any CwF: a map [-] from the syntax to &

I,(;r; [6a:THA 65 F-AI—B]] — N([5], [5a], [65]

r=n(r,A,B)

2 Extends to a morphism of CwFs: [-]: T — %
for instance F([I H]) = [H]

3 Uniqueness: there is a unique map from T to %.

= T is an initial object.

Syntax and term model

» We now consider the same calculus but without the extra
annotations.

Type constructors:

» set (universe)
» (A, B) (dependent product without variable)
» A[f] (substitution)

Syntax and term model

» We now consider the same calculus but without the extra
annotations.

Type constructors:

» set (universe)
» (A, B) (dependent product without variable)
» A[f] (substitution)

Syntax and term model

» We now consider the same calculus but without the extra
annotations.

Term constructors:

A(t) (A-abstraction)
ap(t) (unary application)

v

v

v

g (variable)
t[f] (substitution)

v

Syntax and term model

» We now consider the same calculus but without the extra
annotations.

Term constructors:

» A(t) (A-abstraction)

» ap(t) (unary application)
» g (variable)

» t[f] (substitution)

» T': the implicit term model
» Stripping operator s from T to T
» Goal: s : T =T

S IS one-to-one

» Injectivity of s: if s(I) = s(I") then T =T"F.
» hard part, reflexivity case: if s(I') = s(I") then T =T" .

» We need normalisation, because of the substitution rule:

Fr=f: A AFt: A
[- t[f] : A[f]

No A in conclusion.

1 Prove the result for normal term which only substitutions in
specific situtions.
2 Prove that the result extend to non-normal terms.

» s has an inverse T/ — T.

1 By induction: build a right inverse t : T/ — T (so t = Idy)
2 By initiality of T, we know that t o s = Idt

— T is initial.

Conclusion

» Original method: fully annotated syntax
» Extension to other dialects (and GAT)

» Third initial CwF: semantic domain (normalization by
evaluation)

Biblio

[@ P.L. Curien.
Substitution up to isomorphism.
Fundamenta Informaticae, 19(1-2):51-85, 1993.

[@ T. Streicher.
Semantics of type theory: correctness, completeness, and
independence results.
Birkhauser Boston Inc., 1991.

	The calculus (with annotations)
	Coherence property
	Semantics
	The calculus (without annotations)

