Dependent type theory as the initial category with

 familiesInternship at Chalmers University of Technology, with Peter Dybjer and Thierry Coquand

Simon Castellan

December 8, 2014

Introduction

Initiality:

- a term of ring theory (eg. $1+1$) \rightarrow a unique object in any ring.
- a simply typed λ-term \rightarrow a unique object in a CCC

Goal: extension of this result to dependent type theory

- Main problem: several derivations for a typing judgement \rightarrow coherence problem

Contribution: an original way of solving this problem

Overview

Coherence problem already solved by [Str91] and [Cur93]. Streicher's way:

1 Define an annotated syntax
2 Solve the coherence problem there
3 Prove the equivalence with the usual syntax.
Problem with this approach:
1 Definition on untyped terms
2 Annotations are ad-hoc.
Our way:
1 Define a fully annotated syntax
2 Solve completely the problem (as in [Cur93], but less technical)
3 Prove the equivalence.

Table of contents

The calculus (with annotations)

Coherence property

Semantics

The calculus (without annotations)

Martin-Löf's Logical Framework

- Extension of simply type λ-calculus with dependant types, namely:
- dependent product: $\Pi(x: A) B$ or $\Pi(A, B)$
- universe: type set and a decoding function el (x).
- polymorphism: $\Pi(x: \operatorname{set})(e l(x) \Rightarrow e l(x))$
- Extends Curry-Howard to first order predicate logic
- Terms appear in types (via el) \Rightarrow computation at the level of types
- Type casting: $t: A$ and $A=A^{\prime}$ then $t: A^{\prime}$
- Typing judgement $\Gamma \vdash t$: A along with equality judgement $\Gamma \vdash t=t^{\prime}: A$

Explicit substitutions

Application for dependent product

$$
\frac{\Gamma \vdash t: \Pi(x: A) B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B\{u / x\}}
$$

\Rightarrow Substitutions becomes part of the syntax.

- Substitution: $\Gamma \vdash f: \Delta$ " f implements Δ in Γ ".
- Key operations of substitutions:

1 projection: $\Gamma \cdot A \vdash p: \Gamma$
2 extension: $f: \Gamma \rightarrow \Delta$ and $\Gamma \vdash t: A \rightarrow\langle f, a\rangle: \Gamma \rightarrow \Delta \cdot A$

- Contravariance: $\Delta \vdash t: A+\Gamma \vdash f: \Delta \Rightarrow \Gamma \vdash t[f]: A[f]$.

How much annotations

Traditional typing rule:

$$
\frac{\Gamma \cdot A \vdash t: B}{\Gamma \vdash \lambda(t): A \rightarrow B}
$$

Γ, A, B are implicit. Fully explicit rule:

$$
\frac{\Gamma \vdash \quad \Gamma \vdash A \quad \Gamma \cdot A \vdash B \quad \Gamma \cdot A \vdash t: B}{\Gamma \vdash \lambda(\Gamma, A, B, t): A \rightarrow B}
$$

- Less space for derivations.

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Type constructors:

- set(Γ) (universe)
- $\Pi(\Gamma, A, B)$ (dependent product without variable)
- $A[f]_{\Delta}^{\Gamma}$

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Type constructors:

- set(Γ) (universe)
- $\Pi(\Gamma, A, B)$ (dependent product without variable)
- $A[f]_{\Delta}^{\Gamma}$

Typing rule for dependent product

$$
\frac{\Gamma \vdash \quad \Gamma \vdash A \quad \Gamma \cdot A \vdash B}{\Gamma \vdash \Pi(\Gamma, A, B)}
$$

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Type constructors:

- set(Γ) (universe)
- $\Pi(\Gamma, A, B)$ (dependent product without variable)
- $A[f]_{\Delta}^{\Gamma}$

Typing rule for substitutions on types

$$
\begin{array}{cccc}
\Gamma \vdash & \Delta \vdash & \Delta \vdash A & \Gamma \vdash f: \Delta \\
& \Gamma \vdash A[f]
\end{array}
$$

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Term constructors:

- $\lambda(\Gamma, A, B, t)$ (λ-abstraction)
- ap (Γ, A, B, t) (unary application)
- $q(\Gamma, A)$ (zeroth de Bruijn variable)
- $(t: A)[f]_{\Delta}^{\Gamma}$ (substitution)

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Term constructors:

- $\lambda(\Gamma, A, B, t)$ (λ-abstraction)
- ap($\Gamma, A, B, t)$ (unary application)
- $q(\Gamma, A)$ (zeroth de Bruijn variable)
- $(t: A)[f]_{\Delta}^{\Gamma}$ (substitution)

Typing rule for λ-abstraction

$$
\frac{\Gamma \vdash \quad \Gamma \vdash A \quad \Gamma \cdot A \vdash B \quad \Gamma \cdot A \vdash t: B}{\Gamma \vdash \lambda(\Gamma, A, B, t): \Pi(\Gamma, A, B)}
$$

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Term constructors:

- $\lambda(\Gamma, A, B, t)$ (λ-abstraction)
- ap (Γ, A, B, t) (unary application)
- $q(\Gamma, A)$ (zeroth de Bruijn variable)
- $(t: A)[f]_{\Delta}^{\Gamma}$ (substitution)

Type casting

$$
\frac{\Gamma=\Gamma^{\prime} \vdash \quad \Gamma \vdash A=A^{\prime} \quad \Gamma \vdash t: A}{\Gamma^{\prime} \vdash t: A^{\prime}}
$$

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Term constructors:

- $\lambda(\Gamma, A, B, t)$ (λ-abstraction)
- ap (Γ, A, B, t) (unary application)
- $q(\Gamma, A)$ (zeroth de Bruijn variable)
- $(t: A)[f]_{\Delta}^{\Gamma}$ (substitution)

Term equality (β)

$$
\frac{\Gamma \cdot A \vdash t: B}{\Gamma \cdot A \vdash t=\operatorname{ap}(\lambda(t)): B}
$$

Syntax of our calculus

- 8 judgements: typing and equality for contexts, types, terms, substitutions.

Term constructors:

- $\lambda(\Gamma, A, B, t)$ (λ-abstraction)
- ap (Γ, A, B, t) (unary application)
- $q(\Gamma, A)$ (zeroth de Bruijn variable)
- $(t: A)[f]_{\Delta}^{\Gamma}$ (substitution)

Term equality (η)

$$
\frac{\Gamma \vdash t: \Pi(\Gamma, A, B)}{\Gamma \vdash t=\lambda(\operatorname{ap}(t)): \Pi(\Gamma, A, B)}
$$

Compressing derivations

- $\delta \mapsto \delta^{z}$: compressing derivations by

1 transitivity of equality
$\frac{\frac{\Gamma^{\prime \prime} \vdash A}{\Gamma^{\prime} \vdash A} \quad \Gamma^{\prime}=\Gamma^{\prime \prime} \vdash}{\Gamma \vdash A} \quad \Gamma=\Gamma^{\prime} \vdash\left(\frac{\frac{\vdots}{\Gamma^{\prime \prime} \vdash A} \quad \Gamma=\Gamma^{\prime \prime}}{\Gamma \vdash A}\right.$

2
@2
reflexivity

$$
\frac{\frac{\vdots}{\Gamma \vdash A} \quad \Gamma=\Gamma \vdash}{\Gamma \vdash A} \rightarrow \frac{\vdots}{\Gamma \vdash A}
$$

Theorem
Let δ and δ^{\prime} be two derivations of a judgement J. We have $\delta^{z} \equiv \delta^{\prime z}$

Coherence lemma

Goal: a definition on derivations \rightarrow definition on judgements. Interpretation: A map $\varphi: \mathscr{D} \rightarrow X$ such that

$$
\varphi\left(\frac{\delta: \Gamma \vdash t: A \quad \Gamma \vdash A=A^{\prime}}{\Gamma \vdash t: A^{\prime}}\right)=\varphi(\delta)
$$

Theorem
Any interpretation $\varphi: \mathscr{D} \rightarrow X$ defined on derivations yields a map $\bar{\varphi}: \mathscr{J} \rightarrow X$ defined on typing judgements such that whenever $\delta: J$ then $\varphi(\delta)=\bar{\varphi}(J)$

Categories with families (CwF)

- Categorical semantics centered around contexts and substitutions as morphisms between contexts: definitional equality becomes equality in a CwF
- Category of CwFs
- Example: term model \mathbb{T} : quotient of syntax by definitional equality.
- Goal: initiality of \mathbb{T}

Initiality of \mathbb{T}

Let \mathscr{C} be a CwF .
1 Interpretation in any $\mathrm{CwF}:$ a map $\llbracket \cdot \rrbracket$ from the syntax to \mathscr{C}

$$
\llbracket \frac{\delta_{\Gamma}: \Gamma \vdash \quad \delta_{A}: \Gamma \vdash A \quad \delta_{B}: \Gamma \cdot A \vdash B}{\Gamma \vdash \Pi(\Gamma, A, B)} \rrbracket=\Pi\left(\llbracket \delta_{\Gamma} \rrbracket, \llbracket \delta_{A} \rrbracket, \llbracket \delta_{B} \rrbracket\right)
$$

2 Extends to a morphism of CwFs: $\llbracket \cdot \rrbracket: \mathbb{T} \rightarrow \mathscr{C}$ for instance $F([\Gamma \vdash])=\llbracket \Gamma \vdash \rrbracket$
3 Uniqueness: there is a unique map from \mathbb{T} to \mathscr{C}.
$\Rightarrow \mathbb{T}$ is an initial object.

Syntax and term model

- We now consider the same calculus but without the extra annotations.

Type constructors:

- set (universe)
- $\Pi(A, B)$ (dependent product without variable)
- $A[f]$ (substitution)

Syntax and term model

- We now consider the same calculus but without the extra annotations.

Type constructors:

- set (universe)
- $\Pi(A, B)$ (dependent product without variable)
- $A[f]$ (substitution)

Syntax and term model

- We now consider the same calculus but without the extra annotations.

Term constructors:

- $\lambda(t)$ (λ-abstraction)
- ap (t) (unary application)
- q (variable)
- $t[f]$ (substitution)

Syntax and term model

- We now consider the same calculus but without the extra annotations.

Term constructors:

- $\lambda(t)$ (λ-abstraction)
- ap (t) (unary application)
- q (variable)
- $t[f]$ (substitution)
- \mathbb{T}^{i} : the implicit term model
- Stripping operator s from \mathbb{T} to \mathbb{T}^{i}
- Goal: $s: \mathbb{T} \cong \mathbb{T}^{i}$

s is one-to-one

- Injectivity of s : if $s(\Gamma)=s\left(\Gamma^{\prime}\right)$ then $\Gamma=\Gamma^{\prime} \vdash$.
- hard part, reflexivity case: if $s(\Gamma) \equiv s\left(\Gamma^{\prime}\right)$ then $\Gamma=\Gamma^{\prime} \vdash$.
- We need normalisation, because of the substitution rule:

$$
\frac{\Gamma \vdash f: \Delta \quad \Delta \vdash t: A}{\Gamma \vdash t[f]: A[f]}
$$

No Δ in conclusion.
1 Prove the result for normal term which only substitutions in specific situtions.
2 Prove that the result extend to non-normal terms.

- s has an inverse $\mathbb{T}^{i} \rightarrow \mathbb{T}$.

1 By induction: build a right inverse $t: \mathbb{T}^{i} \rightarrow \mathbb{T}\left(s \circ t=\mathrm{Id}_{\mathbb{T}^{i}}\right)$
2 By initiality of T, we know that $t \circ s=\mathrm{Id}_{\mathbb{T}}$
$\rightarrow \mathbb{T}^{i}$ is initial.

Conclusion

- Original method: fully annotated syntax
- Extension to other dialects (and GAT)
- Third initial CwF: semantic domain (normalization by evaluation)

Biblio

图 P.L. Curien.
Substitution up to isomorphism.
Fundamenta Informaticae, 19(1-2):51-85, 1993.
嗇 T. Streicher.
Semantics of type theory: correctness, completeness, and independence results.
Birkhauser Boston Inc., 1991.

