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Overview


•  We examine using the closing prices of 
stocks as a source for a true random seeds


•  This approach has been used in binding 
E2E elections


•  We conservatively estimate that over one 
trading day, the stocks in the Dow Jones 
have over 200 unpredictable bits 


•  We find the level of randomness is sufficient
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Randomness in elections


•  The detection of errors or fraud in elections 
can be achieved with audits


•  In traditional elections, precincts can be 
randomly selected for manual recounts


•  In end-to-end verifiable (E2E) elections, 
random challenges can prove the tally is 
correctly computed from a verifiable set of 
privacy-preserving receipts


•  If the challenges were known in advance, the 
proof could be faked
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Random challenges


•  Two systems that require external 
randomness are Scantegrity II and 
Punchscan


•  Both have run binding elections and both 
used financial market data for generating a 
seed


•  The seed (or its pseudorandom expansion) 
is formatted to create challenges
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•  What properties should a random seed 
have for E2E elections?

– Each bit should have a uniform probability of 0 

or 1

– Generated at the appropriate time

– Appropriate length

– Generation is observable by anyone

– A high level of mathematics is tolerable
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Price manipulation


•  Since the price is determined by trades and 
anyone can trade, can’t anyone manipulate the 
closing price?


•  In theory, yes, but…

•  Widely considered to be difficult for liquid 

stocks on established exchanges

•  There is empirical evidence for this

•  Barrier options continue to be written, held and 

traded

•  Other complexities: see paper
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Method


Financial	
  Model	
  
• Choose	
  a	
  model	
  to	
  represent	
  stock	
  price	
  movements	
  

Historic	
  Data	
  
• Fit	
  historic	
  data	
  to	
  the	
  model	
  to	
  es8mate	
  parameters	
  

Monte	
  Carlo	
  Simula8ons	
  
• Run	
  simula8ons	
  of	
  price	
  movements	
  forward	
  in	
  8me	
  

Entropy	
  Es8ma8on	
  
• Measure	
  the	
  resul8ng	
  entropy	
  

Extrac8on	
  
• Determine	
  how	
  to	
  extract	
  random	
  bits	
  from	
  prices	
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Modeling stock prices


•  To estimate the randomness in a closing 
price, we need to assume a mathematical 
model holds for stock prices


•  These models do not predict prices

•  Models are used in real-life by banks to 

hedge against risky assets
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Black-Scholes


•  We use the Black-Scholes model

•  This model is now widely considered to 

under-estimate market volatility: bad for 
banks when pricing options, good for us in 
estimating a lower-bound on the 
randomness in a closing price


•  Black-Scholes assumes that stock prices 
follow a stochastic process called 
geometric Brownian motion (GBM)
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At each time-step, move up or down one unit
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At each time-step, move up or down an amount drawn from 
a Normal distribution
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Add a upward or downward drift




Geometric Brownian motion


•  If we make it continuous in time, we get:
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dSt = µStdt + σStdWt

St

µ
σ
dWt

Stock price at a given time


Drift term / rate of return / interest rate


Diffusion term / volatility


Increment of a Weiner process / stochastic term




Geometric Brownian motion


•  With a series of prices for a specific stock, 
we can estimate its daily drift and diffusion 
rates


•  Example: Microsoft over one year

•  From March 23, 2009 (at $17.95) until 

March 23, 2010 (at $29.88)
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MSFT closing prices
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Logarithmic returns


•  We are interested in the relative changes in 
the price, and need to fit it to an exponent


•  For each price, we calculate its logarithmic 
return from the previous price:


where T is the number of prices in the period (T=251)
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Ri = ln
�

Si+1

Si

�
, 0 ≤ i ≤ T − 1



Histogram of log-returns
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Estimator for drift/diffusion


•  Under GBM, the log-returns should be 
normally distributed as:


•  We can fit our historic data

•  For MSFT during this period, daily drift was 

0.23% and daily diffusion was 1.77%.
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Monte Carlo


•  Now that we have estimates for drift and 
diffusion, we simulate many possible paths 
for the stock price over the next day


•  We round the output price to the nearest 
cent


•  This gives a discrete probability distribution 
we can use to estimate the randomness


•  This approach has some bias: see paper
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Monte Carlo simulations
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Histogram of outcomes
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Entropy


•  Randomness can measured: entropy

•  A sequence of numbers with N bits of 

(Shannon) entropy contains the same 
randomness as flipping a coin N times


•  We can generally extract some these 
random bits from the sequence but not 
necessarily all N bits


•  M bits of min-entropy means we can 
(theoretically) extract M≤N coin tosses 
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Entropy Estimation


•  Entropy is measured from histogram


•  For MSFT over 1 day: 

– 7.76 bits of estimated Shannon entropy

– 0.02 bits of estimated bias

– 7.04 bits of estimated min-entropy 


•  Scantegrity II used the 30 stocks in the Dow 
Jones
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Stock ST µ σ N̂ M̂ H(P) B HB(P) H∞(P)
AA 14.50 0.00338956 0.0354406 386 440 7.72544 0.0022 7.73 6.99
AXP 41.24 0.00512444 0.0365912 1071 1305 9.2823 0.006525 9.29 8.50
BA 72.18 0.00313975 0.0219116 1112 1406 9.34279 0.00703 9.35 8.57
BAC 17.13 0.00455058 0.0468486 588 699 8.37453 0.003495 8.38 7.62
CAT 62.41 0.00352696 0.027272 1173 1540 9.4536 0.0077 9.46 8.69
CSCO 26.64 0.00200486 0.0167037 347 396 7.52981 0.00198 7.53 6.79
CVX 74.77 0.000565046 0.0136131 730 844 8.70798 0.00422 8.71 7.95
DD 38.31 0.0025213 0.0219181 603 751 8.43244 0.003755 8.44 7.69
DIS 34.01 0.00271648 0.0199576 506 596 8.13347 0.00298 8.14 7.39
GE 18.33 0.00264998 0.0239698 335 391 7.50284 0.001955 7.50 6.76
HD 32.59 0.00166033 0.0161739 404 475 7.76791 0.002375 7.77 7.03
HPQ 53.15 0.00234904 0.015783 615 758 8.43501 0.00379 8.44 7.69
IBM 129.37 0.00124652 0.0124436 1121 1460 9.36931 0.0073 9.38 8.60
INTC 22.67 0.0019257 0.0176758 302 352 7.37295 0.00176 7.37 6.63
JNJ 65.36 0.00101973 0.00811278 406 472 7.7723 0.00236 7.77 7.03
JPM 44.58 0.00261719 0.0318482 992 1190 9.18918 0.00595 9.20 8.43
KFT 30.49 0.00134673 0.0129888 314 333 7.35464 0.001665 7.36 6.62
KO 55.30 0.0010976 0.0111199 460 570 7.98678 0.00285 7.99 7.21
MCD 67.35 0.00111279 0.0113681 569 732 8.3043 0.00366 8.31 7.55
MMM 82.35 0.00235099 0.0148201 854 1075 8.97369 0.005375 8.98 8.22
MRK 38.50 0.00162879 0.0166847 486 554 8.05935 0.00277 8.06 7.29
MSFT 29.88 0.0022737 0.0176583 394 449 7.76265 0.002245 7.76 7.04
PFE 17.54 0.00120496 0.01571 216 243 6.82701 0.001215 6.83 6.10
PG 64.53 0.00146004 0.0125241 587 703 8.37914 0.003515 8.38 7.64
T 26.55 0.000357228 0.0121909 251 289 7.05851 0.001445 7.06 6.31
TRV 53.90 0.00154645 0.0188065 734 926 8.7059 0.00463 8.71 7.96
UTX 73.09 0.00232501 0.0159515 835 1015 8.9016 0.005075 8.91 8.14
VZ 30.98 0.000367966 0.0117435 279 320 7.22926 0.0016 7.23 6.48
WMT 55.89 0.000497465 0.010295 431 512 7.89168 0.00256 7.89 7.16
XOM 66.95 0.0000317968 0.012391 604 752 8.41962 0.00376 8.42 7.65



•  We also isolated the effect of each 
parameter on entropy: drift, diffusion, initial 
price, and elapsed time


•  See paper 


25




Correlated stocks


•  From chart: MSFT has 7.76 bits and IBM 
has 9.38 bits


•  If we concatenate their prices, do we get 
7.76 + 9.38 = 17.14 bits? 


•  No. The price movements are correlated

•  See the paper for modeling correlated 

stocks
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Bottom line


•  We estimate the randomness in the DJIA 
portfolio to have 218 bits of Shannon 
entropy and 192 bits of min-entropy
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Useful form


•  Consider taking a set of closing prices and 
concatenating them together into a large 
binary string


•  Some of the individual bits in this string will be 
nearly random while others will be almost 
deterministic


•  Can we convert it into a smaller bitstring where 
each individual bit is uniform random?


•  Yes. We require an extractor
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Extractors


•  Can we just hash it?

•  No. A hash function (ideal compression & 

Merkle-Damgaard) does not make a good 
extractor [DGHKR’04]


•  However we can use a standard 
cryptographic primitive: block cipher (ideal 
PRP) in CBC-MAC mode [DGHKR’04]
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Producing a seed


•  In summary, to make a random seed: take 
closing prices, concatenate them together, 
and extract


•  This is minimal: seeds rely on only that day 
and rely fully on the market’s randomness


•  We present a general protocol for a beacon 
service provider that offers some additional 
security properties: see paper
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Concluding Remarks


•  The approach of using closing prices for 
post-election audits in E2E elections is 
sound


•  Using a portfolio such as the Dow Jones will 
produce enough bits for a cryptographically 
strong seed


•  This seed can be used directly or expanded 
with a PRG
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Questions?
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