Canonical Forms

- Canonical Means "Unique"
- All Possible Functions can be Expressed in

One and Only One Way in a Canonical Form

• Canonical Forms may be Circuit Diagrams or

Algebraic Equations

x	Ŷ	Z	Minterms		Maxterms	
			Term	Designation	Term	Designatio
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Conversion of Canonic Forms $f_1 = \sum (1, 4, 7) = m_1 + m_4 + m_7$ $\overline{f}_1 = \sum (0, 2, 3, 5, 6) = m_0 + m_2 + m_3 + m_5 + m_6$ $\overline{\overline{f}}_1 = \overline{m_0 + m_2 + m_3 + m_5 + m_6}$ $f_1 = \overline{m_0 + m_2 + m_3 + m_5 + m_6}$ DeMorgan's Theorem: $f_1 = \overline{m_0} \bullet \overline{m_2} \bullet \overline{m_3} \bullet \overline{m_5} \bullet \overline{m_6}$ $\overline{m_i} = M_i$ $f_1 = M_0 \bullet M_2 \bullet M_3 \bullet M_5 \bullet M_6$

Names and Symbols of Functions

Table 2-8 **Boolean Expressions for the 16 Functions of Two Variables Boolean functions** Operator Name Comments symbol $F_0 = 0$ Null Binary constant 0 $F_1 = xy$ $x \cdot y$ AND x and y $F_2 = xy'$ x/yInhibition x, but not y $F_3 = x$ Transfer x' $F_4 = x'y$ y/xInhibition y, but not x $F_5 = y$ Transfer V $F_6 = xy' + x'y$ $x \oplus y$ Exclusive-OR *x* or *y*, but not both OR $F_7 = x + y$ x + yx or y $F_8 = (x + y)'$ $x \downarrow y$ NOR Not-OR $F_9 = xy + x'y'$ $(x \oplus y)'$ Equivalence x equals y $F_{10} = y'$ *y*′ Complement Not y $F_{11} = x + y'$ If y, then x $x \subset y$ Implication $F_{12} = x'$ x'Complement Not x $F_{13} = x' + y$ $x \supset y$ Implication If x, then y $F_{14} = (xy)'$ $x \uparrow y$ NAND Not-AND $F_{\rm 15} = \\ \odot 2002 \ {\rm Prentice \ Hall, \ Inc.}$ = 1Identity Binary constant 1 M. Morris Mano DIGITAL DESIGN, 3e.

