Canonical Forms

- Canonical Means "Unique"
- All Possible Functions can be Expressed in One and Only One Way in a Canonical Form
- Canonical Forms may be Circuit Diagrams or Algebraic Equations

Minterms and Maxterms

- Consider a function of Three variables x, y, and z
- Since each Variable may be Complemented or Uncomplemented there are $2^{3}=8$ Different Combinations
- When Combinations are Combined with AND they are Called Minterms
- When Combinations are combined with OR they are Called Maxterms

Minterms and Maxterms

Table 2-3
Minterms and Maxterms for Three Binary Variables

			Minterms			Maxterms	
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Term	Designation		Term	Designation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}		$x+y+z$	M_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}		$x+y+z^{\prime}$	M_{1}
0	1	0	$x^{\prime} y z^{\prime}$	m_{2}		$x+y^{\prime}+z$	M_{2}
0	1	1	$x^{\prime} y z$	m_{3}		$x+y^{\prime}+z^{\prime}$	M_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}		$x^{\prime}+y+z$	M_{4}
1	0	1	$x y^{\prime} z$	m_{5}		$x^{\prime}+y+z^{\prime}$	M_{5}
1	1	0	$x y z^{\prime}$	m_{6}		$x^{\prime}+y^{\prime}+z$	M_{6}
1	1	1	$x y z$	m_{7}		$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

For n Variables there are 2^{n} Minterms/Maxterms

Sum-of-Minterms Form

- Canonical Form - Standard Products
- Determine the Set of Minterms for Which a Function is 1 -valued
- These are called "Minterms of the Function"
- Combine all Minterms with a + Operation
- This is a 2-Level Form

$$
\begin{aligned}
& \text { Sum-of-Minterms Example } \\
& f_{1}=\bar{x} \bar{y} z+x \bar{y} \bar{z}+x y z \quad f_{1}=\sum(1,4,7)
\end{aligned}
$$

Product-of-Maxterms Form

- Canonical Form - Standard Sums
- Determine the Set of Maxterms for Which a Function is 0 -valued
- These are called "Maxterms of the Function"
- Must Complement Each Literal
- Combine all Maxterms with a • Operation
- This is a 2-Level Form

$$
\begin{aligned}
& \text { Product-of-Maxterms Example } \\
& \begin{array}{lll|ll}
x & y & z & f_{1} & \\
\hline 0 & 0 & 0 & 0 \longleftarrow & x+y+z \\
0 & 0 & 1 & 1 & \\
0 & 1 & 0 & 0 \longleftarrow \bar{y}+z \\
0 & 1 & 1 & 0 \longleftarrow & x+\bar{z} \\
1 & 0 & 0 & 1 & x+y+z \\
1 & 0 & 1 & 0 & -\bar{x}+y+\bar{z} \\
1 & 1 & 0 & 0 & \bar{x}+\bar{y}+z \\
1 & 1 & 1 & 1 & \\
& - & &
\end{array} \\
& f_{1}=(x+y+z)(x+\bar{y}+z)(x+\bar{y}+\bar{z}) \\
& (\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z) \quad f_{1}=\prod(0,2,3,5,6)
\end{aligned}
$$

Other Notation

$$
\begin{gathered}
f_{1}=\sum(1,4,7)=m_{1}+m_{4}+m_{7} \\
f_{1}=\prod(0,2,3,5,6)=M_{0} \bullet M_{2} \bullet M_{3} \bullet M_{5} \bullet M_{6}
\end{gathered}
$$

What is the function:

$$
f=m_{0}+m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+m_{6}+m_{7}
$$

Conversion of Canonic Forms

$$
\begin{gathered}
f_{1}=\sum(1,4,7)=m_{1}+m_{4}+m_{7} \\
\bar{f}_{1}=\sum(0,2,3,5,6)=m_{0}+m_{2}+m_{3}+m_{5}+m_{6} \\
\overline{\bar{f}}_{1}=\overline{m_{0}+m_{2}+m_{3}+m_{5}+m_{6}} \\
f_{1}=\overline{m_{0}+m_{2}+m_{3}+m_{5}+m_{6}}
\end{gathered}
$$

DeMorgan's Theorem:

$$
\begin{gathered}
f_{1}=\bar{m}_{0} \bullet \bar{m}_{2} \bullet \bar{m}_{3} \bullet \bar{m}_{5} \bullet \bar{m}_{6} \\
\bar{m}_{i}=M_{i} \\
f_{1}=M_{0} \bullet M_{2} \bullet M_{3} \bullet M_{5} \bullet M_{6}
\end{gathered}
$$

Standard Forms

- Canonical Forms USUALLY NOT Smallest (in terms of literals)
- Each minterm/maxterm contains n literals
- Standard Forms Contain Terms with n or Fewer Literals
- Sum-Of-Products (SOP) form
- Product-Of-Sums (POS) form
- These are Also Two-level Forms

Standard Forms Examples

$$
F_{1}=\bar{y}+x y+\bar{x} y y \bar{z} \quad F_{2}=x(\bar{y}+z)(\bar{x}+y+\bar{z})
$$

(a) Sum of Products

(b) Product of Sums

Fig. 2-3 Two-level implementation

Standard Forms

- Can Use Algebra to Find a Standard Form from a Canonical Form
- We Will Learn Other Methods to do this
- Commonly Known as "Simplification"
- Seems Easy for Small Functions
- Computationally Complex
- Classic Problem in Switching Theory

Multi-level Forms

- All Possible Functions can be Expressed in a Standard Two-level Form
- Multi-level Forms have more than 2 Levels

(a) $A B+C(D+E)$

(b) $A B+C D+C E$

Fig. 2-4 Three- and Two-Level implementation

All Functions of 2-Variables

- There are $2^{2^{n}}$ functions of n Variables
- AND and OR Happen to be Two of 16 Possible Functions of 2 Variables

Table 2-7
Truth Tables for the 16 Functions of Two Binary Variables

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{F}_{\mathbf{0}}$	$\boldsymbol{F}_{\mathbf{1}}$	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{F}_{\mathbf{3}}$	$\boldsymbol{F}_{\mathbf{4}}$	$\boldsymbol{F}_{\mathbf{5}}$	$\boldsymbol{F}_{\mathbf{6}}$	$\boldsymbol{F}_{\mathbf{7}}$	$\boldsymbol{F}_{\mathbf{8}}$	$\boldsymbol{F}_{\mathbf{9}}$	$\boldsymbol{F}_{\mathbf{1 0}}$	$\boldsymbol{F}_{\mathbf{1 1}}$	$\boldsymbol{F}_{\mathbf{1 2}}$	$\boldsymbol{F}_{\mathbf{1 3}}$	$\boldsymbol{F}_{\mathbf{1 4}}$	$\boldsymbol{F}_{\mathbf{1 5}}$
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Names and Symbols of Functions

Table 2-8
Boolean Expressions for the 16 Functions of Two Variables

Common Circuits	Nime			mat
	nv	: \square		
- Certain Subsets Form ANY Function	${ }^{\text {or }}$	x		\because
	mexat	\cdots		0
- AND, OR, NOT	bufie	\rightarrow	, \times	$i i_{i}$
- NAND	muno	$x=\square$!
$\begin{aligned} & \text { - NOR } \\ & \text { - AND, XOR } \end{aligned}$				
	cos	边	$r^{\prime}=4.40$	

Multi-input Logic Gates

- Many Logic Gates Can Have More than

One Input

- Examples are AND and OR Gates
- Associativity Holds for These
- Can Build with Cascade of 2-input Gates

(a) Three-input AND gate

(b) Four-input OR gate

Fig. 1-6 Gates with multiple inputs

Multi-input Logic Gates

- Associativity Does Not Hold for NOR

Fig. 2-6 Demonstrating the nonassociativity of the NOR operator; $(x \downarrow y) \downarrow z \neq x \downarrow(y \downarrow z)$ (C) 2002 Prentice Hall, Inc.

Multi-input Logic Gates

- Associativity Does Not Hold for NAND

(c) Cascaded NAND gates

Fig. 2-7 Multiple-input and cascated NOR and NAND gates

Exclusive-OR Gates

- Associativity Holds
- "Programmable" Inverter

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(c) Truth table
(b) 3-input gate

Fig. 2-8 3-input exclusive-OR gate

Positive and Negative Logic

- 0 and 1 are Models to use Algebra
- Circuits use High (H) and Low (L) Values
- Voltage or Current
- Up to Designer to Interpret if $\mathrm{H} \rightarrow 0$ or $\mathrm{H} \rightarrow 1$
- Interpretations Called 'Positive'/'Negative' Logic

(a) Positive logic

Positive and Negative Logic Example and Notation

Positive-Logic
(a) Truth table with H and L

AND becomes Negative-Logic

(e) Truth table for negative logic

(b) Gate block diagram

