Arrow Categories

Michael Winter
Department of Computer Science
Brock University
St. Catharines, Canada
mwinter@brocku.ca
Content

1. Binary (Boolean valued), fuzzy and L-fuzzy relations
2. Dedekind categories (Boolean valued relations)
3. Goguen categories (Fuzzy/L-fuzzy relations)
4. Arrow categories
Binary (Boolean valued) relation (Category Rel)

\[
\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\]

Fuzzy relation (Category Rel([0,1]))

\[
\begin{pmatrix}
0.1 & 0.8 & 0.0 \\
1.0 & 0.4 & 0.9 \\
0.0 & 0.2 & 0.1
\end{pmatrix}
\]
L-fuzzy relation (L a complete distributive lattice, Category Rel(L))

\[
\begin{pmatrix}
1 & k & l \\
0 & k & m \\
0 & 1 & l
\end{pmatrix}
\]

\[
L =
\begin{array}{c}
1 \\
l \\
k \\
0
\end{array}
\]

\[
\begin{array}{c}
l \\
m
\end{array}
\]
Dedekind categories

Definition: A Dedekind category \mathcal{R} is a category satisfying the following:

1. For all objects A and B the collection $\mathcal{R}[A,B]$ is a complete distributive lattice (complete Heyting algebra). Meet, join, the induced ordering, the least and the greatest element are denoted by $\cap, \cup, \subseteq, \sqsubseteq_{AB}, \sqsupseteq_{AB}$, respectively.

2. There is a monotone operation \sim (called converse) such that for all relations $Q : A \to B$ and $R : B \to C$ the following holds

 $$(Q;R) \sim = R \sim ; Q \sim, \quad (Q \sim) \sim = Q.$$

3. For all relations $Q : A \to B, R : B \to C$ and $S : A \to C$ the
modular law holds:

$$Q; R \cap S \sqsubseteq Q; (R \cap Q^\prec; S).$$

4. For all relations $R : B \to C$ and $S : A \to C$ there is a relation $S/R : A \to B$ (called the left residual of S and R) such that for all $Q : A \to B$ the following holds

$$Q; R \sqsubseteq S \iff Q \sqsubseteq S/R.$$
Definition (Matrix category)

Let \mathcal{R} be a Dedekind category. The category \mathcal{R}^+ of matrices with coefficients from \mathcal{R} is defined by:

1. The class of objects of \mathcal{R}^+ is the collection of all functions from an arbitrary set I into the class of objects $\text{Obj}_\mathcal{R}$ of \mathcal{R}.

2. For every pair $f : I \to \text{Obj}_\mathcal{R}, g : J \to \text{Obj}_\mathcal{R}$ of objects from \mathcal{R}^+, a morphism $R : f \to g$ is a function from $I \times J$ into the class of all morphisms $\text{Mor}_\mathcal{R}$ of \mathcal{R} such that $R(i, j) : f(i) \to g(j)$ holds.

3. For $R : f \to g$ and $S : g \to h$ composition is defined by

$$ (R; S)(i, k) := \bigsqcup_{j \in J} R(i, j); S(j, k). $$
4. For $R : f \to g$ conversion defined by

$$R \sim (j, i) := (R(i, j)) \sim.$$

5. For $R, S : f \to g$ join and meet are defined by

$$\begin{align*}
(R \sqcup S)(i, j) & := R(i, j) \sqcup S(i, j), \\
(R \sqcap S)(i, j) & := R(i, j) \sqcap S(i, j).
\end{align*}$$

6. The identity, zero and universal elements are defined by

$$\begin{align*}
\mathbb{I}_f(i_1, i_2) & := \begin{cases} \\
\perp_{f(i_1)f(i_2)} : i_1 \neq i_2 \\
\mathbb{I}_{f(i_1)} : i_1 = i_2,
\end{cases} \\
\perp_{fg}(i, j) & := \perp_{f(i)g(j)}, \\
\top_{fg}(i, j) & := \top_{f(i)g(j)}.
\end{align*}$$
Some results

Lemma: \mathcal{R}^+ is a Dedekind category.

Corollary: Let $L = (L, \lor, \land, 0, 1)$ be a complete distributive lattice with least element 0 and greatest element 1. Then L is an one-object Dedekind category with identity 1 and composition \land (the residual is given by the pseudo-complement). Consequently, L^+ is a Dedekind category, called the full category of L-relations.
Lemma: The collection of scalar relations on A, i.e., the relations $k : A \to A$ with $k \subseteq I_A$ and $\top_{AA}; k = k; \top_{AA}$, constitutes a complete distributive lattice.

Example:

\[
\begin{pmatrix}
 k & 0 & 0 \\
 0 & k & 0 \\
 0 & 0 & k
\end{pmatrix}
\]

Theorem: There is no formula φ in the language of Dedekind categories such that for all lattices L and L-relations $R : A \to B$ we have

\[L^+ \models \varphi[R] \iff R \text{ is 0-1 crisp.} \]
Goguen categories

Definition: A Goguen category \(\mathcal{G} \) is a Dedekind category with \(\bot_{AB} \neq \top_{AB} \) for all objects \(A \) and \(B \) together with two operations \(\uparrow \) and \(\downarrow \) satisfying the following:

1. \(R^\uparrow, R^\downarrow : A \to B \) for all \(R : A \to B \).

2. \((\uparrow, \downarrow)\) is a Galois correspondence, i.e., \(R^\uparrow \sqsubseteq S \iff R \sqsubseteq S^\downarrow \) for all \(R, S : A \to B \).

3. \((R^\cap; S^\downarrow)^\uparrow = R^\uparrow \cap; S^\downarrow \) for all \(R : B \to A \) and \(S : B \to C \).

4. If \(\alpha \neq \bot_{AA} \) is a nonzero scalar then \(\alpha^\uparrow = \mathbb{I}_A \).
\[
\begin{pmatrix}
1 & k & l \\
0 & k & m \\
0 & 1 & l \\
\end{pmatrix}
\]

\[
L =
\begin{pmatrix}
1 & l \\
0 & m \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & k & l \\
0 & k & m \\
0 & 1 & l \\
\end{pmatrix}
\uparrow =
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
\end{pmatrix},
\begin{pmatrix}
1 & k & l \\
0 & k & m \\
0 & 1 & l \\
\end{pmatrix}
\downarrow =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
\end{pmatrix}
\]
4. For all functions f so that $f(\bigcup M) = \prod_{\alpha \in M} f(\alpha)$ for all sets of scalars and $f(\alpha)^\uparrow = f(\alpha)$ for all scalars the following equivalence holds

$$R \sqsubseteq \bigsqcup_{\alpha: A \rightarrow A} \alpha; f(\alpha) \iff (\alpha \setminus R)^\downarrow \sqsubseteq f(\alpha)$$

for all scalars α.

\[
\begin{pmatrix}
 l & 0 & 0 \\
 0 & l & 0 \\
 0 & 0 & l
\end{pmatrix}
\setminus
\begin{pmatrix}
 1 & k & l \\
 0 & k & m \\
 0 & 1 & l
\end{pmatrix}
\downarrow
\begin{pmatrix}
 1 & k & 1 \\
 0 & k & m \\
 0 & 1 & 1
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 & 1 \\
 0 & 0 & 0 \\
 0 & 1 & 1
\end{pmatrix}
\]
Some results

Theorem: Let L be a complete distributive lattice. Then L^+ together with the operations

\[
R^\uparrow(x, y) := \begin{cases}
1 & \text{iff } R(x, y) \neq 0 \\
0 & \text{iff } R(x, y) = 0
\end{cases},
\]

\[
R^\downarrow(x, y) := \begin{cases}
1 & \text{iff } R(x, y) = 1 \\
0 & \text{iff } R(x, y) \neq 1
\end{cases},
\]

is a Goguen category. Furthermore, for a relation R in L^+ we have $R^\uparrow = R$ iff R 0-1 crisp.
Lemma: For each pair of objects A and B the set of scalar elements on A resp. on B are isomorphic lattices.

Lemma: Let G be a Goguen category and $R : A \to B$ be a relation. Then we have

1. $\bigsqcup_{\alpha \text{ scalar}} \alpha_A; (\alpha_A \setminus R)^\downarrow = R,$
2. $\bigsqcup_{\alpha_A \text{ scalar } \alpha_A \neq \bot_A} (\alpha_A \setminus R)^\downarrow = R^\uparrow.$
Theorem (Pseudo-representation Theorem): Every Goguen category \mathcal{G} is isomorphic to the category of antimorphisms mapping the scalars of \mathcal{G} to the crisp relations of \mathcal{G}.

Corollary: A Goguen category is representable iff its subcategory of crisp relations is representable.
Further results/studies of Goguen categories

1. Definability of norm-based operations;

2. Validity of certain formulae in the subcategory of crisp relations;

3. Applications in computer science, e.g., fuzzy controller;

4. ...
Arrow categories

Definition: An arrow category \mathcal{A} is a Dedekind category with $\top_{AB} \neq \bot_{AB}$ for all objects A and B together with two operations \uparrow and \downarrow satisfying the following:

1. $R^\uparrow, R^\downarrow : A \rightarrow B$ for all $R : A \rightarrow B$.
2. (\uparrow, \downarrow) is a Galois correspondence.
3. $(R^\sim; S^\downarrow)^\uparrow = R^\uparrow \sim; S^\downarrow$ for all $R : B \rightarrow A$ and $S : B \rightarrow C$.
4. $(Q \cap R^\downarrow)^\uparrow = Q^\uparrow \cap R^\downarrow$ for all $Q, R : A \rightarrow B$.
5. If $\alpha_A \neq \bot_{AA}$ is a non-zero scalar then $\alpha_A^\uparrow = \mathbb{I}_A$.
Lemma: For each pair of objects A and B the set of scalar elements on A resp. on B are isomorphic lattices.

Lemma: Let \mathcal{A} be an arrow category and $R : A \to B$ be a relation. Then we have

1. $\bigsqcup \alpha_A; (\alpha_A \setminus R)^\downarrow \subseteq R$, α scalar

2. $\bigsqcup \alpha_A (\alpha_A \setminus R)^\downarrow \subseteq R^\uparrow$. α_A scalar $\alpha_A \neq \bot_A$
Example 1:
Example 2:
Arrow categories with cuts

Definition: An arrow category with cuts \mathcal{A} is an arrow category so that

$$R \subseteq \bigsqcup \alpha_A; (\alpha_A \setminus R)^\downarrow$$

for all relations $R : A \rightarrow B$ holds.
Example

\[L \]

\[
\begin{align*}
x_0 & \\
x_1 & \\
x_2 & \\
x_\infty & \\
0 &
\end{align*}
\]

\[\mathcal{R} \]

\[
\begin{align*}
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix} & = \top \\
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix} & = \mathbb{I} \\
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
\end{pmatrix} & = \bot
\end{align*}
\]
Thank you for your attention.