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ABSTRACT

DEAD-box proteins are characterized by nine con-
served motifs. According to these criteria, several
hundreds of these proteins can be identified in
databases. Many different DEAD-box proteins can
be found in eukaryotes, whereas prokaryotes have
small numbers of different DEAD-box proteins.
DEAD-box proteins play important roles in RNA
metabolism, and they are very specific and cannot
mutually be replaced. In vitro, many DEAD-box pro-
teins have been shown to have RNA-dependent
ATPase and ATP-dependent RNA helicase activities.
From the genetic and biochemical data obtained
mainly in yeast, it has become clear that these
proteins play important roles in remodeling RNP
complexes in a temporally controlled fashion. Here,
I shall give a general overview of the DEAD-box
protein family.

INTRODUCTION

Nucleic acids can be present in single-stranded, double-
stranded or even multiple-stranded forms. The advantages
of a double-stranded molecule with strands of opposite polar-
ity have been known since the discovery of the double-
stranded DNA molecule (1). However, the possibility of
finding a matching partner can be of importance not only
for DNA but also for RNA. This can be true for extended
double-stranded RNA molecules as found in viruses, for
local secondary structures as in ribosomes and for short
RNA–RNA interactions, as in pre-mRNA splicing or RNA-
mediated silencing. The caveat of double-stranded nucleic
acids is that at some point they may need to be unwound if
the sequence information of the nucleic acid needs to be
deciphered or to be used for an alternative sequence-specific
binding event. Therefore, an obligatory complement of
double-stranded nucleic acids is the presence of enzymes
that can unwind these helical molecules, i.e. helicases.
Since the two strands are held together by base pairing,
helicases require energy for unwinding. Text books discuss

in detail helicases required for initiation and elongation of
DNA replication, but only rarely helicases that are involved
in the separation of RNA strands. Nevertheless, genes encod-
ing helicases make up a considerable portion of the coding
information of a eukaryotic genome (2) and many of these
helicases have a preference or even an exclusive requirement
of RNA molecules. Several reviews on different aspects of
DEAD-box proteins have been published in recent years
(3–12). Here, I shall give a general overview of the DEAD-
box field as it stands today.

WHAT IS THE DEAD-BOX FAMILY?

One of the earliest descriptions of an RNA helicase was the
report that incubation of globin mRNA with the translation
initiation factor eIF4A and ATP changed the susceptibility
of the mRNA to nucleases (13). Thus, eIF4A altered the
structure of the mRNA in such a way, that the RNase diges-
tion pattern changed. This change was dependent on a source
of energy in the form of ATP. The translation initiation factor
eIF4A could therefore be considered as a helicase that melts
(local) secondary structures and makes the RNA accessible to
nucleases. Since then, many RNA helicases involved in a
variety of cellular processes have been described.

In 1988, Gorbalenya et al. (14) defined a group of NTPases
and showed that they had several common sequence
elements. This analysis, together with the description of a
number of proteins involved in RNA metabolism (p68,
SrmB, MSS116, vasa, PL10, mammalian eIF4A, yeast eIF4A)
resulted, based on the sequence of eIF4A, in the birth of the
DEAD-box protein family (15). Today, the alignment of all
annotated sequences in SwissProt from all species reveal
nine conserved sequence motifs with very little variation
(15,16) (Figure 1). The simultaneous presence of these motifs
is a criterion for inclusion of a protein within the family,
although an enzymatic activity has been demonstrated only
for a limited number. Motif II (or Walker B motif) has the
amino acids D-E-A-D, which gave the name to the family.
This motif, together with motif I (or Walker A motif), the
Q-motif and motif VI, is required for ATP binding and hydro-
lysis (16–19). Motifs Ia and Ib, III, IV and V have been char-
acterized less well but may be involved in interaction with
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RNA (20) and in intramolecular rearrangements necessary for
remodeling activity (Figure 1).

Proteins related to eIF4A in sequence can be found in
all eukaryotic cells and in most eubacteria and archaebacteria.
The genome of the yeast Saccharomyces cerevisiae encodes
25 DEAD-box proteins (21,22). Interestingly, it has two
genes (TIF1 and TIF2) encoding exactly the same eIF4A
protein, and it encodes two related proteins Ded1 and
Dbp1. The deletion of DED1 is lethal, whereas the deletion
of DBP1 is not lethal under normal laboratory conditions.
However, overexpression of Dbp1 can suppress the lethal
deletion of DED1 (23), indicating (but not proving) a func-
tional redundancy. A comparison with another fungal species,
Ashbya gosypii, which is considered to be the free living
eukaryote with the smallest genome (24), reveals all the
DEAD-box proteins found in S.cerevisiae, with the exception
of Dbp1 and Prp28 (involved in pre-mRNA splicing, see
below), and with only one eIF4A copy. Thus, the DEAD-
box proteins of A.gosypii could represent the minimal number
of such proteins required for a free-living eukaryote.

In multicellular eukaryotes, several additional DEAD-box
proteins can be found. A search in the human genome
revealed 38 DEAD-box proteins (Table 1), which can tentat-
ively be classified into 32 subfamilies. These subfamilies
have been defined by iterative blast searches against the
SwissProt/trEMBL databases, using all human DEAD-box
proteins. Approximately 250 best scoring sequences from
each blast search were then used for a ClustalW analysis to
identify related sequences. In some cases, where two human
or two yeast proteins clustered together, the members of the
putative subfamily from other model organisms were ana-
lyzed further to determine whether there were one or two
proteins within this subfamily. If other model organisms
had only one protein, the subfamily was defined as such.
However, if most model organisms had also two representat-
ives within the putative subfamily, the subfamily was divided

into two. An example is the separation of the Ddx3/Ded1
and Vasa subfamilies. Drosophila and other multi-cellular
eukaryotes have two or more DEAD-box protein related
to Ded1 or Vasa. However, with the exception of the yeast
S.cerevisiae, unicellular eukaryotes have only one of these
proteins (25) and therefore these proteins have been divided
in two subfamilies. Another example would be the subfamily
of proteins homologous to the yeast Dbp5 protein. In the
human genome three proteins, Ddx19A, Ddx19B and
Ddx25, are very similar to Dbp5 and are therefore being
included in the same subfamily. It is clear, that this definition
of subfamilies is somehow arbitrary and should be regarded
as a working tool to compare proteins and predict functions.
In some cases cross species complementation could be
demonstrated (26,27) but in any case, experiments are needed
to characterize these subfamilies further. The Ddx7 (28)
protein has no homologs in other mammals and a tblast
against the human genome does not report any significant
similarity. It is therefore excluded from the list presented
here. According to the criteria defined above, 11 human
DEAD-box proteins have no direct or obvious counterpart
in yeast (Ddx1, Ddx4/vasa, Ddx20/DP103, Ddx21/RNA
helicase Gu-alpha, Ddx28, Ddx50/RNA helicase Gu-beta,
Ddx41/abstrakt, Ddx42, Ddx43, Ddx53, Ddx59). Although
it may be expected that the human genome contains more
DEAD-box proteins than the simple budding yeast, it may
seem surprising that three DEAD-box proteins present in
yeast (Dbp3, Mss116, Mrh4) have no obvious counterpart
in humans. The DEAD-box proteins Mss116 and Mrh4
have been shown to be required for gene expression in
yeast mitochondria (29,30). It is tempting to speculate that
these proteins are simply not required in human mitochon-
dria, because the structural organization of human mitochon-
drial genes is different from that of yeast mitochondrial
genes, which harbor many introns. In contrast, Ddx28, may
be involved in mitochondrial gene expression in human

Figure 1. A schematic presentation of the conserved motifs of the DEAD-box family. (A) Consensus sequence of the DEAD-box family. Residues identified in
the structure of the Vasa protein (70) to interact with ATP (red), RNA (blue) or involved in intra-protein interactions (green) are highlighted. (B) Consensus
sequences of the DEAH-box and Ski2 family. The consensus sequences (capital letters represent amino acids conserved at least 80%, lower case letters represent
amino acids that are conserved 50–79%) are taken from Tanner and Linder (10).
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Table 1. A tentative assignment of yeast and human DEAD-box protein subfamilies

Human SwissProt Alias Function Reference Yeast SwissProt Function Reference

DDX1 Q92499 DEAD-box
protein-
retinoblastoma

Amplified in
retinoblastoma,

(105,143,144) — —

cellular co-factor of HIV-
1 Rev, nucleolar

DDX2A P60842 eIF4A I Translation initiation (9) Tif1 P10081 Translation initiation (145)
Tif2

DDX2B Q14240 eIF4A II
DDX3Y O15523 DBY (146,147) Ded1 P06634 Translation initiation,

re-mRNA splicing,
mRNA export

(90,125,
126,148)Dbp1 P24784

DDX3X O00571 DDX3, mDEAD3 Similar to mouse PL10,
Xenopus An3, and
Drosophila Bel;
required for Rev-
dependent export of
intron-containing
HIV-1 RNA, nucleolar

(105,149,150)

DDX4 Q9NQI0 vasa Translation initiation,
imilar to Drosophila
vasa that interacts with
eIF5B

(151,152) — — — —

DDX5 P17844 p68, HLR1 transcription, pre-mRNA
splicing, mRNA
stability and ribosome
biogenesis, nucleolar

(105,153,154) Dbp2 P24783 ribosome biogenesis,
interacts with Upf1
and is involved in
NMD

(155)

DDX17 Q92841 p72 nucleolar (105,156)
DDX6 P26196 p54, RCK Oncogene RCK,

translation initiation of
c-myc mRNA, nuclear
assembly of stored
mRNP particles,
mRNA masking in
analogy to clam
homolog

(137,138,157–159) Dhh1 P39517 Assists decapping,
Required for mRNA
storage,

(135,160)

DDX10 Q13206 nucleolar (105,161) Dbp4 P20448 Ribosome biogenesis (162)

DDX17 See subfamily DDX5/DDX17
DDX18 Q9NVP1 MrDb, Nucleolar, Myc-regulated

DEAD box protein
(105,163) Has1 Q03532 Ribosome biogenesis (108)

DDX19A Q9NUU7 mRNA export (53) Dbp5 P20449 mRNA export (52,111)
DDX19B Q9UMR2
DDX25 Q9UHL0 GRTH Gonadotropin-regulated

testicular RNA helicase
(164)

DDX20 Q9UHI6 DP103, Gemin3,
survival of motor
neurons (SMN)-
interacting protein

Spliceosomal snRNP
biogenesis

(165,166) — — — —

DDX21 Q9NR30 Nucleolar RNA
helicase II,
Nucleolar RNA
helicase Gu

Ribosomal RNA
production, co-factor
for c-Jun-activated
transcription

(105,167–169) — — — —

Gu-alpha
DDX50 Q9BQ39 RNA helicase

Gu-beta
Localizes to nuclear
speckles containing
splicing factor SC35
Co-factor for
c-Jun-activated
transcription, nucleolar

(61,105,170,171) — — — —

DDX21B
according to
Abdelhaleem et al.

DDX23 Q9BUQ8 Pre-mRNA splicing (172) Prp28 P23394 pre-mRNA splicing (72,173,174)
DDX24 Q9GZR7 nucleolar (105,175) Mak5 P38112 Ribosome biogenesis (176)

DDX25 See subfamily DDX19A/DDX19B/DDX25
DDX27 Q96GQ7 Nucleolar (105) Drs1 P32892 Ribosome biogenesis (177)
DDX28 Tr_Q9NUL7 MDDX28 Mitochondrial and nuclear

localization
(31) — — — —

DDX31 Q9H8H2 Nucleolar (105) Dbp7 P36120 Ribosome biogenesis (178)
DDX39 O00148 URH49 Pre-mRNA splicing and

export
(118)

BAT1 Q13838 UAP56 (179–181) Sub2 Q07478 Pre-mRNA splicing
and export

(85,115,
117,182)

DDX41 Q9UJV9 DEAD-box protein
abstrakt homolog

(183,184) — — — —
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mitochondria, insofar as it shows nuclear and mitochondrial
localization (31,32). The yeast Dbp3 protein is involved in
ribosome biogenesis and it is one of the rare DEAD-box
proteins that are not essential for growth under normal labor-
atory conditions (33). In contrast to eukaryotes, bacterial
genomes encode far fewer DEAD-box proteins and some bac-
terial species seem not to encode DEAD-box proteins at all
(5,8). Today, searches in SwissProt reveal �205 annotated
sequences and >700 different entries in SwissProt and
trEMBL. Based on the activity of eIF4A and on the sequence
alignments, it is thought that the members of the DEAD-box
family have similar biochemical activities.

THE DEAD-BOX FAMILY IS DISTINCT,
BUT NOT ALONE

Bioinformatic searches have revealed related proteins that
share some motifs with the DEAD-box family, but have

other distinguishing motifs that are conserved within their
own family (34). The related proteins belong to the DEAH
and Ski2 families, which together with the DEAD-box
family are often referred to as the DExD/H families.
However, based on their sequences, the families are clearly
distinct, despite the similarities they share (Figure 1B). In
other words, no protein has been found so far that could
belong to two families, as judged from the conserved motifs.
This could simply be explained by a co-evolution of the
different motifs within one family. However, another per-
spective is that the different families serve different purposes
in RNA metabolism in a cell. In this respect, it is interesting
to note that biochemical and structural analyses have revealed
certain similarities amongst members of the various families,
but also differences. For example both DEAD-box and
DEAH-box proteins are stimulated by RNA in their NTPase
activity, but DEAD-box proteins use only ATP, whereas
DEAH box proteins are more promiscuous in their NTP
usage (16,35).

Table 1. Continued

Human SwissProt Alias Function Reference Yeast SwissProt Function Reference

DDX42 Tr_Q86XP3 SF3b125
DEAD-box protein

Pre-mRNA splicing,
splicing

(185) — — — —

DDX43 Tr_Q9NXZ2 Displays tumor-specific
expression

(186) — — — —

DDX53 Tr_Q6NVV4 CAGE CAGE is expressed in a
variety of cancers but
not in normal tissues
except testis,

(187) — — — —

DDX46 Tr_Q7L014 Pre-mRNA splicing (185) Prp5 P21372 Pre-mRNA splicing (46,47,188)
DDX47 Q9H0S4 Co-transfection of

GABARAP and
DDX47 cDNA into a
tumor cell line induces
apoptosis, nucleolar
localization

(105,106) Rrp3 P38712 Ribosome biogenesis (189)

DDX48 P38919 NMP265/NUK34, eIF4A III DDX48 is a component of
the EJC; has also been
found in proteomic
studies of the nucleolus

(98,105,190) Fal1 Q12099 Ribosome biogenesis (100)

DDX49 tr_Q9Y6V7 nucleolar (105) Dbp8 Ribosome biogenesis (191)
DDX50 See subfamily DDX21/DDX50
DDX51 Tr_Q8IXK5 Nucleolar (105) Dbp6 P53734 Ribosome biogenesis (192)
DDX52 Q9Y2R4 nucleolar (105,106) Rok1 P45818 Ribosome biogenesis (193)
DDX53 See subfamily DDX43/DDX53
DDX54 Q8TDD1 DP97 nucleolar (105,106,194) Dbp10 Q12389 Ribosome biogenesis (195)
DDX55 Tr_Q8NHQ9 Nucleolar (105) Spb4 P25808 Ribosome biogenesis (196)
DDX56 Q9NY93 noH61, DDX21 associates with

nucleoplasmic 65S
preribosomal
particles,nucleolar

(105,197) Dbp9 Q06218 Ribosome biogenesis (198)

DDX59 tr_Q8IVW3 — — — —
— Dbp3 P20447 Ribosome biogenesis (33)
— MSS116 P15424 Mitochondrial gene

expression
(30,199)

— Mrh4 P53166 Mitochondrial
function

(29)

The yeast DEAD-box proteins have been described previously (21). The human subfamilies have been determined with the help of Abdelhaleem et al. (2003),
a search for DDX genes in SwissProt, a search in the human gene nomenclature search site (www.gene.ucl.ac.uk/nomenclature/), and by running a blast search using
yeast eIF4A against the initio proteins of the human genome (http://www.ncbi.nlm.nih.gov/genome/seq/HsBlast.html). Representative samples (�250 sequences)
from the blast searches using every individual human DEAD-box protein defined above was used for a second round of blast analysis for confirmation and for
ClustalW analysis at EBI and a tentative tree has been established by using the TreeView (Rod page, http://taxonomy.zoology.gla.ac.uk/rod/treeview.html)
program. Proteins related to DDX2A and DDX2B, DDX3Y and DDX3X, DDX5 and DDX17, DDX19A and DDX19B and DDX25, DDX21 and DDX50,
DDX39 and BAT1, DDX43 and DDX53, form each one subfamily, respectively. Based on this analysis and the absence of any significant match in a blast
with the human genome, the DDX7 entry (28) has been removed from the list. References are given for information but are by far not exhaustive. More information
on RNA helicases can be found on http://www.helicase.net and http://www.medecine.unige.ch/�linder/RNA_helicases.html.
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WHAT DO WE KNOW ABOUT THE BIOCHEMICAL
ACTIVITIES OF DEAD-BOX PROTEINS?

In comparison to the enormous number of DEAD-box pro-
teins present in protein databases, only few RNA helicases
from the DEAD-box family have been characterized
biochemically (36). As expected from the presence of the
Walker A and Walker B motifs typical for NTPases,
DEAD-box proteins show ATPase activity. Normally, this
activity is dependent on RNA, although in some instances
an RNA-independent activity has been reported (36). Further
experiments are needed to determine whether these differ-
ences are intrinsic to the analyzed proteins themselves, or
dependent on the purification of the proteins. In general,
stimulation of the ATPase activity is not dependent on a par-
ticular RNA species. Indeed, in many cases such as in the
scanning process of the 40S ribosomal subunit in translation
initiation or in mRNA export from the nucleus, sequence
specificity for the substrate would be in contradiction to its
function. This implies that their specificity relies on the inter-
action with other RNP components. In the case of eIF4A it
has been shown, for a long time, that its RNA-dependent
ATPase activity is stimulated by eIF4B, although the molecu-
lar details of this stimulation are still not known (37). More
recently the stimulation of the activity of eIF4A by eIF4H
and eIF4G has also been described previously (38,39). In
the case of eIF4G, it has been suggested that eIF4G forms
a ‘soft clamp’ that stabilizes eIF4A in a closed active con-
formation (39). Interestingly eIF4A can also be stimulated
by pateamine A, a natural marine product that inhibits trans-
lation initiation and decreases the interaction of eIF4G and
eIF4A (40,41). In contrast to these examples of stimulation
by other proteins, in the case of proteins from the bacterial
DbpA subfamily, a large stimulation by a hairpin structure
of the 23S rRNA can be observed (42–44). This stimulation
is dependent on a C-terminal domain that contains an RNA
recognition fold motif (45). To a lesser extend, the yeast
Prp5 protein, involved in pre-mRNA splicing, is stimulated
in its activity by the snRNA U2 (46,47). It is noteworthy
that Prp5 interacts with components of the U2 RNP (48). It
is likely that, for other DEAD-box proteins, other stimulating
or regulatory conditions/environments will be found in the
near future [e.g. eIF4AIII, below, and Dbp8 (49)].

DEAD-box proteins are often referred to as RNA helicases.
This implies that the proteins unwind, in an energy-dependent
manner, double-stranded RNA molecules. Such an activity
has indeed been demonstrated for several DEAD-box proteins
(50–69). In most cases, however, unwinding activity is lim-
ited to short duplexes, indicating that it is not processive.
Two simple explanations can be offered. First, recombinant
proteins out of their biological context may not be efficient
or processive. This is also true for proteins that are considered
to have highly processive activities, such as the DNA poly-
merase that requires a clamping factor to become processive
in its activity. The second explanation would be that indeed
the DEAD-box proteins are not processive even in vivo,
since they do not need to unwind lengthy double-stranded
structures. In this scenario, which is at present the most likely
one, their requirement would be a local action to unwind a
limited double-stranded RNA or dissociate a protein from
the RNA (see below), to allow further steps in a process to

occur. The recently published data on the structure of the
Drosophila Vasa protein with non-hydrolyzable ATP and an
RNA substrate are clearly consistent with this view (70). In
this structure, the Vasa protein bends the bound RNA in
such a way that a double-stranded nucleic acid would be
partially unwound (71). Clearly, the destabilization of the
double-stranded RNA by virtue of the binding of the heli-
case to the double-stranded substrate, would suggest a non-
processive and local dissociation activity (71).

Following the idea of a local dissociation activity, it has
been shown recently, by genetic and biochemical experi-
ments, that DEAD-box proteins are able to dissociate proteins
from RNA molecules. Genetic experiments demonstrated that
mutations in the genes encoding DEAD box proteins Prp28
and Sub2 can be suppressed by mutations in genes encoding
proteins that are part of RNPs (72,73). In the case of Prp28, it
has been shown that mutations in the U1 snRNA or the U1-C
protein bypass the requirement of Prp28 (72). Similarly, dele-
tion of Mud2 bypasses the requirement of Sub2 (73) and it
has been shown recently that a mutation in the export factor
Mex67 can suppress a mutation in DBP5 (74). These results
suggest that either these DEAD-box proteins can directly dis-
sociate RNA–protein complexes or modify RNA structures
that stabilize RNA–protein interactions. How this applies to
the structure of Vasa, remains to be determined.

Thus, DEAD-box proteins are modulators of RNP com-
plexes [see also (6)]. This modulating function is dependent
on the presence of RNA, since the ATPase activity of most,
if not all, DEAD-box proteins is dependent or largely stimu-
lated by the presence of RNA. In order to limit the activity in
time and space, RNA helicases may only transiently associate
with an RNP complex. However, they also may be part of a
complex for a certain period as found in proteomic studies of
successive intermediates in pre-ribosomal particles (75–83).
In this case it is likely that a conformational change, induced
by the binding or dissociation of another subunit of the com-
plex, brings the RNA substrate in such a position as to activ-
ate the ATPase activity of the DEAD-box protein. The
DEAD-box protein would then induce a further conforma-
tional change in the RNP structure. This change will in turn
modify the structure in such a way that it might no longer be
a substrate for this particular RNA helicase. This would be an
easy and elegant way to limit the activity of DEAD-box pro-
teins and to provide a force for a unidirectional development
of an RNP complex.

BIOLOGICAL FUNCTIONS OF DEAD-BOX
PROTEINS

DEAD-box proteins have been described to be necessary for,
or involved in, many different processes of RNA metabolism.
In eukaryotic cells, in particular, these range from the
transcription to the degradation of RNA, and include pre-
mRNA splicing, mRNA export, ribosome biogenesis, transla-
tion initiation and gene expression in organelles (Figure 2).

Transcription

Recently several RNA helicases of the DEAD-box family
have been described to be involved in transcription [see the
contribution by Fuller-Pace (4)].
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Pre-mRNA splicing

Splicing of pre-mRNAs has become a paradigm for the
analysis of the function of DEAD/DExH proteins. Although
the removal of an intron by two transesterification reactions
is energetically neutral, the splicing reaction requires ATP.
This could be explained by temporal modification reactions,
such as phosphorylation, or by active remodeling of the
spliceosome. Indeed the formation of the spliceosome, the
rearrangements within the spliceosome during the splicing
reactions and the final release of the product, as well as the
recycling of the components, require the rearrangement of
five large RNP complexes (snRNPs U1, U2, U4, U5 and
U6). Proteomic approaches of the spliceosome suggest
>200 proteins involved in this process (84). Part of these
rearrangements need to occur rapidly and in a controlled
fashion, and therefore most likely require an energy input,
which, at least partially, may be attributed to the function
of DEAD-box proteins. In yeast, three DEAD-box proteins
have been shown to be required for in vivo splicing [Sub2,
Prp28 and Prp5 (85)]. In higher eukaryotes, p68 was shown
to be involved in constitutive and alternative mRNA splicing
(86,87), and its homolog p72 has been implicated in alternat-
ive splicing (88). Other proteins, such Ded1p (see below),
may also be involved in splicing (89,90), although their
role in this process has not been established definitely. In
addition to the known DEAD-box proteins, other DExD/H
proteins are required for splicing to occur, namely the
DEAH proteins Prp2, Prp16, Prp22, Prp43 and the Ski2-
like protein Brr2 (85,91–97). Interestingly, DEAD-box
proteins are required for establishment of a functional spli-
ceosome, whereas DEAH-box proteins are (indirectly)
required for the transesterification reactions, the release of
the mRNA, and the recycling of the spliceosome components.

In addition to these ‘classical’ splicing DEAD/H-box pro-
teins, the proteomic approaches of spliceosomes from higher
eukaryotes also revealed the presence of other DEAD-box
proteins such as homolog of the Drosophila abstrakt,
eIF4AIII, Ddx35 and Ddx9 (84). The eIF4AIII protein has
been shown to be an important component of the exon-
junction complex (EJC) (98). In the case of eIF4AIII it has
been reported recently that its ATPase activity is inhibited

by the presence of another component of the EJC (99). Inter-
estingly, a homologous protein, Fal1, from yeast is involved
in ribosome biogenesis (100).

Ribosome biogenesis

Pre-ribosomal complexes with well over 100 transacting
factors, including small nucleolar RNAs (snoRNAs) and
many proteins of different activities (101,102), represent
another example of a complex and highly dynamic RNP.
Many NTPases have been shown to be involved in ribosome
biogenesis in prokaryotes and eukaryotes. Beside many
DEAD-box proteins, DEAH-box proteins, a Ski2-like RNA
helicase (Dob1/Mtr4), and AAA proteins, are required for
ribosome biogenesis. Whereas the number varies in proka-
ryotes and is relatively small [i.e. 0 in Borrelia burgdorferi;
3 in Escherichia coli, (5)], 14 DEAD-box proteins have been
shown by genetic experiments to be required for ribosome
biogenesis in S.cerevisiae (21,103,104). Most of these
DEAD-proteins from S.cerevisiae have counterparts in higher
eukaryotes, indicating that their requirement is conserved.
This is further supported by the fact that most of the human
DEAD-box proteins homologous to those required in ribo-
some biogenesis in yeast can be detected in proteomic
approaches of human nucleoli (105,106). One of the rare
exceptions is Dbp3, required for the MRP RNase assisted
cleavage at A3 (33). This protein is highly conserved
amongst fungi, but has no obvious counterpart in higher euka-
ryotes, as judged from blast searches and ClustalW analyses
(Table 1). Interestingly, Dbp3, together with Dbp7, is not
absolutely essential for ribosome biogenesis in yeast.
However, in contrast to their bacterial DEAD-box counter-
parts (5), the other proteins involved in ribosome biogenesis
in yeast are essential for cell viability. Moreover, they are
highly specific and cannot be replaced by each other, even
when overexpressed.

Ribosome biogenesis is an ideal playground for DEAD-
box proteins. Eukaryotic ribosomes are composed of
4 rRNAs and 78 proteins (102). Three of the mature rRNA
species are transcribed as a large pre-rRNA and are, during
the assembly reaction, processed to the three mature 18S,

Figure 2. Schematic presentation of cellular processes that require DEAD-box proteins in eukaryotic cells.
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5.8S and 25S rRNAs. In addition to the processing reactions,
the 18S and 25S rRNA are modified by pseudouridyla-
tion and methylation. These modifications are guided by
snoRNAs (107) that are complementary to the rRNA. Thus,
DEAD-box proteins could play roles in reorganizing the
pre-ribosomal complexes by dissociating snoRNAs from the
pre-rRNA, to allow new and mutually exclusive RNA–
RNA interactions to occur. Moreover, as in pre-mRNA
splicing, DEAD-box proteins may be involved in RNP
remodeling by altering RNA–protein interactions [see con-
tribution by (6)]. Whereas all DEAD-box proteins involved
in ribosome biogenesis in yeast have been characterized
genetically, little is known about these proteins in higher
eukaryotes. Nevertheless, most of them have been found in
proteomic analyses of nucleoli, the cradle of ribosomes
(105,106).

Genetic analyses of ribosome biogenesis and of the DEAD-
box proteins required for this process in yeast indicate
functions of RNA helicases by dead-end products that can
be detected. By this criterion, six DEAD-box proteins are
required for early cleavages and affect synthesis of the
small ribosomal subunit, whereas eight DEAD-box proteins
are required for the synthesis of the large ribosomal subunit.
Nevertheless, this analysis of dead-end products in ribosome
biogenesis may not reflect appropriately the actual function of
DEAD-box proteins. It is likely that the absence of a protein
of this family does not induce an immediate defect in ribo-
some biogenesis or assembly, but only a delayed processing/
assembly defect. Moreover, a strong defect may mask a
weaker effect in a completely different step. As an example,
it is intriguing that Has1 is mainly found associated with
pre-60S particles, but the genetic analysis reveals a clear
40S deficit (108). It is therefore important to characterize
interacting partners of these enzymes. Genetic screens, such
as the search for synthetic lethal interactions, suppressor ana-
lyses and complex purification, will certainly help to go in
this direction (109,110).

Nuclear export

In eukaryotic cells transcription and translation occur in
separate compartments. Therefore the mature mRNA needs
to be exported, through nuclear pores, from the nucleus to
the cytoplasm. A defect in the yeast Dbp5/Rat8 gene
results in accumulation of poly(A) mRNA in the nucleus,
clearly indicating a role in mRNA export (52,111). In a
beautiful experiment, it has been shown that a mutation in
the Nup159 protein of the nuclear pore complex leads to a
cytoplasmic localization of Dbp5, rather than at the nuclear
rim (53). These data suggest a role of Dbp5 on the cytoplas-
mic side of the nuclear pore. In addition, recent data show
that Dbp5 localizes to Balbiani ring of Chironomus tentans
(112) and demonstrate genetic and physical interactions of
yeast Dbp5 with the transcription machinery (113). This
suggests that Dbp5 needs to be loaded on the mRNA early,
travels along to the nuclear pore, where it is required for
export. A genetic interaction between mex67 and dbp5
suggests that Dbp5 is required for the release of Mex67
(74). Another DEAD-box protein, Uap56/Bat1 in higher
eukaryotes and Sub2 in yeast (that are in reality DECD
proteins), has also been shown to be required for export

of mRNA, in addition to its role in pre-mRNA splicing
(114–117). Interestingly this splicing factor is also required
for export of mRNAs that do not contain introns, arguing
against the simple scenario that Sub2 remains bound to the
message after splicing. Thus, Uap56/Bat1/Sub2 proteins
play two roles in the life of an mRNA. Intriguingly, two
highly homologous (89% identity) DECD proteins, Ddx39
and Bat1, are encoded by the human genome (118).

Translation initiation

The translation initiation factor eIF4A was the first DEAD-
box protein described to have a RNA-dependent ATPase
activity (119). Several reviews have been published about
eIF4A (9,25) and I summarize here only its essentials. The
translation initiation factor eIF4A is a very abundant protein
(120,121). It is part of the cap-binding complex eIF4F but is
also present in a free form. Its biochemical activities are
greatly stimulated by eIF4B, eIF4H and eIF4G (37–39,122).
It has been proposed that eIF4A helps to unwind secondary
structures in the 50-untranslated region (50-UTR), which are
inhibitory for the scanning process of the small ribosomal
subunit (123). Experimental evidence supporting this hypo-
thesis has been reported in an in vitro translation system
with increasing secondary structures in the 50-UTR (20) and
by the analysis of cell cycle defects in Schizosaccharomyces
pombe (124). Interestingly, however, a mRNA substrate with
the initiator AUG positioned 8 nt downstream of the cap
structure is still absolutely dependent on eIF4A in a yeast
in vitro translation system (17).

The laboratory of Tien-Hsien Chang and our laboratory
have demonstrated that another DEAD-box protein, Ded1,
is also required for translation initiation in vivo and in vitro
(125,126). Although its precise role in translation initiation
remains elusive, the laboratory of John McCarthy has
shown, by testing mRNAs with 50-UTR of various lengths,
that Ded1 plays a role in the scanning process in vivo and
in vitro (127). In multicellular organisms, yet another
DEAD-box protein, Vasa, has been shown to play an import-
ant role in translation initiation via its interaction with IF2
(128). Interestingly, Vasa is highly related to Ded1, but is
absent in fungi, in accordance with its role in embryonic
development.

Degradation

Elegant studies demonstrated the requirement for DEAD-box
proteins in RNA degradation in E.coli (5,129,130). In euka-
ryotes, RNA degradation occurs mainly via the multisubunit
exosome, assisted by RNA helicases of the Ski2 family (131–
134). However, no DEAD-box protein seems to be directly
required for the progression of the exosome. The Dhh1 pro-
tein plays an essential role in mRNA degradation through its
implication in decapping of the mRNA (135,136). Interest-
ingly, proteins from the same subfamily play important
functions in masking mRNAs in higher eukaryotes (13)
(137,138).

Organelle gene expression

In yeast, two DEAD-box proteins are required for mito-
chondrial gene expression, Mss116 and Mrh4. The Mss116
protein was shown to be involved in mitochondrial splicing.
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However, a strain with no mitochondrial introns still required
Mss116 for growth on non-fermentable carbon sources (139).
Intriguingly, overexpression of Mss116 does suppress the
absence of a completely unrelated helicase, Suv3, which is
involved in mitochondrial RNA turnover (140). The Mrh4
protein was isolated as a low-copy suppressor of a point
mutation in the mitochondrial aI5g intron, although a block
in the splicing reaction could not be observed in a Dmrh4
strain (29). As mentioned above, both these DEAD-box
proteins have no direct homolog in humans, which could be
related to differences in the mode of mitochondrial gene
expression in yeast and humans. A human DEAD-box pro-
tein, Ddx28, has been reported to localize to the mitochondria
(31). However, its function is not known.

DEAD-box proteins from Trypanosomes have also been
shown to be required for editing (141). Interestingly these
proteins have homologs only in another kinetoblast organism:
Leishmania. It is thus tempting to speculate that these
proteins are required for the guide RNA assisted editing of
mitochondrial RNA, characteristic for these organisms (142).

Altogether, the emerging picture of DEAD-box proteins
depicts a large family of proteins that possess a non-
processive dissociation activity. This activity is particularly
used in many RNA metabolic processes in eukaryotic cells.
It is likely that in these processes, the DEAD-box proteins
are important place-holders or check-point proteins, allowing
processes to proceed efficiently in one direction and connec-
ted with previous or following steps in the RNA metabolism
machinery.

DISCUSSION AND OPEN QUESTIONS

Eukaryotic cells have a large number of DEAD-box proteins,
most of which are essential, as judged from genetic experi-
ments in yeast. From our actual knowledge of these proteins,
we can deduce that they are involved in many if not all steps
of RNA metabolism. Although they present a high degree of
similarity within the core region, which is responsible for the
enzymatic activities of these proteins, they are all highly spe-
cific for their function and cannot be replaced by each other.

Despite intensive studies in many laboratories, the exact
role of these proteins remains elusive. Although we know
that they are required for the dynamics of RNP complexes,
such as the establishment of the spliceosome, the biogenesis
of ribosomes, export of mRNA through the nuclear pore or
the presence of EJCs on spliced mRNAs, their exact function
remains unclear. Do they need their enzymatic activity for an
active remodeling of RNP structures, or do they play a more
passive role and use the enzymatic activity to leave the
complex to make place for new interactions within the RNP
complex?

Yet another enigma is their regulation. As far as we
know, DEAD-box proteins require the presence of RNA for
stimulation of their enzymatic activity. Also, it is clear that
the Q-motif plays an important role in ATP recognition and
thus in regulation. Nevertheless, the activity needs to be
tightly controlled in time and space. Presumably, it is regu-
lated by the interaction with specific RNA sequences or
other proteins of the RNP complexes.

Finally, some DEAD-box proteins may function as a sort
of ‘check point’ control. In a dynamic RNP assembly, such

as the spliceosome or the ribosome, the cell needs to control
the correct functionality of these super-machines to avoid
erroneous splicing or protein synthesis. In this view, a
particular DEAD-box protein can only be activated if the
intermediate structure is correct. If the structure is not correct,
the synthesis has to wait or be abandoned.
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