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The Diophantine Equation 8𝑥 + 𝑝𝑦 = 𝑧2
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Let 𝑝 be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if 𝑝 ≡ ±3(mod 8), then
the equation 8𝑥 + 𝑝𝑦 = 𝑧2 has no positive integer solutions (𝑥, 𝑦, 𝑧); (ii) if 𝑝 ≡ 7(mod 8), then the equation has only the solutions
(𝑝, 𝑥, 𝑦, 𝑧) = (2

𝑞

− 1, (1/3)(𝑞 + 2), 2, 2
𝑞

+ 1), where 𝑞 is an odd prime with 𝑞 ≡ 1(mod 3); (iii) if 𝑝 ≡ 1(mod 8) and 𝑝 ̸= 17, then
the equation has at most two positive integer solutions (𝑥, 𝑦, 𝑧).

1. Introduction

LetZ,N be the sets of all integers and positive integers, respe-
ctively. Let 𝑝 be a fixed odd prime. Recently, the solutions
(𝑥, 𝑦, 𝑧) of the equation

8
𝑥

+ 𝑝
𝑦

= 𝑧
2

, 𝑥, 𝑦, 𝑧 ∈ N (1)

were determined in the following cases:

(1) (Sroysang [1]) if 𝑝 = 19, then (1) has no solutions;
(2) (Sroysang [2]) if 𝑝 = 13, then (1) has no solutions;
(3) (Rabago [3]) if 𝑝 = 17, then (1) has only the solutions
(𝑥, 𝑦, 𝑧) = (1, 1, 5), (2, 1, 9), and (3, 1, 23).

In this paper, using certain results of exponential Dio-
phantine equations, we prove a general result as follows.

Theorem 1. If 𝑝 ≡ ±3(mod 8), then (1) has no solutions
(𝑥, 𝑦, 𝑧). If 𝑝 ≡ 7(mod 8), then (1) has only the solutions

(𝑝, 𝑥, 𝑦, 𝑧) = (2
𝑞

− 1,

𝑞 + 2

3

, 2, 2
𝑞

+ 1) , (2)

where 𝑞 is an odd prime with 𝑞 ≡ 1(mod 3).
If 𝑝 ≡ 1(mod 8) and 𝑝 ̸= 17, then (1) has at most two sol-

utions (𝑥, 𝑦, 𝑧).

Obviously, the above theorem contains the results of [1, 2].
Finally, we propose the following conjecture.

Conjecture 2. If 𝑝 ̸= 17, then (1) has at most one solution
(𝑥, 𝑦, 𝑧).

2. Preliminaries

Lemma3. If 2𝑛−1 is a prime, where 𝑛 is a positive integer, then
𝑛must be a prime.

Proof. See Theorem 1.10.1 of [4].

Lemma 4. If 𝑝 is an odd prime with 𝑝 ≡ 1(mod 4), then the
equation

𝑢
2

− 𝑝V2 = −1, 𝑢, V ∈ N (3)

has solutions (𝑢, V).

Proof. See Section 8.1 of [5].

Lemma 5. The equation

𝑋
2

− 2
𝑚

= 𝑌
𝑛

, 𝑋, 𝑌,𝑚, 𝑛 ∈ N, gcd (𝑋, 𝑌) = 1, 𝑌 > 1,

𝑚 > 1, 𝑛 > 2

(4)

has only the solution (𝑋, 𝑌,𝑚, 𝑛) = (71, 17, 7, 3).

Proof. See Theorem 8.4 of [6].
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Lemma 6. Let𝐷 be a fixed odd positive integer. If the equation

𝑢
2

− 𝐷V2 = −1, 𝑢, V ∈ N (5)

has solutions (𝑢, V), then the equation

𝑋
2

− 𝐷 = 2
𝑛

, 𝑋, 𝑛 ∈ N, 𝑛 > 2 (6)

has at most two solutions (𝑋, 𝑛), except the following cases:

(i) 𝐷 = 22𝑟 −3 ⋅ 2𝑟+1 +1, (𝑋, 𝑛) = (2𝑟 −3, 3), (2𝑟 −1, 𝑟+2),
(2
𝑟

+1, 𝑟+3), and (3⋅2𝑟−1, 2𝑟+3), where 𝑟 is a positive
integer with 𝑟 ≥ 3;

(ii) 𝐷 = ((1/3)(22𝑟+1 − 17))2 − 32, (𝑋, 𝑛) = ((1/3)(22𝑟+1 −
17), 5), (1/3)(22𝑟+1 + 1, 2𝑟 + 3), and ((1/3)(17 ⋅ 22𝑟+1 −
1), 4𝑟 + 7), where 𝑟 is a positive integer with 𝑟 ≥ 3;

(iii) 𝐷 = 22𝑟1 + 22𝑟2 − 2𝑟1+𝑟2+1 − 2𝑟1+1 − 2𝑟2+1 + 1, (𝑋, 𝑛) =
(2
𝑟
2
− 2
𝑟
1
− 1, 𝑟
1
+ 2), (2𝑟2 − 2𝑟1 + 1, 𝑟

2
+ 2), and (2𝑟2 +

2
𝑟
1
−1, 𝑟
1
+𝑟
2
+2), where 𝑟

1
, 𝑟
2
are positive integers with

𝑟
2
> 𝑟
1
+ 1 > 2.

Proof. See [7].

Lemma 7. If 𝐷 is an odd prime and 𝐷 belongs to the excep-
tional case (i) of Lemma 6, then𝐷 = 17.

Proof. We now assume that𝐷 is an odd prime with𝐷 = 22𝑟−
3 ⋅ 2
𝑟+1

+ 1. Then we have

(2
𝑟

− 1)
2

− 2
𝑟+2

= 𝐷, (7)

(2
𝑟

+ 1)
2

− 2
𝑟+3

= 𝐷. (8)

If 2 | 𝑟, since 𝑟 ≥ 3, then 𝑟 ≥ 4, and by (7), we have

(2
𝑟

− 1) + 2
𝑟/2+1

= 𝐷, (2
𝑟

− 1) − 2
𝑟/2+1

= 1. (9)

But, by the second equality of (9), we get 1 ≡ (2𝑟−1)−2𝑟/2+1 ≡
−1(mod 8), a contradiction.

If 2 ∤ 𝑟, then from (8) we get

(2
𝑟

+ 1) + 2
(𝑟+3)/2

= 𝐷, (2
𝑟

+ 1) − 2
(𝑟+3)/2

= 1. (10)

Further, by the second equality of (10), we have 2𝑟 = 2(𝑟+3)/2,
𝑟 = 3, and𝐷 = 17. Thus, the lemma is proved.

Lemma 8. If 𝐷 is an odd prime and 𝐷 belongs to the excep-
tional case (iii) of Lemma 6, then𝐷 = 17.

Proof. Using the same method as in the proof of Lemma 7,
we can obtain this lemma without any difficulty.

Lemma9. If𝐷 belongs to the exceptional case (ii), then (6) has
at most one solution (𝑋, 𝑛) with 3 | 𝑛.

Proof. Notice that, for any positive integer 𝑟, there exists at
most one number of 5, 2𝑟 + 3, and 4𝑟 + 7 which is a multiple
of 3. Thus, by Lemma 6, the lemma is proved.

Lemma 10. The equation

𝑋
𝑚

− 𝑌
𝑛

= 1, 𝑋, 𝑌,𝑚, 𝑛 ∈ N, min {𝑋, 𝑌,𝑚, 𝑛} > 1 (11)

has only the solution (𝑋, 𝑌,𝑚, 𝑛) = (3, 2, 2, 3).

Proof. See [8].

3. Proof of Theorem

Wenow assume that (𝑥, 𝑦, 𝑧) is a solution of (1).Thenwe have
gcd(2𝑝, 𝑧) = 1.

If 2 | 𝑦, since gcd(𝑧+𝑝𝑦/2, 𝑧 −𝑝𝑦/2) = 2, then from (1) we
get

𝑧 + 𝑝
𝑦/2

= 2
3𝑥−1

, 𝑧 − 𝑝
𝑦/2

= 2, (12)

where we obtain

𝑧 = 2
3𝑥−2

+ 1, (13)

𝑝
𝑦/2

= 2
3𝑥−2

− 1. (14)

Since 𝑝 > 1, applying Lemma 10 to (14), we get

𝑦 = 2, 𝑝 = 2
3𝑥−2

− 1. (15)

Further, by Lemma 3, we see from the second equality of (15)
that

𝑝 = 2
𝑞

− 1, 𝑞 = 3𝑥 − 2 (16)

is an odd prime with 𝑞 ≡ 1(mod3).
Therefore, by (13), (15), and (16), we obtain the solutions

given in (2).
Obviously, if 𝑝 satisfies (2), then 𝑝 ≡ 7(mod 8). Other-

wise, since 2 ∤ 𝑦, we see from (1) that 𝑝 ≡ 𝑝𝑦 ≡ 𝑧2 − 8𝑥 ≡
1(mod 8). It implies that if 𝑝 ≡ ±3(mod 8), then (1) has no
solutions (𝑥, 𝑦, 𝑧). If 𝑝 ≡ 7(mod 8), then (1) has only the
solutions (2).

Here and below, we consider the remaining cases that 𝑝 ≡
1(mod 8). By the above analysis, we have 2 ∤ 𝑦. If 𝑦 > 1,
then 𝑦 ≥ 3 and (4) has the solution (𝑋, 𝑌,𝑚, 𝑛) = (𝑧, 𝑝, 3𝑥, 𝑦)
with 3 | 𝑚. But, by Lemma 5, it is impossible. Therefore, we
have

𝑦 = 1. (17)

Substituting (17) into (1), the equation

𝑋
2

− 𝑝 = 2
𝑛

, 𝑋, 𝑛 ∈ N, 𝑛 > 2 (18)

has the solution (𝑋, 𝑛) = (𝑧, 3𝑥) with 3 | 𝑛. Since 𝑝 ≡
1(mod 8), by Lemma 4, (3) has solutions (𝑢, V). Therefore,
by Lemmas 6–9, (1) has at most two solutions (𝑥, 𝑦, 𝑧). Thus,
the theorem is proved.
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