BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova Google Al Language

Outline

- Background & Motivation
- Method Overview
- Experiments
- Takeaways & Discussion

Background & Motivation

Pre-training in NLP

- Word embeddings are the basis of deep learning for NLP
- Word embeddings (word2vec, GloVe) are often pre-trained on text corpus
- Pre-training can effectively improve many NLP tasks

Contextual Representations

- Problem: Word embeddings are applied in a context free manner
- Solution: Train contextual representations on text corpus

Background & Motivation - related work

Two pre-training representation strategies

Feature-based approach,
 ELMo (Peters et al., 2018a)

open a bank <s> open a

Existing Model Architecture

LSTM LSTM LSTM LSTM

A popen a bank

Second of the componing open a bank

Second open a bank

Open a bank

Apply as "Pre-trained

Embeddings"

Train Separate Left-to-Right and

Right-to-Left LMs

Fine-tuning approach,
 OpenAl GPT (Radford et al.,
 2018)

Background & Motivation

- Problem with previous methods
 - Unidirectional LMs have limited expressive power
 - Can only see left context or right context
- Solution: Bidirectional Encoder Representations from Transformers
 - o Bidirectional: the word can see both side at the same time
 - Empirically, improved the fine-tuning based approaches

BERT = Bidirectional Encoder Representations from Transformers

Two steps:

- Pre-training on unlabeled text corpus
 - Masked LM
 - Next sentence prediction
- Fine-tuning on specific task
 - Plug in the task specific inputs and outputs
 - Fine-tune all the parameters end-to-end

Pre-training Task #1: Masked LM → Solve the problem: how to train bidirectional?

Mask out 15% of the input words, and then predict the masked words

```
store gallon

the man went to the [MASK] to buy a [MASK] of milk
```

- To reduce bias, among 15% words to predict
 - 80% of the time, replace with [MASK]
 - 10% of the time, replace random word
 - o 10% of the time, keep same

Pre-training Task #2: Next Sentence Prediction → learn relationships between sentences

- Classification task
- Predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```

Input Representation

- Use 30,000 WordPiece vocabulary on input
- Each input embedding is sum of three embeddings

Transformer Encoder

- Multi-headed self attention
 - Models context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional encoding
 - Allows model to learn relative positioning

Model Details

- <u>Data</u>: Wikipedia (2.5B words) + BookCorpus (800M words)
- Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- Training Time: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPU slice for 4 days

Fine-tuning Procedure

 Apart from output layers, the same architecture are used in both pre-training and fine-tuning.

Experiments

GLUE (General Language Understanding Evaluation)

- Two types of tasks
 - Sentence pair classification tasks
 - Single sentence classification tasks

MultiNLI CoLa

Premise: Hills and mountains are especially sanctified in Jainism.

Hypothesis: Jainism hates nature.

Label: Contradiction

Sentence: The wagon rumbled down the road.

<u>Label</u>: Acceptable

<u>Sentence</u>: The car honked down the road.

Label: Unacceptable

Experiments

GLUE

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

Experiments

GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Effect of Pre-training Task

- Masked LM (compared to left-to-right LM) is very important on some tasks, Next Sentence Prediction is important on other tasks.
- Left-to-right model doesn't work well on word-level task (SQuAD), although this is mitigated by BiLSTM.

Effect of Directionality and Training Time

- Masked LM takes slightly longer to converge
- But absolute results are much better almost immediately

Effect of Model Size

- Big models help a lot
- Going from 110M -> 340M
 params helps even on datasets
 with 3,600 labeled examples
 (MRPC)

Hyperparams				Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

Effect of Model Size

- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples (MRPC)

Hyperparams				Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

Takeaways & Discussion

Contributions

- Demonstrate the importance of bidirectional pre-training for language representations
- The first fine-tuning based model that achieves state-of-the-art on a large suite of tasks, outperforming many task-specific architectures
- Advances the state of the art for 11 NLP tasks

Takeaways & Discussion

Critiques

- Bias: Mask token only seen at pre-training, never seen at fine-tuning
- High computation cost
- Not end-to-end
- Doesn't work for language generation task

Takeaways & Discussion

BERT v.s. MAML

- Two stages
 - Learning the initial weights through pre-training / outer loop updates
 - Fine-tuning / inner loop updates
 - o 2-step vs end-to-end
- Shared architecture across different tasks

Thank You!

Effect of Masking Strategy

- Feature-based Approach with BERT (NER)
- Masking 100% of the time hurts on the feature-based approach
- Using random word 100% of time hurts slightly

Masking Rates			Dev Set Results				
MASK	SAME				NER Feature-based		
80%	10%	10%	84.2	95.4	94.9		
100%	0%	0%	84.3	94.9	94.0		
80%	0%	20%	84.1	95.2	94.6		
80%	20%	0%	84.4	95.2	94.7		
0%	20%	80%	83.7	94.8	94.6		
0%	0%	100%	83.6	94.9	94.6		

Effect of Masking Strategy

- Feature-based Approach with BERT (NER)
- Masking 100% of the time hurts on the feature-based approach
- Using random word 100% of time hurts slightly

Masking Rates			Dev Set Results				
MASK	SAME	RND	MNLI	NER			
			Fine-tune	Fine-tune	Feature-based		
80%	10%	10%	84.2	95.4	94.9		
100%	0%	0%	84.3	94.9	94.0		
80%	0%	20%	84.1	95.2	94.6		
80%	20%	0%	84.4	95.2	94.7		
0%	20%	80%	83.7	94.8	94.6		
0%	0%	100%	83.6	94.9	94.6		

Compared with OpenAI GPT and ELMo

Effect if Pre-training Task

Masked LM (compared to left-to-right LM) is very important on some tasks,
 Next Sentence Prediction is important on other tasks.

Left-to-right model does very poorly on word-level task (SQuAD), although

this is mitigated by BiLSTM.

2.	Dev Set						
Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)		
BERTBASE	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP	82.1	84.3	77.5	92.1	77.8		
+ BiLSTM	82.1	84.1	75.7	91.6	84.9		

