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Abstract: Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans
that have the unique ability to directly translate the message of a signaling molecule into a transcrip-
tional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic
and adult physiology, with embryonic development being one of the most dynamic periods of NR
activity. Accumulating evidence suggests that NR signaling is also a major regulator of development
in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved
with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of
the resulting data in a phylogenetic context allowed significant progress toward an understanding of
NR superfamily evolution, both in terms of molecular activities and developmental functions. In this
context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand
interactions, further strengthening the importance of these organisms in the field of evolutionary
developmental biology.
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1. Introduction

Nuclear receptors (NRs) are a superfamily of phylogenetically related transcriptional
regulators and act as activators or repressors of gene transcription, either constitutively or
depending on the binding of a ligand [1,2]. NRs are characterized by a conserved structural
organization, comprising a variable N-terminal region (A/B domain), a DNA-binding
domain (DBD, C domain), a hinge region (D domain), a ligand-binding domain (LBD,
E domain) and a C-terminal domain (Figure 1) [3].
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1. Introduction 
Nuclear receptors (NRs) are a superfamily of phylogenetically related transcrip-

tional regulators and act as activators or repressors of gene transcription, either consti-
tutively or depending on the binding of a ligand [1,2]. NRs are characterized by a con-
served structural organization, comprising a variable N-terminal region (A/B domain), a 
DNA-binding domain (DBD, C domain), a hinge region (D domain), a ligand-binding 
domain (LBD, E domain) and a C-terminal domain (Figure 1) [3]. 

 
Figure 1. General structure of nuclear receptor (NR) proteins. Different domains of the NR 
protein are shown in different colors. A schematic representation of the ligand-binding 
pocket (LBP) is included in the ligand binding domain. 

The LBD permits ligand binding, mostly through Van der Waals interactions and 
hydrogen bonds of specific amino acid residues in the ligand-binding pocket (LBP) [4]. 
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Figure 1. General structure of nuclear receptor (NR) proteins. Different domains of the NR protein
are shown in different colors. A schematic representation of the ligand-binding pocket (LBP) is
included in the ligand binding domain.

The LBD permits ligand binding, mostly through Van der Waals interactions and
hydrogen bonds of specific amino acid residues in the ligand-binding pocket (LBP) [4]. The
DBD is the region of the NR that mediates interactions with DNA and hence controls the
specificity of the transcriptional response. NRs bind DNA at so-called response elements
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(REs), specific sequences located in the cis-regulatory regions of target genes [5]. REs
consist of direct, inverted or palindromic repetitions of a core consensus motif separated
by a variable number of nucleotides that are bound by NRs as monomers, homodimers
or heterodimers [6]. Efficient dimeric complexes are formed in vivo through cooperative
protein-protein and protein-DNA interactions [7]. While protein-protein dimerization
interfaces are found in the DBD, the LBD and the hinge region of NRs, REs serve as NR
dimerization sites on DNA [8–10].

NRs are divided into two main classes: NRs with known ligands and NRs, for which
ligands do not exist or have yet to be identified, the so-called orphan receptors [11,12].
Recent phylogenetic analyses of DBD and LBD sequences defined nine NR subfamilies
(Table 1), which have probably originated from a single ancestral NR [2,12–16].

Table 1. Nuclear receptor (NR) complements characterized in metazoan genomes.

Subfamily Group Name NRNC
Symbol Abbreviation Physiological

Ligand

# *

A

NRs with two DBDs

NR#A1 2DBD-NRα

B NR#B1 2DBD-NRβ

C NR#C1 2DBD-NRγ

D NR#D1 2DBD-NRδ

0

A *

Zygotic gap protein NR0A1 KNI x

Zygotic gap protein- related NR0A2 KNRL x

Egon NR0A3 EG x

ODR-7 NR0A4 ODR-7 x

Trithorax NR0A5 TRX x

B
Dosage-sensitive sex reversal-adrenal hypoplasia

congenital critical region on the X chromosome, gene 1 NR0B1 DAX1 x

Small heterodimer partner NR0B2 SHP x

1

A Thyroid hormone receptor NR1A1,2 THRα,β T3

B Retinoic acid receptor NR1B1-3 RARα-γ All-trans-RA

C Peroxisome proliferator-activated receptor NR1C1-3 PPARα-γ Fatty acids,
Prostaglandins

D Rev-ErbA NR1D1,2 Rev-ErbAα,β x

E * Ecdysone-regulated E78 gene NR1E E78

F
RAR-related orphan receptor NR1F1-3 RORα-γ x

HR3 * NR1F4 HR3

G * CNR14-like NR1G1 Sex-1 x

H Liver X receptor-like

NR1H1 * EcR Ecdysteroids

NR1H2,3 LXRα,β Oxysterols

NR1H4,5 FXRα,β x

I Vitamin D receptor-like

NR1I1 VDR Vitamin D

NR1I2 PXR Xenobiotics

NR1I3 CAR Androstane

J * NHR96 NR1J1 DHR96

K * VDR/PXRα,β NR1K1,2 VDRα,β-like

L * HNR-like 97 NR1L HR97

M * HNR-like 19 NR1M1 HR10

N * HNR-like 11 NR1N1 HR11

O * NR1O

P * NR1P1-11

2 A Hepatocyte nuclear factor 4
NR2A1-3 HNF4α,γ Fatty acids
NR2A4 * HNF4
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Table 1. Cont.

Subfamily Group Name NRNC
Symbol Abbreviation Physiological

Ligand

B Retinoid X receptor NR2B1-3 RXRα-γ x

NR2B4 USP x

C Testicular receptor NR2C1 TR2 x

NR2C2 TR4 x

D * DHR78 NR2D1 HR78

E

Tailless / Photoreceptor cell-specific nuclear receptor

NR2E1 TLX x

NR2E2 * TLL x

NR2E3 PNR/HR51 * x

Dissatisfaction nuclear receptor * NR2E4 DSF

Nuclear hormone receptor FAX-1 * NR2E5 FAX1

F

Chicken ovalbumin upstream promoter
transcription factor NR2F1,2 COUP-TFI,II x

Seven-up * NR2F3 SVP

Chicken ovalbumin upstream promoter
transcription factor III * NR2F4 COUP-TFIII

Seven-up related protein 46 * NR2F5 SVP-46

V-erbA-related protein 2 NR2F6 EAR-2 x

3

A Estrogen receptor NR3A1,2 ERα,β Estradiol

B Estrogen-related receptor
NR3B1-3 ERRα-γ x

NR3B4 * ERR x

C Steroid receptor / Ketosteroid receptors

NR3C1 Glucocorticoid
receptor, GR Cortisol

NR3C2 Mineralocorticoid
receptor, MR Aldosterone

NR3C3 Progesterone
receptor, PR Progesterone

NR3C4 Androgen
receptor, AR Testosterone

D * Estrogen receptor-like in Protostomia NR3D ER-like

E * Estrogen receptor-like in Cnidaria NR3E ER-like

F * Estrogen receptor-like in Placozoa NR3F ER-like

4 A

Nerve growth factor IB NR4A1 NGFIB x

Nuclear receptor related 1 NR4A2 NURR1 x

Neuron-derived orphan receptor 1 NR4A3 NOR1 x

DHR38 * NR4A4 HR38

5 A

Steroidogenic factor 1 NR5A1 SF1 Phosphatidylinositols

Liver receptor homolog-1 NR5A2 LRH1 Phosphatidylinositols

NHR FTZ1-α * NR5A3 FTZ1-α

B * NHR39/FTZ1-β NR5B1 HR39

6 A
Germ cell nuclear factor NR6A1 GCNF x

HR4 * NR6A2 HR4

7/8 * A NR7/8A1

Non-vertebrate NR subfamilies and receptors are indicated by (*). Physiological ligands refer to in vivo conditions in vertebrates and the
(x) highlights orphan NRs [12–26]. NRs with two DBDs are listed as (#), because they do not yet have an unequivocal subfamily status.
Like NR0s, NRs with two DBDs do not have the conventional NR structure as shown in Figure 1. The NR7/8 subfamily has been called
either NR7 or NR8 [14,22,24]. When information is absent or disputed, cells are left empty.
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NR genes have been found in all extant metazoan taxa, but not in fungi, plants or
unicellular eukaryotes, suggesting that NRs originated at the base of the metazoans [1,2].
NR phylogenies have indicated that the ancestral receptor might have been a ligand-
activated receptor, with fatty acids as possible ligands [15,16]. In the course of evolution,
the NR superfamily has experienced a complex pattern of gene expansions that led to the
current diversity of metazoan NRs (Figure 3) [17–24,27].

Genomes of placozoans contain members of NR subfamilies 2 and 3, suggesting that a
first wave of NR gene expansion occurred relatively early in metazoan evolution [20,21,29,30].
The NR complement of cnidarians indicates that the diversification of the NR2 and the ap-
pearance of the NR6 and NR7/8 subfamilies predate the split of the cnidarian and bilaterian
lineages (Figure 3) [20,27,30]. Another NR expansion occurred very early in bilaterian evolu-
tion, leading to the appearance of all extant NR subfamilies and an estimated complement of
about 25 NR genes (Figure 3) [1,15,27]. The NR superfamily subsequently experienced lineage-
specific expansions. The NR3C receptors, for example, arose at the base of the chordates and
whole genome duplications further expanded the NR complement in the vertebrate lineage
(Table 1, Figure 2) [31–33]. A specific lineage-specific duplication has further been reported
in cephalochordates, whose genomes encode 10 NR1H receptors (Figure 2) [14]. Similarly,
in nematodes, the orphan NR HNF4 experienced a lineage-specific burst of duplications
(Figure 2) [34].
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gene losses are shown in red. WGD: Whole genome duplications. Animal phylogenies are based on
Laumer et al. (2019) [28]. NR nomenclature is as defined in Table 1.
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Gene losses have also been important for shaping the NR complements of extant
metazoans. Ecdysozoans, for example, have lost a whole suite of NRs, including ER,
THR, PPAR and NR7/8. RAR was further lost by arthropods and nematodes, and ERR
by nematodes only (Figure 2) [24,27,35]. Similarly, within the chordates, NR0A genes
have been lost during early diversification of the lineage, tunicates and vertebrates have
lost NR7/8, and the tunicates have been subjected to additional NR losses, including, for
example, ER, TLL/TLX and NR3C (Figure 2) [14,24,27,31,36].

Despite their presence in all metazoans, NR functions and signaling pathways have
primarily been characterized in vertebrates where they were shown to be involved in
a wide variety of biological processes, one of which is the regulation of embryonic and
post-embryonic development [2,37]. NR names and classifications into orphan or ligand-
activated receptors thus strictly reflect their functions and ligand binding properties in
vertebrates, with limited relevance to other animal taxa [11,16,25]. In vertebrates, ligand-
activated NRs are mainly found in the NR1 and NR3 subfamilies, and their endogenous
ligands establish a diverse list of bioactive compounds (Table 1) [25,26]. Furthermore, NR1
and NR4 receptors generally exert their biological functions in heterodimeric complexes
with RXR [38,39]. RXR is an orphan nuclear receptor of the NR2 subfamily, whose main
biological function is to act as a permissive heterodimeric binding partner of NR1 and
NR4 subfamily members, in a process commonly referred to as RXR subordination [39].
Conversely, NR2, NR3, NR5 and NR6 subfamily members mostly function in homodimeric
complexes [6].
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separation between different animal clades (non-Bilateria/Bilateria and Protostomia/Deuterostomia). Grey bars, on the right,
indicate the origin and conservation of NR subfamilies in metazoans. Light grey bars indicate NR subfamilies that were already
present before the origin of bilaterians. Dark grey bars highlight bilaterian-specific NR subfamilies.

Given their ligand-dependent activity and their involvement in life threatening human
pathologies, such as diabetes and cancer, NRs are major pharmacological targets in several
different drug discovery programs [40]. Unfortunately, their ligand-dependent activity
also makes them susceptible to a class of environmental pollutants defined as endocrine
disrupting chemicals (EDCs), exogenous substances that alter the function of the endocrine
system [41,42]. EDCs mimic the structure of endogenous NR ligands and can act as
either agonists or antagonists of NR signaling pathways [42,43]. EDC exposure thus
adversely affects the adult endocrine system and impacts developmental processes, leading
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to pathophysiological and pathological conditions, such as neurodevelopmental disorders
and developmental dysfunction/arrest in all vertebrate taxa [42,43]. It was initially thought
that invertebrates are not affected by EDCs as they were said to lack an endocrine system
similar to that of vertebrates [44,45]. However, it is now known that invertebrates are
extremely sensitive to EDC exposure, in particular during their embryonic and post-
embryonic development [44–46]. For this reason, a specific set of NRs, including thyroid
hormone (THR), retinoic acid (RAR), retinoid X (RXR) and estrogen (ER, ERR) receptors,
is starting to be characterized in invertebrates in an effort to understand their functional
traits in relation to those of their vertebrate orthologs. Even though it is still not clear to
what extent the teratogenic effects of EDCs in invertebrates are mediated by NRs, it has
been shown that NRs are involved in embryonic and post-embryonic development in these
animals [47–53]. Yet, the mechanisms at play are not necessarily conserved with vertebrates,
revealing lineage-specific adaptions in both invertebrates and vertebrates [1,10,17,47–57].
The aim of this review is to describe and discuss the developmental functions of NRs
in invertebrates, with a special focus on marine organisms, highlighting the particular
importance of comparative approaches using emerging marine invertebrate models for the
field of evolutionary developmental biology.

2. Development of Marine Invertebrates and Associated NR Cohorts

In this section, we will correlate NR expression with the development of marine inver-
tebrates, focusing on representatives from three phyla: cnidarians, mollusks and chordates.
Marine invertebrate development can generally be classified into four stages: embryonic
development, embryo to larva transition (EtL), larval development and metamorphosis.
Embryonic development is characterized by cell proliferation and germ layer specifica-
tion [47]. EtL consists of a series of morphogenetic processes resulting in the formation
of a primitive larva. These processes include axial and body patterning, initiation of neu-
rogenesis and organogenesis [58]. During larval development, additional structures for
feeding, light sensing and swimming/crawling are formed [59]. Most of these structures
will subsequently be lost during metamorphosis, which results in the emergence of the
adult body plan [60]. This typical life cycle can be completed by an asexual reproduction
phase. Juvenile polyps of Medusozoan cnidarians, for example, can undergo strobilation,
leading to segmentation of the polyp into so-called ephyras, which will subsequently grow
into adults [61]. Furthermore, several tunicate lineages independently gained the capacity
for asexual reproduction using different budding strategies [62,63].

As detailed above, NR complements can vary greatly between different marine inver-
tebrate phyla. Cnidarians, for instance, possess only a limited number of NRs [20,30,61,64].
The genome of the cnidarian Nematostella vectensis, an anthozoan, was thus estimated to
encode 17 NRs, including orthologs of vertebrate COUP-TF, TLX/PNR, HNF4, TR2/4 and
GCNF [30]. The genomes of medusozoan cnidarians, such as Aurelia aurita, include additional
NRs, such as orthologs of vertebrate RXR and an ER-like NR, called NR3E (Figure 3; Figure 2)
(Table 1) [20,64,65]. In comparison, mollusks have larger NR complements with represen-
tatives of each NR subfamily. In the genomes of Crassostrea gigas, Biomphalaria glabrata and
Lottia gigantea, for example, 43, 39 and 33 genes encoding NRs were respectively identified,
with most of them being orthologous to vertebrate NRs [19,23,24]. While the stereotypical
NR complement of chordates is similar to that of mollusks, tunicates are characterized by
significantly reduced NR complements. The ascidian tunicate Ciona intestinalis, for example,
only has 17 NR genes [36].

It is intriguing to speculate that differences in NR complements are correlated with the
diversity of life cycles, developmental strategies and reproductive adaptations observed in
marine invertebrates [66]. NRs are essential regulators of vertebrate development [67,68].
Given that a certain number of developmental processes are conserved in metazoans (or at
least bilaterians), it is conceivable that NRs are also pivotal regulators of embryonic and
post-embryonic development in invertebrates [48,69]. However, developmental expression
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of NRs has only been established in a limited number of marine invertebrates, and their
developmental functions in marine invertebrates are chiefly unknown [30,47,48,53,65].

In N. vectensis (Figure 4), 13 of the 17 NRs are dynamically expressed during develop-
ment, with distinctive temporal patterns during embryogenesis, EtL, larval development
and metamorphosis. While homologs of COUP-TF and TLX/PNR are highly expressed
during EtL, HNF4, TR2/4, COUP-TF and NR7/8 expression is characteristic for larval
development. Intriguingly, although GCNF is detectable throughout development, its
expression increases during late development and marks the metamorphic stage [30].
Furthermore, in A. aurita, RXR expression peaks during strobilation (Figure 4) [64,65]. In
the bivalve mollusk C. gigas, 34 of the 43 NRs are characterized by dynamic expression
patterns during development (Figure 4). Orthologs of several NRs, including 2DBD-NRγ,
HNF4 and NR7/8, are strongly expressed during embryonic development, with transcripts
being almost exclusively of maternal origin [24,47]. While EtL is characterized by a num-
ber of NR transcripts including THR, RAR, PPAR, RXR, Rev-ErbA, TLL/TLX and PNR,
larval development is marked by a general downregulation of NR expression [24,47,70].
Metamorphosis, in turn, is characterized by NR0B, 2DBD-NRδ, EcR, RXR, COUP-TF/SVP,
TLL/TLX, ER and ERR expression [47]. Intriguingly, various members of the C. gigas-
specific NR1P subgroup are dynamically expressed during development [17,47]. In the
ascidian tunicates C. intestinalis and Phallusia mammillata, a principal component analysis
of NR transcripts has not yet been performed. However, the expression profiles of ascidian
NRs available in the Aniseed database (https://www.aniseed.cnrs.fr/) allow at least some
level of developmental clustering (Figure 4). Embryonic development is thus characterized
by expression of TR2/4, RXR, PPAR and LXR, all of which are of maternal origin. EtL is
associated with RAR, HNF4, GCNF and ROR expression, while peaks in the expression of
THR, Rev-Erb, ERR, COUP-TF and PPAR occur during larval development [53]. Altogether,
these results demonstrate that the development of marine invertebrates is characterized by
the stage-specific expression of NR subsets, suggesting that NR activity is correlated with
distinctive developmental processes at different stages of the life cycle.
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3. Development of Marine Invertebrates and NR Diversification

Despite the gene duplications and losses that accompanied NR diversification, a basic
set of NRs is implicated in the development of distantly related metazoans. This basic set of
NRs comprises COUP-TF/SVP, TLX/PNR, HNF4 and RXR (Figure 5, Table 1). Information
regarding their developmental functions in marine invertebrates is still extremely scarce
and is largely derived from the biological activity of their vertebrate orthologs.
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Members of the NR2 subfamily (COUP-TF, TLX/PNR, HNF4, RXR) are dynamically expressed
during development of cnidarians, mollusks and tunicates. Albeit their presence in the genomes of at
least medusozoan cnidarians, NR3 receptors only contribute to the developmental NR complements
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are dynamically expressed during development of both protostomes and deuterostomes, further
expanding the bilaterian set of NRs with developmental functions.

3.1. Chicken Ovalbumin Upstream Promoter Transcription Factor, COUP-TF

In vertebrates, COUP-TF generally acts as a transcriptional repressor and regulates
the development of muscles and heart as well as the differentiation of hindbrain and
photoreceptors [71,72]. COUP-TF orthologs are expressed in early and late larval stages of
N. vectensis and in late pre-metamorphic stages of both C. gigas and C. intestinalis (Figure 4).
As this receptor is expressed in nematoblasts and subsets of neural cells in the cnidarian
Hydra vulgaris as well as in the posterior photoreceptive ocellus of P. mammillata, COUP-TF
is considered as a conserved neural marker involved in the formation of photoreceptive
organs [53,73].

3.2. Tailless/Photoreceptor Cell-Specific Nuclear Receptor, TLX/PNR

In vertebrates and fruit flies, TLL/TLX is an orphan receptor involved in eye and
forebrain development as well as in anteroposterior patterning of the embryo, suggesting
some level of functional conservation between vertebrates and invertebrates [48,74]. In
both N. vectensis and C. gigas, TLX/PNR orthologs are highly expressed in EtL stages
(Figure 4). Their predominant expression in neural tissues is indicative of functions in
neurogenesis and in the development of photoreceptive organs [30,47]. While TLX/PNR
receptors were secondarily lost in tunicates, the TLL/TLX ortholog of the cephalochordate
amphioxus is dynamically expressed in EtL stages. In neurulae, the amphioxus TLL/TLX
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gene marks developing sensory neurons, and in larvae, the gene is expressed in the central
nervous system and anterior notochord [75]. It is thus likely that TLX/PNR genes are also
involved in neurogenic processes in developing invertebrate chordates.

3.3. Hepatocyte Nuclear Factor 4, HNF4

In humans, HNF4 binds endogenous fatty acids as ligands and regulates hepatocyte
differentiation, energy metabolism, xenobiotic detoxification and stem cell maintenance in
the germ line [76,77]. HNF4 also participates in primary endoderm development in frogs,
regulates expression of transcription factors necessary for endoderm specification in mice
and is required for gut formation in insects [78–80]. HNF4 is highly expressed during larval
development in N. vectensis, is a maternal transcript in C. gigas early embryos and expressed
at EtL stages in C. intestinalis (Figure 4) [30,47]. In P. mammillata, HNF4 is expressed in
endoderm cells of the trunk [53]. Developmental expression of HNF4 could thus play a
role in endoderm specification and the formation of endodermal organs [30,47,53].

3.4. Retinoid X Receptor, RXR

In vertebrates, RXR is commonly the silent heterodimeric partner of NR1 and NR4
subfamily members and is involved in a variety of developmental processes in subordina-
tion to its heterodimeric binding partners. In the medusozoan cnidarian A. aurita, RXR is
dynamically expressed during early strobilation, suggesting a potential role for RXR in this
asexual reproduction process (Figure 4) [65]. RXR is highly expressed in C. gigas EtL stages,
together with the NR1 subfamily members THR, RAR and PPAR [47,70]. In addition, there
is a second peak of RXR expression prior to metamorphosis, which is paralleled by the
NR1 subfamily member EcR [47]. Conversely, RXR in C. Intestinalis is expressed mainly
during embryonic development, together with PPAR, and less strongly during EtL and
larval stages, which are, respectively, characterized by the expression of the NR1 subfamily
members RAR and ROR and THR, Rev-erb and PPAR [53]. While the developmental
clustering of RXR does not strictly follow that of the NR1 subfamily members, there is
nonetheless a tendency for regrouping RXR expression with that of the representatives of
the NR1 subfamily. The notable absence of NR4 subfamily members from the developmen-
tal clusters in cnidarians, mollusk and tunicates suggests that heterodimers of RXR and
NR1 receptors might play much more important roles during invertebrate development
than heterodimers of RXR and NR4 receptors.

The receptors defining the basic set of NRs acting during development of marine in-
vertebrates are all members of the NR2 subfamily. This subfamily has appeared very early
in the metazoan lineage and has diversified before the cnidarian-bilaterian split [27,30].
Of all NRs, the NR2 subfamily member HNF4 is actually considered the extant NR that
most closely resembles the ancestral NR that originated in the last common ancestor of
all metazoans [15,16]. Based on the observations detailed above, it thus seems likely that
the early diversification of the NR2 subfamily was accompanied by the elaboration of a
NR2-dependent gene regulatory network involved in different aspects of animal develop-
ment [81]. If this hypothesis is correct, at least some elements of this core gene regulatory
network should still exist in extant animals and control conserved developmental functions
in different metazoans. The basic set of NRs identified here and their potential involvement
in invertebrate development could serve as a starting point for future studies aimed at
identifying these ancestral NR-dependent features of animal development.

4. Thyroid Hormone Receptor (THR) Signaling Regulates Developmental Transitions
in Marine Invertebrates

In vertebrates, THR is a ligand-activated transcription factor and its ligands are gen-
erally referred to as thyroid hormones (THs), which are either synthesized endogenously
or taken up from the environment (Table 1) [82,83]. The main THs of vertebrates are
triiodothyronine (T3) and tetraiodothyronine (T4), with T3 being the biologically active
TH. THs are key regulators of vertebrate development and homeostasis and are involved,
for example, in animal growth and metabolism as well as in the regulation of metamor-
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phosis [84]. THR is dynamically expressed during development of both mollusks and
tunicates, which is suggestive of a possibly conserved function in bilaterian development
(Figure 5). THR genes originated at the base of bilaterians and have already been identified
in the genomes of a wide variety of protostomes and deuterostomes [10,52,85]. However,
the THR gene was lost in ecdysozoans and lineage-specific THR duplications occurred, for
example, in platyhelminths, likely by independent duplication events in trematodes and
turbellarians (Figure 2) (Table 2) [27,85].

Table 2. Summary of thyroid hormone receptor (THR) functions in marine invertebrates.

Taxon Clade Phylum Receptor Activity Developmental Function

Deuterostomia

Chordata
Tunicata Unknown Suspected role in

metamorphosis

Cephalochordata Activated by TRIAC Pivotal regulator of
metamorphosis

Ambulacraria Echinodermata
Presumably ligand-activated

and/or controlled by
alternative signaling pathways

Suspected role in growth,
metamorphosis, skeletogenesis

Protostomia Lophotrochozoa

Annelida Ligand-activated by T3 or
TRIAC

Regulator of developmental
transition from trochophore to

crawling larva

Mollusca
Presumably ligand-activated

and/or controlled by
alternative signaling pathways

Suspected role in growth and
developmental transitions

Platyhelminthes
Presumably ligand-activated

and/or controlled by
alternative signaling pathways

Suspected role in growth

Non-Bilateria Radiata Cnidaria Absent from the genome
THs with a role in

metamorphosis, strobilation,
skeletogenesis

Ascidian tunicates possess a THR ortholog and can endogenously produce T4 [86–88].
T4 is present in pre-metamorphic stages, and experimental evidence suggests that it could
be a regulator of metamorphosis [87,88]. However, a direct involvement of THR in this
process remains elusive [86,87]. In the cephalochordate amphioxus, several elements of
the THR signaling system are shared with vertebrates, but the biologically active TH is
triiodothyroacetic acid (TRIAC), rather than T3 [89,90]. TRIAC binds and strongly activates
the amphioxus THR, and TH-dependent signaling plays a pivotal role in the regulation of
metamorphosis [89,90]. In echinoderms, a THR gene has been cloned from sea urchins, but
it has been shown that this receptor is not activated by THs or their metabolites [52,83]. Yet,
T3 and T4 are actively accumulated during echinoderm development, and an exogenous
supply of T4 can accelerate development, skeletogenesis and metamorphosis in a variety
of echinoderm species [52,91].

Ligand-controlled THR signaling has further been suggested to regulate development
and metamorphosis in different protostomes. However, in the absence of convincing evi-
dence of endogenous TH synthesis in protostomes, it is currently believed that protostomes
have to take up THs, or its precursors, from external sources [52,54,92]. In annelids, the
THR of Platynereis dumerilii is activated in the presence of T3 or TRIAC [10,54]. Treatments
with exogenous T3 or TRIAC induce an acceleration of the morphological switch from
the trochophore to the crawling larva. This morphological switch is further characterized
by a peak of THR expression [10,54]. The THR of the annelid P. dumerilii might thus be a
ligand-activated receptor with endogenous ligands similar to T3 or TRIAC that mediates
developmental transitions between larval stages [54,93].
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In mollusks, experimental evidence also points to a morphogenetic function of THR
and THs. While the transcriptional activity of C. gigas THR is not stimulated at relevant
physiological concentrations of T4, T3 or TRIAC in vitro, both T4 and T3 are present
in vivo in embryos and larvae, with their concentrations increasing significantly between
the gastrula and the feeding larva [94]. In addition, the THR protein is detectable from
blastula to trochophore stages in C. gigas, suggesting that the THR and the TH signaling
system might be involved in the regulation of the embryo to larva transition [94]. Similarly,
although platyhelminth THRs are not activated by THs, exogenous THs accelerate the
development of parasitic platyhelminth lineages [85,95,96]. Taken together, it seems likely
that THs have an ancestral role in lophotrochozoan development and that THRs are
involved in mediating these roles. However, the endogenous ligands of lophotrochozoans
THRs seem to be different from those of vertebrate THRs.

THs were further shown to function in developmental transitions in animals that lack
a THR, such as cnidarians where THs regulate metamorphosis and strobilation [52,83]. A
role for TH signaling in the control of developmental transitions might thus predate the
evolutionary origin of THRs [52,54,83]. It has been proposed that the first TH signaling
systems to evolve used TH precursors obtained from algal sources and that the ancestral
THR evolved as a sensor for iodinated tyrosine and indicator of food availability [10,52,83,92].
The appearance of THR in bilaterian animals thus allowed for the elaboration of a ligand-
dependent control mechanism for development and growth, whose activity is directly coupled
to environmental cues favoring larval survival [10,52,83,92,97].

5. Retinoic Acid Receptor (RAR)-Dependent Signaling Is Required for Neurogenesis
in Marine Invertebrates

As in the case of THR, RAR is also dynamically expressed during larval morphogenesis
in invertebrates (Figure 5). It is thus reasonable to assume that this NR is also involved in
the regulation of developmental functions in marine invertebrates. Vertebrate RARs are
ligand-activated transcription factors that act as constitutive repressors in the absence of a
ligand [98]. RARs bind different isomers of the small, lipophilic molecule retinoic acid (RA),
such as all-trans-RA, 9-cis-RA or 13-cis-RA, with all-trans-RA being the main biologically
active RA isomer [99]. RA acts as a morphogen, whose functions are mediated by RARs.
During vertebrate development, RA signaling is, for example, required for axial patterning,
nervous system development and organogenesis, with HOX genes being amongst the
major targets of this signaling pathway [99,100]. Most bilaterian genomes contain a single
RAR gene [17,27,36,49,50,101–103]. However, RARs have been lost in most ecdysozoans as
well as in appendicularian (larvacean) tunicates (Figure 2) (Table 3) [27,101,103].

Many elements of a vertebrate-like RA signaling system are present in invertebrate
deuterostomes, including the genes encoding the receptors and the enzymes required for
the synthesis and degradation of endogenous RA [99]. In tunicates that have not secon-
darily lost the RAR gene, RAR-dependent RA signaling is implicated in neurogenesis as
well as in tissue regeneration and bud development of budding tunicates [104,105]. The
cephalochordate amphioxus is characterized by the most vertebrate-like RA signaling sys-
tem of all invertebrates [99,106]. It has been demonstrated that the amphioxus RAR/RXR
heterodimer can be activated by all-trans-RA, that HOX genes are directly regulated by
RAR/RXR and that HOX-mediated RA signaling is essential for neurogenesis and axial pat-
terning [107]. Conversely, little is known about RAR and RA signaling in ambulacrarians.
In echinoderms, the sea urchin RAR can bind RA in vitro, although with low affinity, and,
while RA treatments might either disrupt or delay sea urchin development, the molecular
mechanisms underlying these effects remain to be established [49,99].

In lophotrochozoans, extensive functional characterizations of RAR orthologs and RA
signaling have been carried out in both annelids and mollusks [49–51,55,102]. The annelid
P. dumerilii possesses a vertebrate-like RA signaling machinery composed of a ligand-
activated RAR as well as enzymes for RA synthesis and degradation [49,101]. P. dumerilii
RAR is activated by RA binding and regulates transcription in a heterodimer with RXR [49].
However, the P. dumerilii RAR has a lower affinity for RA than its vertebrate orthologs, and
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the conformation of the ligand within the LBP is not conserved between the annelid and
vertebrate receptors (Figure 1) [49]. When exposed to all-trans-RA or 13-cis-RA, P. dumerilii
embryos experience neuroblast depletion leading to reduced numbers of differentiating
motor neurons and suggesting a direct effect of RA on dividing neural stem cells [49].
Moreover, knockdown of P. dumerilii RAR or RXR causes severe malformations of the
developing larval nervous system [49]. RAR-dependent RA signaling is thus required for
neurogenesis in annelids [49].

Table 3. Summary of retinoic acid receptor (RAR) functions in marine invertebrates.

Taxon Clade Phylum Receptor Activity Developmental Function

Deuterostomia
Chordata

Tunicata Ligand-activated by retinoic acid Neurogenesis, budding

Cephalochordata Ligand-activated by retinoic acid Neurogenesis, axial patterning

Ambulacraria Echinodermata Ligand-activated by high
concentrations of retinoic acid

Presumably involved in
developmental growth

Protostomia

Ecdysozoa

Priapulida Ligand-activated by high
concentrations of retinoic acid Unknown

Hexapoda Absent from the genome RA with role in nervous system
regeneration, tissue repair

Lophotrochozoa

Annelida Ligand-activated by high
concentrations of retinoic acid Neurogenesis

Mollusca
Ligand-binding pocket occluded

and potential activation by
liganded RXR

Neurogenesis

Non-Bilateria Radiata Cnidaria Absent from the genome RA with role in neurogenesis,
metamorphosis, strobilation

Contrasting the situation in annelids, mollusk RARs have lost the ability to bind
RA. It has been suggested that mollusk RARs secondarily lost the capacity to bind RA by
accumulating independent single mutations in different mollusk lineages [51,56]. Accord-
ingly, mollusk RARs likely function as constitutive transcriptional repressors [50,51,102].
It has recently been proposed that this repressive activity of RAR within the RAR/RXR
heterodimer could be modified by RXR-dependent ligand binding [50,102]. It thus remains
elusive how RA controls development and neurogenesis in mollusks [50,55,56,99,106].
Similarly, although the genomes of most ecdysozoans do not encode a RAR gene, there are
indications for active roles of RA signaling in ecdysozoans, for example, during nervous
system regeneration and in tissue repair of insects [108,109]. As a matter of fact, RAR
has been lost very early during ecdysozoan evolution, after the split of the priapulid lin-
eage [103]. Notably, the RAR of the priapulid Priapulus caudatus binds all-trans-RA and
9-cis-RA with affinities similar to those of the P. dumerilii RAR [49,103]. In cnidarians, whose
genomes do not encode RARs, RA has been implicated in the regulation of metamorphosis
and neural development [55,64,99,110]. Independent of the presence of RAR, RA can thus
be considered a potent morphogen involved in metazoan neurogenesis. Future work
will have to address how the RA signal is mediated in the absence of RAR, and several
scenarios, including the involvement of a liganded RXR, have already been proposed for
the evolutionary origin of RA signaling at the base of metazoans [50,99]. RARs only arose
later, at the base of bilaterians, as ligand-activated RA sensors that significantly facilitated
the regulatory control of RA signals [49].

6. Retinoid X Receptor (RXR) Functions during Marine Invertebrate Development

In vertebrates, RXRs act as heterodimeric binding partners of NR1 and NR4 subfamily
receptors. Their activity is thus subordinated to those of the heterodimeric binding partners,
which participate in a wide variety of developmental processes [39,111]. However, under
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very specific circumstances, RXRs may also function as ligand-activated receptors. In vitro,
RXRs are activated by a number of different compounds, including 9-cis-RA and fatty
acids, such as docosahexaenoic acids (DHAs) [112,113]. Orthologs of vertebrate RXRs have
been identified in most metazoan taxa, including sponges, placozoans and cnidarians,
suggesting that RXRs originated at the base of the animal tree of life [57,114]. Lineage-
specific duplications of RXR genes are rare and have so far only been reported in two
lophotrochozoans: bryozoans and platyhelminths (Figure 2) [57]. RXR is widely expressed
during development of most marine invertebrate taxa, including cnidarians, mollusks and
tunicates. Compared to other NRs, RXR does not show a clear pattern of developmental
clustering. Its expression profiles tend to follow the ones of its heterodimeric binding
partners (Figure 4).

Marine invertebrates provide excellent examples for the importance of RXRs as regu-
lators of development and point to a possible ligand-activated function of these receptors
(Table 3). In the sea urchin Strongylocentrotus nudus, for example, an ambulacrarian deuteros-
tome, knockdown of RXR induces abnormal early embryonic development and leads to a
complete arrest of embryonic development at the early gastrula stage, suggesting that RXR
is crucially required for sea urchin development [115]. Furthermore, a study of the RXR
from the sea urchin Paracentrotus lividus suggests that exposure to an endogenous gonadal
fatty acid mixture stimulates the activity of the PPAR/RXR heterodimer in cellulo and that
this stimulation is mediated by ligand binding to RXR. In this particular context, the tran-
scriptional activity of the PPAR/RXR heterodimer might thus be regulated by RXR [116].
In ecdysozoan and lophotrochozoans protostomes, RXR mainly acts as a heterodimeric
partner of other NRs, in accordance with the process of RXR subordination [117,118]. How-
ever, a ligand-activated function of RXRs has been proposed in mollusks, where it was
shown, in C. gigas, Nucella lapillus and Acanthochitona crinita, that RXR-specific ligands
abrogate the repressive state of RAR/RXR heterodimers [50]. Given that mollusk RARs do
not seem to bind RA, the activity of RAR/RXR during mollusk development might thus
be regulated by ligand binding to RXR. Further studies need to address this hypothesis
in vivo and evaluate the biological relevance of RXR ligands during development.

While the genomes of non-bilaterians encode RXR genes, their heterodimeric binding
partners, i.e., members of the NR1 and NR4 subfamilies, are absent. The RXR of medu-
sozoan cnidarians binds 9-cis-RA with high affinity and is required for strobilation [64].
Cnidarian RXRs might further be involved in the RA-dependent regulation of nervous
system patterning and neurogenesis [65,99,110]. It is thus tempting to speculate that RXR is
mediating the developmental roles of RA in cnidarians, potentially as a homodimer [119].

7. Estrogen Receptor (ER), Estrogen-Related Receptor (ERR) and the Development of
Marine Invertebrates

In vertebrates, ERs are activated by estradiol (E2) and function during the formation
of the nervous system, during development of secondary sexual characteristics, in the
regulation of the immune system, in the maintenance of bone density and in the control of
social behavior [120–122]. ERRs form a group of orphan receptors that are closely related
to ERs and that are critical for the regulation of neurogenesis and metabolism as well
as for cell proliferation and cell movements [123–125]. While the endogenous ligand of
ERRs still remains elusive, their activity can be modulated by synthetic ligands, some
of which also activate or inhibit ERs, such as, respectively, diethylstilbestrol (DES) or
4-hydroxytamoxifen (4-HT) [126]. ER and ERR are members of the NR3 subfamily, which
originated early in metazoan evolution, likely after the split of the sponge lineage, and
experienced diversification in early bilaterians and subsequently also in early chordates
(Figure 3; Figure 2) [20,21,127]. Phylogenetically, non-chordate ERs thus group at the base
of chordate ERs and SRs [20,127,128]. Single orthologs of ER and ERR have been identified
in most protostomes, with ecdysozoans having lost ER and the nematodes, which are
ecdysozoans, having additionally lost ERR (Figure 2) [27]. The genomes of invertebrate
deuterostomes also encode single copies of ER and ERR and those of cephalochordates
additionally a single SR [14,31]. Within chordates, the tunicates have secondarily lost both
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ER and SR (Figure 2) [27,36,127]. The lineage-specific loss of an ER-like gene has further
been reported in anthozoan cnidarians (Figure 2) [20,30]. Even though their expression
profiles are indicative of a function during invertebrate development (Figure 5), the role
played by these NRs outside vertebrates remains virtually unknown.

7.1. ERR Might Play a Role during Development of Marine Invertebrates

Ascidian tunicates possess a single ERR gene [36,53], whose expression, albeit dy-
namically modulated during late larval development, is exclusively localized in the brain
(Figure 4) (Table 4) [53,129]. DES and 4-HT both affect brain formation and trunk elonga-
tion in developing P. mammilata larvae, suggesting that ERR acts during nervous system
development and body extension of tunicates [53,129]. In the cephalochordate amphioxus,
ERR is expressed in the hindbrain homolog and in the developing musculature [130]. The
segmented patterns of ERR expression in hindbrain and muscles suggest that this NR is
involved in establishing neuromuscular contacts in developing amphioxus [130]. In proto-
stomes, ERR functions have been established in ecdysozoans, where it regulates metabolic
processes supporting larval growth and cell proliferation [131,132]. ERR is further sus-
pected to be a pivotal player during metamorphosis [131]. In contrast, there is only limited
information available on ERR expression and functions in lophotrochozoans. In C. gigas,
ERR is dynamically expressed during development with a peak at pre-metamorphic and
metamorphic stages [47]. Accordingly, it is parsimonious to assume that ERR plays specific
functional roles during development of mollusks, and more generally, of lophotrochozoans.

Table 4. Summary of estrogen receptor (ER) and estrogen-related receptor (ERR) functions in marine invertebrates.

Taxon Clade Phylum Receptor Activity Developmental Function

Deuterostomia Chordata

Tunicata ERR: Orphan receptor
ER: Lost

ERR: Suggested role in sensory cell
differentiation in the larval brain

Cephalochordata ERR: Orphan receptor
ER: Unknown

ERR: Suspected role in
establishment of

neuromuscular contacts
ER: Unknown

Protostomia

Ecdysozoa Arthropoda ERR: Orphan receptor
ER: Lost

ERR: Control of metabolism
underlying larval growth and

cell proliferation

Lophotrochozoa

Annelida
ERR: Unknown

ER: Ligand-activated receptor
binding estrogens

ER: Regulation of formation and
proliferation of primordial

germ cells

Mollusca

ERR: Orphan receptor
ER: Occluded ligand binding

pocket, but constitutive
transcriptional activity

ERR: Unknown
ER: Unknown

Rotifera
ERR: Unknown

ER: Ligand-activated receptor
binding estrogens

ERR: Unknown
ER: Unknown

Non-Bilateria Radiata Cnidaria
ER-like: Ligand-activated receptor

binding paraestrol A, an
ancestral estrogen

ER-like: Unknown

7.2. Developmental Functions of ER in Marine Invertebrates Remain Largely Elusive

In the cephalochordate amphioxus, estrogens have been proposed to play important roles
in reproductive functions, such as spawning [133]. However, it is currently unknown if ER
and SR are required to mediate these functions (Table 4). In contrast, experimental evidence
from marine protostomes, such as annelids and rotifers, supports the hypothesis that ERs are
involved in reproductive processes of at least some invertebrates [134–137]. However, studies
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addressing the developmental roles of ER-like receptors in protostomes remain extremely
rare, with the only description of developmental functions of ER-like receptors in protostomes
coming from annelids. In fact, estrogens are endogenously synthesized in annelids and
are required for the formation and proliferation of primordial germ cells [136–138]. This
regulation is dependent on ER, which binds the endogenous estrogens and hence directly
controls this process [136,138]. Estrogen also induces proliferation of primitive germ cells in
vertebrates, suggesting that germ cell regulation represents an ancestral trait of ER signaling
in bilaterians [138]. In contrast, estrogen binding and ligand-dependent activation were lost
in mollusk ERs [128,139]. Mollusk ERs are constitutively active and retained the ability to
regulate their own gene transcription, but do not bind estrogens or other steroids, as their
LBPs underwent vestigialization [128,139,140]. Nevertheless, in the bivalve mollusks C. gigas
and Mytilus galloprovincialis, dynamic ER expression was detected at larval stages, which
is suggestive of a role for ER in larval development [47,141]. Outside bilaterians, ER-like
receptors have been identified in placozoans and cnidarians [20,21]. While their expression
and function have yet to be assessed, it has been shown that the H. vulgaris ER-like receptor
can bind paraestrol A, an ancestral estrogen [20,134]. Notably, a compound isolated from the
cnidarian Dendronephthya studeri is structurally similar to paraestrol A, suggesting that ER-like
receptors might act as ligand-activated transcription factors, at least in cnidarians [134,142].

8. Are NRs a Primary Target of EDCs in Marine Invertebrates?

Invertebrate protostomes and deuterostomes were initially thought not to be affected
by EDCs, as they supposedly lack an elaborate endocrine system [44]. This assumption was
shown to be incorrect, following the collapse of gastropod and bivalve mollusk populations
in the Arcachon Bay in France. It was later shown that the mollusks were affected by
EDCs in marine antifouling paints, already known to modulate the activity of PPAR/RXR
heterodimers in vertebrates [45]. Today, it is well established that marine invertebrates
are sensitive to EDC pollution and clearly manifest their adverse effects, with embryonic
stages being particularly vulnerable. The scientific community has thus invested greatly in
the study of EDC exposure and endocrine systems of marine invertebrates, turning their
embryos into valuable alternative models for EDC and chemical testing [143]. However,
with the exception of the RXR-dependent imposex phenotype in gastropod mollusks [144],
evidence for NRs as primary targets of EDCs in marine invertebrates is still extremely
circumstantial and mainly based on in vitro studies that do not necessarily reflect the
molecular mechanisms in vivo [44–46,145,146]. This does not mean that NR-mediated
endocrine disruption does not occur on a large scale in marine invertebrates. In fact, the
chemicals currently classified as EDCs have chiefly been identified and characterized in
vertebrates, and most studies into marine invertebrates have simply used these compounds
to assess whether they also affect their endocrine system [46]. This vertebrate-centric view
has thus heavily biased our current understanding of invertebrate endocrine systems.

Based on the work reviewed here, it is not surprising that high affinity EDCs of verte-
brate NRs do not necessarily affect NRs of marine invertebrates (and vice versa) [44,45,145].
In the course of their evolution and diversification, NRs have been subjected to significant
alterations of their sequences and structures, which explains why orthologous NRs are not
necessarily characterized by conserved ligand binding affinities, downstream targets and
biological functions [1,2,13,15–17,25]. Accordingly, there are probably numerous substances
that can act as NR-mediated EDCs in marine invertebrates, and their modes of action are
likely to be very different from those known in vertebrates [46,146]. Furthermore, it is cur-
rently impossible to estimate to what extent the endocrine systems of marine invertebrates
are comparable to those of vertebrates, including the involvement of NRs [147–149]. There
are thus a number of different points that need to be addressed in order to establish the
endocrine disrupting potential of a particular set of chemicals in marine invertebrate taxa.
These include the characterization of the roles of NRs in marine invertebrate physiology
and endocrine systems, the assessment of their functions in embryonic and post-embryonic
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development and the detailed definition of the physiological and developmental outcomes
of NR-dependent endocrine disruption.
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