
Vertigo: Automatic
Performance-Setting for Linux

Sang-Heon Kim
Min-su Kim

OSDI `02

1

l Power management : from embedded system to server
• Small size form

• Battery-based system

• Ex) Mobile device or PDA

l Convergence of multiple devices to an integrated device
• mp3, mobile, PDA, PMP, camera, Etc…

Background(`02)

2

l Low-power processors is needed for battery-operated devices

l Power management issue
• Variable performance requirements of tasks

• High performance : Video player

• Low performance : MP3 audio

• Dynamic power-performance mode

• How to calculate performance level accurately in real time?

• Performance-setting algorithm with model

l Intel’s Sidestep (Usage model)
• Plugged in : full-active performance

• On Battery : efficient performance

Problems

3

l Performance–settings based on CPU demand
• Using DVFS(Dynamic Voltage Frequency Scaling) technique

• Dynamic power allocation

• Implementation – Where?

• Kernel (Vertigo) vs Hardware (Long run)

Purpose

Least power consumption,
while users feel no performance degradation

4

LongRun
l Hardware & firmware level performance decision

• Kernel-independent Power Management

l Interval based performance management
• CPU utilization(duty cycle)

Firmware : Long run
Hardware : Crusoe

OS

5

LongRun
l Interval-based utilization estimate

Ø CPU utilization high⇒ Speed-up
low ⇒ Speed-down

A B A

time

Performance
Level

Estimation occurs

Time interval

time

6

LongRun
l Problems

• Non-aware to kernel information : application, scenario

• Cannot optimize to task characteristics

• Lack of response to task switching

• Difficult to deal with certain kinds of run-time situations

(e.g - mouse moves, interactive applications)

• Fixed monitoring interval
• How long?

• Too short : oscillated performance level

• Too long : hard to address performance transition (interactive)
7

Vertigo
l Key Contribution

• Implemented in OS kernel

• Gives access to a richer set of data for prediction

• Capability of response to performance requirement

• Multiple Performance-setting Algorithms

• Guarantee deadline, especially interactive applications

• Per task performance prediction Algorithm

8

Vertigo

9

Kernel

User process User process User process

System
Call Scheduler Power Manager

(sleep/awake)

Vertigo
Hook

l Architecture
• Vertigo hooks previous Linux kernel

• Vertigo can access process information

• System Call : task scenario

• Scheduler : task identification

• Power Manager : CPU utilization

Vertigo
l Multiple Performance-setting Algorithm

TOP

MIDDLE

BOTTOM

Automatically quantifying the performance
requirements of interactive applications
(for worst case)

DVS-aware applications can submit information
about their performance requirement

Derives a processor-utilization estimate for each
task separately
(for optimized efficient power management)W

ea
k

10

St
ro

ng

Vertigo

11

time

f1 f2 f3 f4 f5

l Workload model

• Full-speed equivalent work = # of cycles

t1 t2 t3 t4 t5

a task

Vertigo
l Per-task workload monitor

• When a task starts execution, the per-task data structures are initialized
with four pieces of information
Ø Work time counter
Ø Idle time counter
Ø The current time
Ø A run bit indicating that the task has started running

• Interval ends with quantum expires or system calls

12

Vertigo

13

l Bottom level performance-setting algorithm

: A perspectives-based algorithm
• Derives a utilization estimate per each task separately
• No fixed interval → event-driven interval (quantum expires or system call)
• Workload accumulated by exponentially decaying averages

• Workload estimation

• Deadline

• Require performance

Vertigo
l Top level performance stetting algorithm

• By monitoring the system calls, Vertigo can detect interactive episodes.

• Mobile target : end-user response time is important

• Be able to guarantee deadlines

14

Vertigo
l Policy stack implementation

• Can override lower algorithm policy

• Kernel event-aware performance-setting

15

Vertigo
l Top level performance stetting algorithm

1. Beginning ~ Skip threshold
• Short time routine episodes

2. Skip-threshold ~ Panic threshold
• Assign expected performance level by cumulated history

3. Panic threshold
• Prediction failure occurs
• Shift to the maximum performance level
• Compensate for future triggered event

16

1 2 3

Evaluation
l MPEG scenario

17

Evaluation
l Interactive applications

18

Summary
l Vertigo

• Initial in-kernel level trial to control DVFS
• Per task performance-setting algorithm
• Guarantee deadlines for interactive application

l Power management for Mobile target device
• Responsibility : user-interactive application

l Impact of Vertigo on present OS’s power managements
• Difficult to implement Vertigo’s full functions
• Vertigo’s top level algorithms is useful only for applications that

occur interactive episodes frequently
• Android / Linux ?

• Aggressive power management is only active when
application requires. (interactive episodes)

• Use “Wakelock” API for power control in Android
19

Power containers: an OS facility
for fine-grained power and energy
management on multicore servers

Sang-Heon Kim
Min-su Kim

ASPLOS `13

20

Background
l New generation computing systems appearance

• Data center / Server systems

• Online applications :

• Client-directed applications

• Rely on clients to supply content

• High throughput capability is important

• Quality of Service (Guarantee performance per client’s policy)

l Power management is more important

• Core utilization / Shared resource

• Heterogeneous platform
21

Ø Per-client/request power management is highly desirable

Ø Isolating per-client power attribution
Ø Recognizing the energy usage of individual requests

Problems
l Problems of Multicore / Server systems

• Work load diversity

• Large power fluctuation

• Hardware resource sharing

• Previous approach : Using CPU utilization history

• Uncore component (cache, memory interconnect)

• Cause “power viruses”

• Concurrent execution

22

Power container
l System overview

Client 1

Client 2

Client 3

ServerReq 1

Req 2

Req 4

Req 3

PC 1

PC 2

PC 3
PC 4

23

Server

Host 1

Req 2

Req 4

Req 3

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Host 2 Host 3 Host 4

Req 1
Req

context

Power container
l Account for and control the power and energy usage of

individual requests in multicore servers

l Per request power modeling

• Aware uncore component’s power model

• For better recalibration, adopt online power measurement

l Request context-aware power management

• Request tracking in multi-stage server

24

Power Attribution to Tasks
l Power consumption model

• Hardware counter monitor workload per cycle
• Core utilization per elapsed cycles
• Retired instructions per CPU cycle
• Floating point operations per cycle
• Etc…

• Event-based power accounting
• Hardware counter : periodic counter sampling
• Computing relevant event frequencies

• Cover uncore component’s power consumption
• Can apply to both entire system end specific tasks

25
time

core mem $ FP core

retired instructions

Power Attribution to Tasks
l Multicores power consumption model

• Power consumption : not proportional to # of utilized CPU
• Shared resource power consumption model

26

Core

cache

Core Core Core
cache cache cache

Shared cache

Interconnect

Memory IO

Core

cache

Core Core Core
cache cache cache

Shared cache

Interconnect

Memory IO

Core

cache

Core Core Core
cache cache cache

Shared cache

Interconnect

Memory IO

Core

cache

Core Core Core
cache cache cache

Shared cache

Interconnect

Memory IO

Core

cache

Core Core Core
cache cache cache

Shared cache

Interconnect

Memory IO

Power Attribution to Tasks
l Multicores power consumption model

27

Recalibration & power measurement
l Compare power model to measurement

• Model
• Some inaccuracy
• Good prediction of

power transition
• Can be immediately applied

• Measurement
• Lag time : I/O transfer time

l Recalibrate power coefficient

28

Request tracking
l Request execution may flow

through multiple processes
in a multi-stage server

l Request context transfer
• Event-driven at kernel

(sockets,fork….)
• Application transparency by

recognizing key request
propagation channel

l Support request tracking
over a persistent socket
connection – with request
tag

29

Server

Host 1

Req 2

Req 4

Req 3

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Host 2 Host 3 Host 4

Req 1
Req

context

Container-enabled management
l Fair request power conditioning

• Request power accounting can detect power spikes(power virus)
• Container-specific power control can precisely throttle

execution of power-hungry requests

30

Container-enabled management
l Heterogeneity-aware request distribution

• Load placement and distribution on available machines may affect the
system energy efficiency

• Enable the preferential placement of each request on a machine where
its relative energy efficiency is high

l Information about request execution control

• Tagging request messages to next machine

→ container identifier and control policy settings – application transparency

• Tagging response messages to previous machine

→ cumulative power and energy usage information – for heterogeneity-aware

31

Overhead
l Container maintenance operation

• Reading the hardware counter values
• Computing modeled power values,
• Updating request statistics

• (quad-core Sandy-Bridge) 0.95 us per (1ms>)
=> (0.1% overhead)

l Power measurement alignment and model recalibration
• 16 us per 10ms

32

Evaluation
l Power model calibration

• Power model coefficient decision by Benchmark

33

Uncore component’s impact on entire power consumption

Evaluation
l Accuracy of power prediction of Power container

34

Evaluation
l Measured active power of application workloads

35

Evaluation
l Accuracy of power prediction of Power container

36
→ Power containers prediction is pretty accurate

(energy usage on SandyBridge over that on Woodcrest)

Evaluation
l Heterogeneity-aware request distribution

37

Evaluation
l Heterogeneity-aware request distribution

38

→ Heterogeneity-aware request distribution by request tracking is effective to
low power consumption

Summary
l Fair request power conditioning

• Uncore’s power consumption-aware power model
• Recalibration with power measurement for better accuracy of prediction
• Prevent power spike
• Server power cap : entire system reliability

l High throughput & QoS
• Per-request power management

• Guarantee performance service required by per users within limited
power budget(cap)

• Per-request context tracking

l Heterogeneity
• Load placement and distribution on available
• By using cumulated power consumption results

39

40

THANK YOU

