Vertigo: Automatic
Performance-Setting for Linux

OSDI 02

Sang-Heon Kim

Min-su Kim

Background(02)

® Power management : from embedded system to server
« Small size form

- Battery-based system
« Ex) Mobile device or PDA

® Convergence of multiple devices to an integrated device
« mp3, mobile, PDA, PMP, camera, Etc...

Problems

® Low-power processors is needed for battery-operated devices

® Power management issue
» Variable performance requirements of tasks
« High performance : Video player
* Low performance :MP3 audio
« Dynamic power-performance mode
 How to calculate performance level accurately in real time?
« Performance-setting algorithm with model
® Intel’s Sidestep (Usage model)

« Plugged in : full-active performance

« On Battery : efficient performance

Purpose

® Performance-settings based on CPU demand
« Using DVFS(Dynamic Voltage Frequency Scaling) technique

« Dynamic power allocation

Least power consumption
no performance degradation

* Implementation — Where?

« Kernel (Vertigo) vs Hardware (Long run)

LongRun

® Hardware & firmware level performance decision

« Kernel-independent Power Management

OS
Firmware : Long run
Hardware : Crusoe

® Interval based performance management

« CPU utilization(duty cycle)

6.5W
667 MHz performance
s LongRun
ongRun 0 g
< 50% frequency reduction > Bl Rower teucon
333 MHz — u,
T \ ‘ 50 mW L
< » 40 mW >
50% duty cycle residual sleep states Normal Sleep >
LongRun Low-Voltage Sleep

LongRun

® Interval-based utilization estimate
time

A B A

Performance !)) :
Level <—— Time interval —>!

1‘ time

Estimation occurs

» CPU utilization high = Speed-up
low = Speed-down

LongRun

® Problems

* Non-aware to kernel information : application, scenario
« Cannot optimize to task characteristics
* Lack of response to task switching
« Difficult to deal with certain kinds of run-time situations

(e.g - mouse moves, interactive applications)

* Fixed monitoring interval
 How long?
« Too short : oscillated performance level

« Too long : hard to address performance transition (interactive)

Vertigo

® Key Contribution

* Implemented in OS kernel
« Gives access to aricher set of data for prediction

« Capability of response to performance requirement

* Multiple Performance-setting Algorithms
« Guarantee deadline, especially interactive applications

« Per task performance prediction Algorithm

Vertigo

® Architecture

» Vertigo hooks previous Linux kernel

» Vertigo can access process information
« System Call : task scenario
« Scheduler . task identification

» Power Manager : CPU utilization

User process User process C I M M Userprocess

PowerManager
CEEIJENELG))

System Scheduler

Vertigo

® Multiple Performance-setting Algorithm

Strong

Weak

MIDDLE

BOTTOM

Automatically quantifying the performance
requirements of interactive applications
(for worst case)

DVS-aware applications can submit information
about their performance requirement

Derives a processor-utilization estimate for each
task separately
(for optimized efficient power management)

Vertigo

® Workload model

« Full-speed equivalent work = # of cycles

Work ,, = Zztji

ts

4—> 4—> <—> <—> <

CHEREE

v

Vertigo

® Per-task workload monitor

 When a task starts execution, the per-task data structures are initialized
with four pieces of information
» Work time counter
» |dle time counter
» The current time
» A run bit indicating that the task has started running

« Interval ends with quantum expires or system calls

Task A’s utilization is computed over this interval
. A . Task A’s performance
a b c prediction is set before it
/starts executing again.

a | | - a |

S—— - = - Ny —
Task A executes until Task A resumes execution Task A is scheduled again
it is preempted until it gives up time

Vertigo

® Bottom level performance-setting algorithm

. A perspectives-based algorithm

» Derives a utilization estimate per each task separately
* No fixed interval — event-driven interval (quantum expires or system call)
» Workload accumulated by exponentially decaying averages

 Workload estimation

k < WorkEst ,, + Work
old fse
Worl\'Esrm,_W = P
« Deadline
k xDeadline ,,+ Work, —+Idle
) old fse
Deadlznenew = k+ 1

» Require performance

WorkEst

Perf =
erf Deadline

Vertigo

® Top level performance stetting algorithm
« By monitoring the system calls, Vertigo can detect interactive episodes.
* Mobile target : end-user response time is important

 Be able to guarantee deadlines

Interactive Episode Interactive Episode
A Begins Ends
= H = =
= i = =
Max - = - = - -

- n
- n
= s
s ;
= i

§ E Predicted performance E

«© - level for interactive episode -

S g =

= = = =

s b —= I = =

o = H = =
|} n . |}
= H = =
= : = =

Min - — — &2 o —f - o ——— = B

= : = =
- n - -
= H = =
s 5 s
- - - ——

B Time
Skip threshold Panic threshold

Vertigo

® Policy stack implementation

« Can override lower algorithm policy

« Kernel event-aware performance-setting

Policy (performance control) stack

Policy event handlers

¥ v

Level 2 SET_IFGT I 80

Level 1 IGNORE I 0

Level O SET I 25

f A

Common events

‘On Reset
-On task switch

On perf change

Command = Perf :

SN EEEE NN EE.-EE IR .EE EE--EE

=.ll L)

15

Vertigo

® Top level performance stetting algorithm

1. Beginning ~ Skip threshold

« Short time routine episodes
2. Skip-threshold ~ Panic threshold

* Assign expected performance level by cumulated history
3. Panic threshold

* Prediction failure occurs

« Shift to the maximum performance level

« Compensate for future triggered event

Interactive Episode Interactive Episode
A Begins Ends

Max S

Predicted performance
level for interactive episode

Performance

_.i

[
’

&

Skip threshold Panic threshold

Evaluation

® MPEG scenario

LongRun

Vertigo

100,

Raw performance levels

. Quantiz d performance levels

i

Entire movie

j

§
}

QN-L | | l I I

H
4
H
bt
#

1 second movie segment

ik

f e

17

Evaluation

® Interactive applications

Acrobat Reader Emacs
100% 100%

o o

o 60% 3 0% 4

0 0

0 55.90% 9

E :
7563%

0 0 60% «

$ 0% $

0 [

Q Qo

L L

0 0

] o

0 [}

‘6 40% a 40% o

0]

£ £

- -

Y= -

0 0
7.57% 1

§ §

5 °

g g

w W

=2
Fa

LongRun Vertigo LongRun Veriigo

Summary

® Vertigo

 [nitial in-kernel level trial to control DVFS
» Per task performance-setting algorithm
« Guarantee deadlines for interactive application

® Power management for Mobile target device
« Responsibility : user-interactive application

® Impact of Vertigo on present OS’s power managements
« Difficult to implement Vertigo’s full functions
« Vertigo’s top level algorithms is useful only for applications that
occur interactive episodes frequently

« Android / Linux ?

« Aggressive power management is only active when
application requires. (interactive episodes)

« Use “Wakelock” API for power control in Android

19

Power containers: an OS facility
for fine-grained power and energy
management on multicore servers

ASPLOS 13

Sang-Heon Kim

Min-su Kim

20

Background

® New generation computing systems appearance
-. ‘. !

- Data center / Server systems DR

« Online applications :

« Client-directed applications

« Rely on clients to supply content
« High throughput capability is important

« Quality of Service (Guarantee performance per client’s policy)

® Power management is more important
 (Core utilization / Shared resource

« Heterogeneous platform

21

Problems

® Problems of Multicore/ Server systems
* Work load diversity
» Large power fluctuation
« Hardware resource sharing
* Previous approach : Using CPU utilization history
» Uncore component (cache, memory interconnect)
» Cause “power viruses”

 Concurrent execution

> Per-client/request power management is highly desirable

> lIsolating per-client power attribution

» Recognizing the energy usage of individual requests

Power container

® System overview

Req 1
Client 1 eq1

Req 2

Client 2 Req 3

Client 3 Req 4 =

Req 1

Req 2
Req 3

Req
context

s
o f hveaa 2
N =n

Power container

® Account for and control the power and energy usage of

individual requests in multicore servers

® Per request power modeling
« Aware uncore component’s power model

* For better recalibration, adopt online power measurement

® Request context-aware power management

« Request tracking in multi-stage server

24

Power Attribution to Tasks

® Power consumption model

« Hardware counter monitor workload per cycle
+ Core utilization per elapsed cycles
* Retired instructions per CPU cycle

* Floating point operations per cycle
+ Etc...

 Event-based power accounting

* Hardware counter: periodic counter sampling
+ Computing relevanteventfrequencies

« Cover uncore component’s power consumption
« Can apply to both entire system end specific tasks

Paa‘ive — Ccore : Mcore T Ofp) pr+ Omem ’ Mmem+

core I mem I $. FP . core

25

Power Attribution to Tasks

® Multicores power consumption model
» Power consumption : not proportional to # of utilized CPU
» Shared resource power consumption model

P active single T 0h1p share - M chip share

Core Core

26

Power Attribution to Tasks

® Multicores power consumption model

Machine with a quad-core SandyBridge Machine with two dual-core Woodcrests

nNo
(-

N
(e

—_
o

Incremental power (in Watts)
O O 5

Incremental power (in Watts)
o o S o>

27

Recalibration & power measurement

® Compare power model to measurement

 Model

« Some inaccuracy
» Good prediction of

power transition
« Can be immediately applied

« Measurement
« Lag time : I/O transfer time

(A) Intel Sandy Bridge power sensor alignment

1.Cross correlation

. . N N T~ ™
| | | | | | B Il

—
-

U
<

00 -80 -60 -40 -20 0 20 40 60 80
Hypothetical measurement delay (in milliseconds)

(B) Wattsup meter alignment
~_

o H |

Cross correlation

100

Hypothetical measurement delay (in milliseconds)

I I I I I I I I —
0 200 400 600 800 1000 1200 1400 1600 1800 2000

‘ —— Modeled power

Measured power

Power (in Watts)

| |
0 100 200

|
300
Progress of execution (in msecs)

| | |
400 500 600

28

Request tracking

® Request execution may flow

through multiple processes
in a multi-stage server

Request context transfer
« Event-driven at kernel
(sockets,fork....)

« Application transparency by
recognizing key request
propagation channel

Support request tracking
over a persistent socket
connection — with request
tag

Apache httpd
16.8W, 0.29J

Request
from client

Timeline

MySQL thread
14.7wW, 0.04J

~Socket-_
,/socke"”:f

Socket-- .t

-~

T ***7'soc|ket—777,,*l

“Socket--_

|‘ __socket—_

" Apache httpd
14.5W, 1.78J Shell
14.4wW, 0.07J

T fork—___

|¢*W3‘t4ex‘ exit
————fork—__

<" aitaexit_ g
__ _socket—————

exit

———fork

waitdexit

————fork

,Wa\\Aex*’e’ it

“latex” process
14.4W, 0.53J

X1

“dvipng” process
16.3W, 0.29J

X1

—
Req
Req 1
",
<, Thread 1 . Thread 1§ =smun Thread 1§ = s man Thread 1§ »,
0. "
® O
* >
R 2 s Dreadaget’ =8 Thread 2 K Thread 2 » B Thread 2
- .
eq . 3 ",
% .
R 3 , Ca,
eq Thread 33 e nannn Thread 3 Thread 3 Thread 3
Thread 4 Thread 4 Thread 4 Thread 4
Req 4 Thread 5 Thread 5 Thread 5 Thread 5
% —
Host 1 Host 2 Host 3 Host 4

29

Container-enabled management

® Fair request power conditioning
» Request power accounting can detect power spikes(power virus)
« Container-specific power control can precisely throttle
execution of power-hungry requests

(A) Behavior of the original system

Introduction of power viruses '

(B) Behavior of the power container—controlled system

- T - T
Introduction of power viruses

15
Progress of execution (in seconds)

Container-enabled management

® Heterogeneity-aware request distribution

« Load placementand distribution on available machines may affect the

system energy efficiency

« Enable the preferential placement of each request on a machine where
its relative energy efficiency is high
® Information about request execution control
« Tagging request messages to next machine
— container identifier and control policy settings — application transparency
« Tagging response messages to previous machine

— cumulative power and energy usage information — for heterogeneity-aware

31

Overhead

® Container maintenance operation
* Reading the hardware counter values
» Computing modeled power values,
« Updating request statistics
* (quad-core Sandy-Bridge) 0.95 us per (1ms>)
=> (0.1% overhead)

® Power measurement alignment and model recalibration
16 us per 10ms

32

Evaluation

® Power model calibration

« Power model coefficient decision by Benchmark

Cidie 26.1 Watts:
Ceore * M 33.1 Watts:
Cins - M 12.4 Watts:
Ccache . ?}fﬁe 13.9 Watts;
Cmem : ﬁ}gﬁ] 8.2 Watts;
Cchipshare . lc]l]l?gshare 5.6 Watts:
Caisk - Misk 1.7 Watts;
Cnet ' Eé‘lx 5.8 Watts.

Uncore component’s impact on entire power consumption

33

Evaluation

Probability density

® Accuracy of power prediction of Power container

GAE-Hybrid Solr search engine
5 >
= o
3 2
@) 3 >
a B =
L L o]
< < Qo
0 0 O
o
0 5 10 15 20 0 0.5 1 1.5 2

Mean request power (in Watts) Request energy usage (in Joules)

34

Evaluation

® Measured active power of application workloads

Machine with two six—core Westmere processors

Machine with a quad-core SandyBridge processor

o o o o o

e 0] © < A

(spep ui) Jamod sy

o o o o o

(e0) © < Al

(spep ui) Jamod By

35

Evaluation

® Accuracy of power prediction of Power container

WeBWorK new request composition

Measured power
Power containers prediction
CPU-utilization—proportional

Request-rate—proportional

7)] - - -
i) _
2 _
= 30f-----------sulM{ - [--- -
c R
: I

20 - - - - |- - - - -
3 1
2
S 1or----WEt - HEE - B .

0 n
A,
/(9 ~Ay; eo'(\
d/__ gb/() 8 °
500,0 2, % 0p
C,oo 6 o/oo (//
a7

— Power containers prediction is pretty accurate

36

Evaluation

® Heterogeneity-aware request distribution

Energy efficiency heterogeneity over different workloads

RSA-crypto Solr WeBWorK Stress GAE-Vosao

Cross—machine active energy usage ratio

(energy usage on SandyBridge over that on Woodcrest)

37

Evaluation

® Heterogeneity-aware request distribution

A combined GAE-Vosao/RSA-crypto workload
120 T T T

"
o
o

(0 0]
o

D
o

'Woodcrest energy usage

NN
o

ridge energy usage

Active energy usage rate (in Joules /sec)

N

o (&)

\ .
m:

Q-

= .

Q.

\<.

[wo H

//77'0 4460/)/ h’o,,{, %
Q/Q 0, e/'o
0, (S Q
Q (S) a/ 0@ /&/
~ ah/ \Q
U Q h/a/.@

— Heterogeneity-aware request distribution by request tracking is effective to
low power consumption

38

Summary

® Fair request power conditioning
* Uncore’s power consumption-aware power model
« Recalibration with power measurement for better accuracy of prediction
* Prevent power spike
» Server power cap : entire system reliability

® High throughput & QoS

* Per-request power management

» Guarantee performance service required by per users within limited
power budget(cap)

» Per-request context tracking

® Heterogeneity
« Load placement and distribution on available
« By using cumulated power consumption results

39

THANK YOU

