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Background( 02)

® Power management : from embedded system to server
« Small size form

- Battery-based system
« Ex ) Mobile device or PDA

® Convergence of multiple devices to an integrated device
« mp3, mobile, PDA, PMP, camera, Etc...




Problems

® Low-power processors is needed for battery-operated devices

® Power management issue
» Variable performance requirements of tasks
« High performance : Video player
* Low performance :MP3 audio
« Dynamic power-performance mode
 How to calculate performance level accurately in real time?
« Performance-setting algorithm with model
® Intel’s Sidestep ( Usage model )

« Plugged in : full-active performance

« On Battery : efficient performance



Purpose

® Performance-settings based on CPU demand
« Using DVFS(Dynamic Voltage Frequency Scaling) technique

« Dynamic power allocation

Least power consumption
no performance degradation

* Implementation — Where?

« Kernel (Vertigo) vs Hardware (Long run)



LongRun

® Hardware & firmware level performance decision

« Kernel-independent Power Management

OS
Firmware : Long run
Hardware : Crusoe

® Interval based performance management

« CPU utilization(duty cycle)

6.5W
667 MHz performance
s LongRun
ongRun 0 g
< 50% frequency reduction > Bl Rower teucon
333 MHz — u,
T \ ‘ 50 mW L
< » 40 mW >
50% duty cycle residual sleep states Normal Sleep >
LongRun Low-Voltage Sleep




LongRun

® Interval-based utilization estimate
time
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» CPU utilization high = Speed-up
low = Speed-down



LongRun

® Problems

* Non-aware to kernel information : application, scenario
« Cannot optimize to task characteristics
* Lack of response to task switching
« Difficult to deal with certain kinds of run-time situations

(e.g - mouse moves, interactive applications)

* Fixed monitoring interval
 How long?
« Too short : oscillated performance level

« Too long : hard to address performance transition (interactive)



Vertigo

® Key Contribution

* Implemented in OS kernel
« Gives access to aricher set of data for prediction

« Capability of response to performance requirement

* Multiple Performance-setting Algorithms
« Guarantee deadline, especially interactive applications

« Per task performance prediction Algorithm



Vertigo

® Architecture

» Vertigo hooks previous Linux kernel

» Vertigo can access process information
« System Call : task scenario
« Scheduler . task identification

» Power Manager : CPU utilization

User process User process C I M M Userprocess

PowerManager
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Vertigo

® Multiple Performance-setting Algorithm

Strong

Weak

MIDDLE

BOTTOM

Automatically  quantifying the  performance
requirements of interactive applications
( for worst case )

DVS-aware applications can submit information
about their performance requirement

Derives a processor-utilization estimate for each
task separately
(for optimized efficient power management)




Vertigo

® Workload model

« Full-speed equivalent work = # of cycles
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Vertigo

® Per-task workload monitor

 When a task starts execution, the per-task data structures are initialized
with four pieces of information
» Work time counter
» |dle time counter
» The current time
» A run bit indicating that the task has started running

« Interval ends with quantum expires or system calls

Task A’s utilization is computed over this interval
. A . Task A’s performance
a b c prediction is set before it
/starts executing again.
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Vertigo

® Bottom level performance-setting algorithm

. A perspectives-based algorithm

» Derives a utilization estimate per each task separately
* No fixed interval — event-driven interval (quantum expires or system call)
» Workload accumulated by exponentially decaying averages

 Workload estimation
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Vertigo

® Top level performance stetting algorithm
« By monitoring the system calls, Vertigo can detect interactive episodes.
* Mobile target : end-user response time is important

 Be able to guarantee deadlines
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Vertigo

® Policy stack implementation

« Can override lower algorithm policy

« Kernel event-aware performance-setting

Policy (performance control) stack

Policy event handlers
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Vertigo

® Top level performance stetting algorithm

1. Beginning ~ Skip threshold

« Short time routine episodes
2. Skip-threshold ~ Panic threshold

* Assign expected performance level by cumulated history
3. Panic threshold

* Prediction failure occurs

« Shift to the maximum performance level

« Compensate for future triggered event
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Evaluation

® MPEG scenario

LongRun

Vertigo
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Evaluation

® Interactive applications

Acrobat Reader Emacs
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Summary

® Vertigo

 [nitial in-kernel level trial to control DVFS
» Per task performance-setting algorithm
« Guarantee deadlines for interactive application

® Power management for Mobile target device
« Responsibility : user-interactive application

® Impact of Vertigo on present OS’s power managements
« Difficult to implement Vertigo’s full functions
« Vertigo’s top level algorithms is useful only for applications that
occur interactive episodes frequently

« Android / Linux ?

« Aggressive power management is only active when
application requires. (interactive episodes)

« Use “Wakelock” API for power control in Android
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Power containers: an OS facility
for fine-grained power and energy
management on multicore servers
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Background

® New generation computing systems appearance
-. ‘. !

- Data center / Server systems DR

« Online applications :

« Client-directed applications

« Rely on clients to supply content
« High throughput capability is important

« Quality of Service (Guarantee performance per client’s policy)

® Power management is more important
 (Core utilization / Shared resource

« Heterogeneous platform
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Problems

® Problems of Multicore/ Server systems
* Work load diversity
» Large power fluctuation
« Hardware resource sharing
* Previous approach : Using CPU utilization history
» Uncore component ( cache, memory interconnect )
» Cause “power viruses”

 Concurrent execution

> Per-client/request power management is highly desirable

> lIsolating per-client power attribution

» Recognizing the energy usage of individual requests



Power container

® System overview
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Power container

® Account for and control the power and energy usage of

individual requests in multicore servers

® Per request power modeling
« Aware uncore component’s power model

* For better recalibration, adopt online power measurement

® Request context-aware power management

« Request tracking in multi-stage server
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Power Attribution to Tasks

® Power consumption model

« Hardware counter monitor workload per cycle
+ Core utilization per elapsed cycles
* Retired instructions per CPU cycle

* Floating point operations per cycle
+ Etc...

 Event-based power accounting

* Hardware counter: periodic counter sampling
+ Computing relevanteventfrequencies

« Cover uncore component’s power consumption
« Can apply to both entire system end specific tasks

Paa‘ive — Ccore : Mcore T Ofp ) pr+ Omem ’ Mmem+

core I mem I $ . FP . core
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Power Attribution to Tasks

® Multicores power consumption model
» Power consumption : not proportional to # of utilized CPU
» Shared resource power consumption model

P active single T 0h1p share - M chip share

Core Core
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Power Attribution to Tasks

® Multicores power consumption model

Machine with a quad-core SandyBridge Machine with two dual-core Woodcrests
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Recalibration & power measurement

® Compare power model to measurement

 Model

« Some inaccuracy
» Good prediction of

power transition
« Can be immediately applied

« Measurement
« Lag time : I/O transfer time

(A) Intel Sandy Bridge power sensor alignment
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Request tracking

® Request execution may flow

through multiple processes
in a multi-stage server

Request context transfer
« Event-driven at kernel
(sockets,fork....)

« Application transparency by
recognizing key request
propagation channel

Support request tracking
over a persistent socket
connection — with request
tag
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Container-enabled management

® Fair request power conditioning
» Request power accounting can detect power spikes( power virus )
« Container-specific power control can precisely throttle
execution of power-hungry requests

(A) Behavior of the original system

Introduction of power viruses '

(B) Behavior of the power container—controlled system

- T - T
Introduction of power viruses

15
Progress of execution (in seconds)




Container-enabled management

® Heterogeneity-aware request distribution

« Load placementand distribution on available machines may affect the

system energy efficiency

« Enable the preferential placement of each request on a machine where
its relative energy efficiency is high
® Information about request execution control
« Tagging request messages to next machine
— container identifier and control policy settings — application transparency
« Tagging response messages to previous machine

— cumulative power and energy usage information — for heterogeneity-aware
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Overhead

® Container maintenance operation
* Reading the hardware counter values
» Computing modeled power values,
« Updating request statistics
* (quad-core Sandy-Bridge) 0.95 us per (1ms>)
=> (0.1% overhead)

® Power measurement alignment and model recalibration
16 us per 10ms
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Evaluation

® Power model calibration

« Power model coefficient decision by Benchmark

Cidie 26.1 Watts:
Ceore * M 33.1 Watts:
Cins - M 12.4 Watts:
Ccache . ?}fﬁe 13.9 Watts;
Cmem : ﬁ}gﬁ] 8.2 Watts;
Cchipshare . lc]l]l?gshare 5.6 Watts:
Caisk - Misk 1.7 Watts;
Cnet ' Eé‘lx 5.8 Watts.

Uncore component’s impact on entire power consumption
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Evaluation

Probability density

® Accuracy of power prediction of Power container

GAE-Hybrid Solr search engine
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Evaluation

® Measured active power of application workloads

Machine with two six—core Westmere processors

Machine with a quad-core SandyBridge processor
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Evaluation

® Accuracy of power prediction of Power container

WeBWorK new request composition

Measured power
Power containers prediction
CPU-utilization—proportional

Request-rate—proportional
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— Power containers prediction is pretty accurate
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Evaluation

® Heterogeneity-aware request distribution

Energy efficiency heterogeneity over different workloads

RSA-crypto Solr WeBWorK Stress  GAE-Vosao

Cross—machine active energy usage ratio

(energy usage on SandyBridge over that on Woodcrest)

37



Evaluation

® Heterogeneity-aware request distribution

A combined GAE-Vosao/RSA-crypto workload
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— Heterogeneity-aware request distribution by request tracking is effective to
low power consumption
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Summary

® Fair request power conditioning
* Uncore’s power consumption-aware power model
« Recalibration with power measurement for better accuracy of prediction
* Prevent power spike
» Server power cap : entire system reliability

® High throughput & QoS

* Per-request power management

» Guarantee performance service required by per users within limited
power budget(cap)

» Per-request context tracking

® Heterogeneity
« Load placement and distribution on available
« By using cumulated power consumption results
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