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l Power management : from embedded system to server
• Small size form

• Battery-based system

• Ex ) Mobile device or PDA

l Convergence of multiple devices to an integrated device
• mp3, mobile, PDA, PMP, camera, Etc…

Background(`02)
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l Low-power processors is needed for battery-operated devices

l Power management issue
• Variable performance requirements of tasks

• High performance   : Video player

• Low performance    : MP3 audio

• Dynamic power-performance mode

• How to calculate performance level accurately in real time?

• Performance-setting algorithm with model

l Intel’s Sidestep ( Usage model )
• Plugged in : full-active performance

• On Battery : efficient performance

Problems

3



l Performance–settings based on CPU demand
• Using DVFS(Dynamic Voltage Frequency Scaling) technique

• Dynamic power allocation

• Implementation – Where?

• Kernel (Vertigo) vs Hardware (Long run)

Purpose

Least power consumption, 
while users feel no performance degradation
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LongRun
l Hardware & firmware level performance decision

• Kernel-independent Power Management 

l Interval based performance management
• CPU utilization(duty cycle)

Firmware : Long run
Hardware :   Crusoe  

OS
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LongRun
l Interval-based utilization estimate

Ø CPU utilization high⇒ Speed-up
low ⇒ Speed-down
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time
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LongRun
l Problems

• Non-aware to kernel information : application, scenario

• Cannot optimize to task characteristics

• Lack of response to task switching 

• Difficult to deal with certain kinds of run-time situations

(e.g - mouse moves, interactive applications)

• Fixed monitoring interval
• How long?

• Too short : oscillated performance level

• Too long  : hard to address performance transition (interactive)
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Vertigo
l Key Contribution

• Implemented in OS kernel

• Gives access to a richer set of data for prediction

• Capability of response to performance requirement

• Multiple Performance-setting Algorithms

• Guarantee deadline, especially interactive applications

• Per task performance prediction Algorithm
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Vertigo
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Kernel

User process User process User process

System
Call Scheduler Power Manager

(sleep/awake)

Vertigo
Hook

l Architecture
• Vertigo hooks previous Linux kernel

• Vertigo can access process information

• System Call       : task scenario

• Scheduler          : task identification

• Power Manager : CPU utilization



Vertigo
l Multiple Performance-setting Algorithm

TOP

MIDDLE

BOTTOM

Automatically quantifying the performance
requirements of interactive applications
( for worst case )

DVS-aware applications can submit information
about their performance requirement

Derives a processor-utilization estimate for each
task separately
(for optimized efficient power management)W
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Vertigo
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time

f1 f2 f3 f4 f5

l Workload model

• Full-speed equivalent work = # of cycles 

t1 t2 t3 t4 t5

a task



Vertigo
l Per-task workload monitor

• When a task starts execution, the per-task data structures are initialized 
with four pieces of information
Ø Work time counter
Ø Idle time counter
Ø The current time
Ø A run bit indicating that the task has started running

• Interval ends with quantum expires or system calls
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Vertigo
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l Bottom level performance-setting algorithm 

: A perspectives-based algorithm
• Derives a utilization estimate per each task separately
• No fixed interval → event-driven interval (quantum expires or system call)
• Workload accumulated by exponentially decaying averages

• Workload estimation 

• Deadline

• Require performance



Vertigo
l Top level performance stetting algorithm

• By monitoring the system calls, Vertigo can detect interactive episodes.

• Mobile target : end-user response time is important

• Be able to guarantee deadlines 
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Vertigo
l Policy stack implementation

• Can override lower algorithm policy

• Kernel event-aware performance-setting
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Vertigo
l Top level performance stetting algorithm

1. Beginning ~ Skip threshold 
• Short time routine episodes

2. Skip-threshold ~ Panic threshold
• Assign expected performance level by cumulated history

3. Panic threshold
• Prediction failure occurs 
• Shift to the maximum performance level
• Compensate for future triggered event
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Evaluation
l MPEG scenario
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Evaluation
l Interactive applications
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Summary
l Vertigo

• Initial in-kernel level trial to control DVFS
• Per task performance-setting algorithm
• Guarantee deadlines for interactive application

l Power management for Mobile target device
• Responsibility : user-interactive application 

l Impact of Vertigo on present OS’s power managements
• Difficult to implement Vertigo’s full functions
• Vertigo’s top level algorithms is useful only for applications that 

occur interactive episodes frequently
• Android / Linux ?

• Aggressive power management is only active when 
application requires. (interactive episodes)

• Use “Wakelock” API for power control in Android
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Background
l New generation computing systems appearance

• Data center  / Server systems

• Online applications : 

• Client-directed applications

• Rely on clients to supply content

• High throughput capability  is important

• Quality of Service (Guarantee performance per client’s policy)

l Power management is more important

• Core utilization / Shared resource

• Heterogeneous platform
21



Ø Per-client/request power management is highly desirable

Ø Isolating per-client power attribution
Ø Recognizing the energy usage of individual requests

Problems
l Problems of Multicore / Server systems

• Work load diversity

• Large power fluctuation

• Hardware resource sharing

• Previous approach : Using CPU utilization history

• Uncore component ( cache, memory interconnect )

• Cause “power viruses”

• Concurrent execution
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Power container
l System overview
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Power container
l Account for and control the power and energy usage of 

individual requests in multicore servers

l Per request power modeling

• Aware uncore component’s power model

• For better recalibration, adopt online power measurement

l Request context-aware power management

• Request tracking in multi-stage server
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Power Attribution to Tasks
l Power consumption model

• Hardware counter monitor workload per cycle
• Core utilization per elapsed cycles
• Retired instructions per CPU cycle
• Floating point operations per cycle
• Etc…

• Event-based  power accounting
• Hardware counter : periodic counter sampling
• Computing relevant event frequencies

• Cover uncore component’s power consumption
• Can apply to both entire system end specific tasks
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Power Attribution to Tasks
l Multicores power consumption model

• Power consumption : not proportional to # of utilized CPU
• Shared resource power consumption model
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Power Attribution to Tasks
l Multicores power consumption model
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Recalibration & power measurement
l Compare power model to measurement

• Model
• Some inaccuracy
• Good prediction of 

power transition
• Can be immediately applied

• Measurement
• Lag time : I/O transfer time

l Recalibrate power coefficient
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Request tracking
l Request execution may flow 

through multiple processes 
in a multi-stage server

l Request context transfer
• Event-driven at kernel

(sockets,fork….)
• Application transparency by 

recognizing key request 
propagation channel

l Support request tracking 
over a persistent socket 
connection – with request 
tag
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Container-enabled management
l Fair request power conditioning

• Request power accounting can detect power spikes( power virus )
• Container-specific power control can precisely throttle 

execution of power-hungry requests
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Container-enabled management
l Heterogeneity-aware request distribution

• Load placement and distribution on available machines may affect the 
system energy efficiency

• Enable the preferential placement of each request on a machine where 
its relative energy efficiency is high

l Information about request execution control

• Tagging request messages to next machine

→ container identifier and control policy settings – application transparency

• Tagging response messages to previous machine

→ cumulative power and energy usage information – for heterogeneity-aware
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Overhead
l Container maintenance operation

• Reading the hardware counter values
• Computing modeled power values,
• Updating request statistics

• (quad-core Sandy-Bridge) 0.95 us per (1ms>)
=> (0.1% overhead)

l Power measurement alignment and model recalibration
• 16 us per 10ms
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Evaluation
l Power model calibration

• Power model coefficient decision by Benchmark
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Uncore component’s impact on entire power consumption



Evaluation
l Accuracy of power prediction of Power container
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Evaluation
l Measured active power of application workloads
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Evaluation
l Accuracy of power prediction of Power container
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→ Power containers prediction is pretty accurate



(energy usage on SandyBridge over that on Woodcrest)

Evaluation
l Heterogeneity-aware request distribution
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Evaluation
l Heterogeneity-aware request distribution
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→ Heterogeneity-aware request distribution by request tracking is effective to 
low power consumption



Summary
l Fair request power conditioning

• Uncore’s power consumption-aware power model
• Recalibration with power measurement for better accuracy of prediction
• Prevent power spike
• Server power cap : entire system reliability

l High throughput & QoS
• Per-request power management

• Guarantee performance service required by per users within limited 
power budget(cap)

• Per-request context tracking

l Heterogeneity
• Load placement and distribution on available
• By using cumulated power consumption results
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