Abstract

Crowdsourcing is an emerging strategy for enterprises to harvest information, labour, expertise and innovation from a wide, anonymous crowd. To fully adopt this strategy, enterprise systems should not only extend existing frameworks with new services and users, but also efficiently integrate crowdsourced activities with, usually more stable, organisational processes. However, an ontological structure for this integration is still missing. Although a few lightweight ontologies have been proposed in the crowdsourcing domain, they seem to focus on clarifying concepts rather than providing a structure for modelling, designing, and developing an enterprise system. The current study fills the gap by building an enterprise ontology of business process crowdsourcing. Our results identified the main business processes, data entities, data attributes, and their hierarchy relationships, which were structured into a lightweight ontology. We then added decision-making relationships and business rules that turn a lightweight into a heavyweight ontology. The built ontology is evaluated by triangulation when comparing with two ontology versions generated by automated tools. The current study is significant as it is the first effort to build an enterprise ontology of crowdsourcing, which provides a blueprint for integrating business process crowdsourcing into enterprise systems.

Keywords: Business Process Crowdsourcing, Crowdsourcing, Design Science, Enterprise System, Enterprise Ontology.
1 INTRODUCTION

Networked information technology enables organisations to employ a global, online, and anonymous workforce (Kittur et al. 2013; Saxton et al. 2013). Crowdsourcing utilises this workforce to accomplish specific tasks, which are usually published online in the form of an open call (Howe 2006; Zhao and Zhu 2014). This strategy has been gaining popularity in large enterprises like Threadless, Boeing, Procter and Gamble, Colgate-Palmolive, Lego, Nike, BMW, Starbucks, and Netflix (Howe 2006; Rosen 2011). These enterprises have used crowdsourcing for various purposes, like gathering expertise and creative ideas, marketing campaigns, and many other business endeavours. Further evidence of this popularity is the variety of crowdsourcing projects being launched. Some projects involve micro tasks with very short timeframes, while others concern more complex and long-lived tasks like product development and software testing (Djelassi and Decoopman 2013; Zogaj et al. 2014). These projects also concern a wide range of information processing activities, including data gathering and classification, ideation, problem solving, and even collaboration (Kittur et al. 2013; Saxton et al. 2013; Zou et al. 2014).

Enterprise systems (ES), which support and coordinate almost all information flows and business processes within organisations (Volkoff et al. 2005), are expected to evolve to meet the wide applications of crowdsourcing. The integration of the crowdsourcing strategy with internal business processes becomes critical since ES always strive for effectiveness and efficiency, and therefore seek a more integrated, structured and repeatable utilisation of crowdsourcing resources (Lopez et al. 2010; Satzger et al. 2012). In other words, ES could benefit by embracing crowdsourcing in their value proposition and effectively integrating the crowd in their capabilities and services. Aligning with this view, the current paper focuses on how an enterprise system can support business processes based on crowdsourcing, which we call Business Process Crowdsourcing (BPC) (Vecchia and Cisternino 2010).

Although various aspects of crowdsourcing have already been studied, an ontological structure that can be used to integrate BPC into an enterprise system is still missing. This can be seen through (at least) three challenges. First, existing crowdsourcing studies mostly address some particular aspects of BPC (Geiger and Schader 2014; Man-Ching et al. 2011), whereas ES require a comprehensive knowledge on the whole integrated business process (Dietz 2006; Volkoff et al. 2005). Second, to successfully establish BPC, ES have to understand all its related aspects, including activities, components, information flows, and data entities. These elements have not been specified, or to some extend have been examined only through an abstract level in the existing literature, e.g. the twelve components of complex-task crowdsourcing (Kittur et al. 2013) and the conceptual model of BPC (Thuan et al. 2014). Thirdly, the ES view is also expected to contribute to the success of the crowdsourcing strategy. For instance, it is already known that increasing task meaningfulness increases the participation rate in certain crowdsourcing platforms (Chandler and Kapelner 2013). However, how to coordinate it into the enterprise system is unknown.

Addressing these challenges, the current study aims at building an enterprise ontology that can provide a sound foundation supporting the integration of BPC. The ontology, which explicitly defines concepts and relationships in the domain of interest (Corcho et al. 2003) and enhances reasoning knowledge (Valaski et al. 2012), can provide the ontological structure necessary to understand the main constituents of BPC. This structure is necessary to model, design, and develop an enterprise system in aligning with BPC processes, a similar outcome of the work by Osterwalder (2004). From an academic point of view, the ontology contributes to solidify the domain knowledge of BPC, together with recent studies that start exploring and structuring concepts in the domain (Hetmank 2014; Luz et al. 2014). More precisely, our work extends these studies by further analysing diverse relationships, especially the decision-making relationships that can support the establishment of BPC. This enables casual-based explanations and predictions in the domain (Fonseca and Martin 2007).
To construct the ontology, we adopted a Design Science paradigm (Hevner and Chatterjee 2010; Hevner et al. 2004). In particular, we followed a two-step process. The first step extracted a set of ontological elements from the knowledge base, using a prior literature review. The second step synthesises the extracted elements into an enterprise ontology of BPC. This paper is specifically centred on the ontology building, since the literature review has been published elsewhere (Thuan et al. 2014). The built ontology is then evaluated by comparing with two ontological versions automatically generated by two software tools (Cimiano and Völker 2005; Fortuna et al. 2007).

2 BACKGROUND

2.1 The Value of Ontologies

Ontologies have been used to conceptualise and structure knowledge in different domains, including Information Systems (IS) with the popular usage of the Bunge-Wand-Weber ontology (Wand and Weber 1993). Guarino et al. (2009) characterised ontologies by three features: conceptualisation, explicit specification, and shared understanding. Conceptualisation refers to an abstract and simplified representation of the domain of interest, mainly through objects, concepts, and relationships. Explicit specification means that these objects, concepts, and relationships are explicitly defined to prevent any ambiguous meaning (Corcho et al. 2003). These two features are highly consistent to Gruber (1993) who defined ontologies as “explicit specifications of conceptualisations” (p. 199). The third feature suggested by Guarino et al. (2009) is shared understanding, which helps the ontology to be widely understood and applied. As all of the three mentioned features are important in enterprise ontologies, our perception of ontology is aligned to the characterisation proposed by Guarino et al. (2009).

Given this perception, we can further distinguish between different types of ontologies. The related literature has proposed a few schemas and dimensions to classify ontologies (Fonseca and Martin 2007; Guan et al. 2013). Among them, two widely adopted dimensions are level of generality (Guan et al. 2013; Sharman et al. 2004) and structural complexity (Corcho et al. 2003; Valaski et al. 2012). Considering the level of generality, Sharman et al. (2004) classify ontologies into top-level, domain, and application. In top-level ontologies, concepts and relationships can be used for multiple domains, whereas in domain and application ontologies, the ontological elements focus more on targeted domains and restricted applications. Another popular dimension to classify ontologies concerns the structural differences of knowledge they represent (Corcho et al. 2003; Valaski et al. 2012). More precisely, an ontology that only captures concepts and relationships is a lightweight ontology, while adding axioms turns lightweight into heavyweight ontologies. When positioning our to-be-built ontology in these classification dimensions, our work is aligned to the heavyweight/domain ontologies since we strictly focus on BPC and examine not only concepts but also decision-making relationships and business rules in this domain.

The literature has suggested several values that an ontology may bring to the domain of interest, like formulating the domain, easing communication among different parties, and allowing computer interpretability (Guarino et al. 2009; Valaski et al. 2012). While agreeing with these, we suggest also considering the contributions of ontologies for enterprise modelling. From this perspective, ontologies or enterprise ontologies provide structured means for modelling and managing the domain knowledge. Corcho et al. (2003) refer to an ontology as not only the collection of terms, but the knowledge that can be inferred from it. Recently, Wong et al. (2012) recommend that “every knowledge base has to be committed to a conceptualisation […]. This conceptualisation is what we refer to as ontologies” (p. 2). Furthermore, Ahmad et al. (2011) highlight the roles of ontologies in managing ES knowledge, including clarifying knowledge structure, reducing conceptual ambiguity, sharing knowledge, facilitating communication, and supporting operating of ES. As a result, an enterprise ontology can support the modelling, designing, deploying, integrating, and maintaining ES. Given the important role of enterprise ontologies, we expect that building an enterprise ontology of BPC can help consolidating the domain knowledge and enabling the integration of crowdsourcing into ES.
2.2 Crowdsourcing

Although the use of the crowd to solve difficult problems can be traced back to the 18th century, the term ‘crowdsourcing’ was only recently coined by Howe (2006). The recent emergence of crowdsourcing can be explained by the dominance of Web 2.0, which provides infrastructures for organisations to approach a wider workforce (Saxton et al. 2013; Zhao and Zhu 2014). Although it is only one decade since the term was first introduced, crowdsourcing has raised interest in organisations operating in multiple fields like marketing, education, software and medicine (Rosen 2011; Zhao and Zhu 2014). This wide adoption, on the one hand, enables crowdsourcing to become a rapidly-growing research field. In our previous study (Thuan et al. 2014), we found about a double increase on the number of articles published per year from 2008 to 2013. A similar trend has also been reported by other studies, such as the work by Tarrell et al. (2013).

On the other hand, research in multiple fields brings a variety of epistemologies, views, concerns and research methods (Geiger and Schader 2014; Man-Ching et al. 2011). When analysing the crowdsourcing literature (Thuan et al. 2014), we could not find any dominant theories or models. Instead, we could find a wide range of research styles, including case studies, proofs-of-concept, design studies, usability studies, tool developments, experiments, and other engineering contributions. Since these studies are highly focused on some isolated concerns and use different research theories and methods, their findings tend to be ad-hoc and sometimes conflicted. For instance, conflicting results on whether increasing payments can increase crowdsourcing output quality have been reported by different researchers (Liu et al. 2014; Mason and Watts 2009). All in all, these characteristics of crowdsourcing research indicate that it is an emerging area with scattered knowledge, rather than strong ontological foundations.

From an organisational perspective, crowdsourcing needs to evolve rapidly from this conflicted situation towards a more stable repeatable process. This requires an integration of crowdsourcing into organisational business processes (Lopez et al. 2010; Satzger et al. 2012). Lopez et al. (2010) state that “organisations require integration of [the] crowdsourced tasks with the rest of the business process” (p. 539). This integration tightens and streamlines the internal and crowdsourced activities, and allows ES establishing business processes on top of crowdsourcing tasks. In spite of this importance, the integration of BPC into ES faces several challenges. These challenges originate from the aforementioned lack of ontological soundness, and at least two significant differences between crowdsourcing and regular ES processes. First, ES usually involve repeatable business processes, while crowdsourcing deals with volatile and unique tasks (Geiger and Schader 2014). Second, ES tend to be associated with clear roles, responsibilities and activities, while BPC often distributes tasks to anonymous people.

Since enterprise ontologies can address these challenges by strengthening and standardising the knowledge bases, a few crowdsourcing ontologies have already been suggested (Hetzman 2014; Luz et al. 2014). Analysing the state of the art, Luz et al. (2014) proposed a taxonomic or hierarchical ontology of task-oriented crowdsourcing systems identifying nine structural dimensions, including nature of collaboration, architecture, worker selection, quality control, worker motivation, task design and configuration, task management, execution management, and result aggregation. More closer to the current study, Hetmank (2014) proposed a lightweight ontology for enterprise crowdsourcing providing “controlled vocabulary to communicate specific details about their crowdsourcing activity” (p. 2). The ontology defined 24 classes, which were grouped into seven components: user, project, crowdsourcing task, requirements, reward mechanism, evaluation mechanism, and contribution.

Although these ontologies help clarifying the field, they seem to focus more on defining concepts rather than building an enterprise ontology that can support the establishment of BPC. This enterprise ontology should be built, not only on well-defined concepts and hierarchy relationships but also on reasoning knowledge, including structural relationships and business rules. An example includes the impact of task/process design on the quality of the crowdsourcing outcomes (Eickhoff and De Vries 2013; Hoßfeld et al. 2013). These structural relationships and business rules play a crucial role on BPC
and the enterprise system supporting it, but have not been captured by the existing ontologies. Additionally, none of the existing ontologies suggest an integrated framework for organisational BPC. In short, an enterprise ontology of BPC still needs to be developed.

3 METHOD

To build the ontology, we followed a Design Science paradigm (Hevner and Chatterjee 2010; Hevner et al. 2004), which views the to-be-built ontology as a Design Science artefact. In this paradigm, artefacts must be founded on a rigorous knowledge base. Some popular Design Science methods require using extant theories as the knowledge base (e.g. Carlsson et al. 2011; Pries-Heje and Baskerville 2008). However, crowdsourcing is an emerging domain and extant theories seem not exist yet (Zhao and Zhu 2014). Thus, other sources of knowledge have to be considered for the ontology building. Hevner and Chatterjee (2010) suggest that besides theories, Design Science research can also be founded on experience and expertise, which is highly available in crowdsourcing literature. In a prior study (Thuan et al. 2014), we identified a large collection of “sources” reporting experience and expertise from a diversity of case studies, experiments, tool developments, etc. Following the Hevner and Chatterjee (2010)’s assertion, the current study uses that raw information to construct the enterprise ontology.

We have also reviewed the ontology engineering literature to identify and justify the activities of ontology development. We selected two activities which are commonly used in ontology engineering. They are ontology capture (Uschold and King 1995) and knowledge organisation (Küçük and Arslan 2014) (also called conceptualisation (López et al. 1999)). In the first activity, we derived ontological elements by a scoping literature review. This review systematically searched and selected 238 articles related to BPC from eight popular online bibliographic databases: ACM, EcoHost, IEEE, Emerald, Sage, Science Direct, Springer Link, and Wiley, which is described in another paper. Interested readers are pointed to Thuan et al. (2014). These articles were used as raw data in the current study. We then analysed the reviewed articles to identify concepts, hierarchical relationships, decision-making relationships, and business rules. This analysis was conducted using both inductive and deductive approaches. In the inductive approach, we derived a conceptual model reflecting the predominant view of the crowdsourcing literature, which is presented in Figure 1. This approach, similar to Osterwalder (2004), ensures that the captured elements are tightly focused and address core concepts of the crowdsourcing domain. On the other hand, some ontological elements were also inductively captured. Reasons for using the inductive approach include the emerging nature of the crowdsourcing field, where we can expect new concepts and relationships that are not aligned with the predominant view. To support both approaches, we developed an ontology schema to guide the ontology capture process (details in Section 4.1).

![Figure 1. A conceptual model of BPC (Thuan et al. 2014)](image)

The second activity synthesised and organised the ontological elements into the enterprise ontology (Küçük and Arslan 2014). The synthesis was processed for each ontological element: distilling
concepts, hierarchy relationships, decision-making relationships, and business rules. We synthesised these ontological elements mainly based on the ‘wisdom of the researchers’ (Thuan et al. 2014), where we focused on elements supported by multiple studies. This ‘wisdom of researchers’ is particularly useful when the extracted elements are not consistent. For instance, different hierarchical relationships related to quality control mechanisms have been proposed in the reviewed articles. Some articles categorise quality control into design-time and run-time mechanisms (Allahbakhsh et al. 2013). A slightly different categorisation defines before-task, during-task, and after-task mechanisms (Alonso 2013). Other authors propose completely different categories, including supervised and unsupervised mechanisms (Baba and Kashima 2013). In these cases, by applying the ‘wisdom of researchers’ we chose the elements that were suggested by the majority of reviewed articles.

The synthesised elements were then organised into the enterprise ontology. Since the relationships revealed the fundamental structure of the BPC domain, the ontology ended up being organised around them. It is nevertheless important to note that the organisation process was highly iterative, where we extend, clean up, and update the ontology several times. The organisation process was also performed using inductive and deductive strategies. This can be exemplified with the process of obtaining hierarchical relationships. On the one hand, we relied on guidance from the reviewed articles, e.g. suggesting that quality control can be categorised into design-time and run-time mechanisms (Allahbakhsh et al. 2013), which suggests the adoption of a deductive strategy. On the other hand, no guidance was found for some groups of related concepts. For instance, even though several factors influencing the decision to crowdsource have suggested by the related literature, no schema structuring these concepts was actually found. In line with Nickerson et al. (2012), in these cases we inductively proposed a classification schema based on the common characteristics of the (sub) concepts.

4 ONTOLOGY BUILDING

4.1 Ontology Schema

This section presents a schema used to analyse the ontological elements for capturing ontological element. This schema is critical because it provides a structured approach (or meta-model) for data analysis and ontology capture (Levy and Ellis 2006; Okoli and Schabram 2010). Figure 2 graphically presents this schema consisting of two sections: ontological representation (left-hand side) and knowledge representation (right-hand side), operationalising the deductive and inductive approaches described in the previous section.

The ontological representation, which was mainly used for deduction, includes four elements: concepts, hierarchy relationships, decision-making relationships, and business rules. While concepts and hierarchy relationships are important to structure a domain knowledge (Corcho et al. 2003; López et al. 2004), decision-making relationships and business rules provide reasoning knowledge and thus are also critical when developing an enterprise system. When deducting, we analysed concepts and sub-concepts according to the left side of the model shown in Figure 2. For each extracted concept/sub-concept, we specified its name, synonym, and description. Since ontologies include both the concepts and the linked extensions between concepts (Corcho et al. 2003; López et al. 2004), the next considered element was the relationship. In this element, we analysed not only hierarchical relationships but also decision-making relationships. The former refers to taxonomic structures in the domain (López et al. 2004), where we adopted five hierarchy relationships commonly used in ontology engineering, including ‘is a’, ‘include’, ‘categorise’, ‘instance of’, and ‘based on’. Regarding the decision-making relationships, we chose the following ones: ‘positively influence’, ‘negatively influence’, and ‘associate’, which are popularly suggested in the literature (e.g. Chandler and Kapelner 2013; Hoßfeld et al. 2013). The last considered element concerns business rules, which add constraints to the concepts and relationships.

When applying the ontological representation to the knowledge sources, we faced an issue that some emerging ontological elements did not align with our pre-defined codes. This is logical since the
adoption of diverse views and methods is typical of crowdsourcing research (as discussed in the background section). Addressing this issue requires an inductive approach that allows analysing and characterising knowledge from the bottom up. Thus, we adapted the knowledge representation approach proposed by Rockwell et al. (2010) (right-hand side of Figure 2). More precisely, we applied the following questions when analysing the knowledge sources: what are the main issues related to BPC? How these issues can be defined, i.e. characterising by what factors? What alternatives can be chosen to address the issues? And how to evaluate the proposed alternatives?

Figure 2. Ontology schema (adapted from (Rockwell et al. 2010))

We note that the two parts of the ontology schema support each other. While the ontological representation section helps clarifying existing knowledge, the knowledge representation section allows further analysing the knowledge gaps, thus strengthening the approach. This schema was applied to every piece of information contributing to the ontology. As a result, the ontological elements: concepts, hierarchy relationships, decision-making relationships, and business rules were captured. The results are presented in the next sections.

4.2 An Enterprise Ontology of BPC

4.2.1 Concepts

We now report the results from the ontology building, starting with the most popular concepts and sub-concepts of BPC. As stated earlier, we focused on concepts and sub-concepts suggested by multiple sources. This is aligned and at more detailed-level in comparison to our previous work (Thuan et al. 2014). We also note that the number of sources (or articles published in the research outlets) supporting these concepts is largely different, ranging from two sources suggesting ‘autonomy’ as a property of ‘task design’ to 69 sources discussing the topic of ‘quality control’. To provide an overview of the most important concepts within the BPC domain, Table 1 presents 39 (sub) concepts that were supported by at least ten sources.

At a high level, Table 1 reveals several components of BPC that were presented in bold. Within these components, the results are that ‘quality control’, ‘incentive mechanism’, and ‘crowdsourcing output’ are the top-three most popular concepts. The popularity of these concepts has been noted by other researchers (Kittur et al. 2013; Zhao and Zhu 2014). Besides these well-accepted concepts, Table 1 also reveals several emerging components, including ‘crowdsourcing task’, ‘characteristics of the crowd’ and ‘control and feedback’. At a more detailed level, Table 1 clarifies these components with their categories and sub-concepts. This clarification suggests that the conceptualisation in the current study has a more detailed level of abstraction compared to the conceptual model in Figure 1.

Since concepts presented in Table 1 are supported by at least ten sources, they are important in the domain, and should be seen as core elements of the ontology. However, we note that, besides these concepts, other identified (sub) concepts are still considered in the ontology construction. This is
because we believe that the importance of a concept should be seen from both the number of supporting sources and its relationships with other concepts, given the important roles of relationships in ontologies (Guarino et al. 2009; Sánchez and Moreno 2008).

<table>
<thead>
<tr>
<th>Concept</th>
<th>No. of supporting sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality control</td>
<td>69</td>
</tr>
<tr>
<td>Design-time</td>
<td>11</td>
</tr>
<tr>
<td>worker selection</td>
<td>16</td>
</tr>
<tr>
<td>Run-time</td>
<td>13</td>
</tr>
<tr>
<td>identifying malicious behaviour</td>
<td>19</td>
</tr>
<tr>
<td>gold standard</td>
<td>16</td>
</tr>
<tr>
<td>output agreement</td>
<td>12</td>
</tr>
<tr>
<td>Incentive mechanism</td>
<td>46</td>
</tr>
<tr>
<td>monetary reward</td>
<td>29</td>
</tr>
<tr>
<td>fun</td>
<td>11</td>
</tr>
<tr>
<td>Crowdsourcing output</td>
<td>38</td>
</tr>
<tr>
<td>output quality</td>
<td>36</td>
</tr>
<tr>
<td>Task design</td>
<td>37</td>
</tr>
<tr>
<td>Task description</td>
<td>10</td>
</tr>
<tr>
<td>Crowd management</td>
<td>34</td>
</tr>
<tr>
<td>Task assignment</td>
<td>20</td>
</tr>
<tr>
<td>Profiling the crowd</td>
<td>10</td>
</tr>
<tr>
<td>worker profile</td>
<td>10</td>
</tr>
<tr>
<td>worker reputation</td>
<td>10</td>
</tr>
<tr>
<td>Crowdsourcing task</td>
<td>34</td>
</tr>
<tr>
<td>simple task</td>
<td>13</td>
</tr>
<tr>
<td>Decision to crowdsourced</td>
<td>26</td>
</tr>
<tr>
<td>Decision factor</td>
<td>19</td>
</tr>
<tr>
<td>Task characteristic</td>
<td>30</td>
</tr>
<tr>
<td>ease of task delineation</td>
<td>13</td>
</tr>
<tr>
<td>partitioned task</td>
<td>11</td>
</tr>
<tr>
<td>Availability of the crowd</td>
<td>19</td>
</tr>
<tr>
<td>Risk & Challenge</td>
<td>16</td>
</tr>
<tr>
<td>Availability of crowdsourcing platform</td>
<td>10</td>
</tr>
<tr>
<td>Characteristics of the crowd</td>
<td>23</td>
</tr>
<tr>
<td>Type of worker</td>
<td>12</td>
</tr>
<tr>
<td>Motivation of the crowd</td>
<td>10</td>
</tr>
<tr>
<td>Workflow design</td>
<td>21</td>
</tr>
<tr>
<td>Results aggregation</td>
<td>29</td>
</tr>
<tr>
<td>Task decomposition</td>
<td>10</td>
</tr>
<tr>
<td>Control and feedback</td>
<td>17</td>
</tr>
<tr>
<td>Technical configuration</td>
<td>14</td>
</tr>
<tr>
<td>Platform (intermediary)</td>
<td>13</td>
</tr>
<tr>
<td>complex task</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1. Main (sub) concepts supported by at least 10 sources

4.2.2 Hierarchy Relationships

Different from the previous section that identified individual concepts related to BPC, this section hierarchically structures these concepts to provide a holistic view of the BPC domain. Our analysis reveals a diversity of hierarchy relationships in the field of BPC. This diversity can be seen by counting each type of relationship: ‘is a’ (19 sources), ‘include’ (78 sources), ‘categorise’ (22 sources), ‘instance of’ (30 sources), and ‘based on’ (22 sources). These relationships and concepts identified in the previous section need to be organised in a manageable way. In the current study, such organisation is a trial-and-error process where several structures of the ontology were proposed, including tree structure and network structure. However, these structures seem not to be aligned with the current work. While the tree structure offers a good overview on the hierarchy relationships, it implies a division concern on each of its branches, and thus is more suitable for an individual view rather than our integrating approach. Although the network structure can support the integrated view, it makes the ontology representation becomes very complex with many relationships. Given that, the current study adopts a layer structure, which is suitable to our holistic view and reduces complexity by arranging concepts and relationships into layers. Furthermore, the layer view is totally suitable to the integration of crowdsourcing into enterprise systems, as enterprise integration includes different levels of concerns (Giachetti 2004; Hasselbring 2000).
The organisation results are presented in Figure 3. We note that in this figure, the ‘is-a’ relationship has been transferred to ‘include’ and ‘categorise’ relationships, and the ‘instance of’ relationships were not presented due to the limited space of the paper.

Figure 3. A lightweight enterprise ontology of BPC

Figure 3 represents a lightweight ontology of BPC, which is structured into four layers. Overall, the ontology should be viewed from inner-to-outer and clockwise direction. The core layer represents the main components of BPC that were captured in section 4.2.1. These components cover the whole BPC process as an input-process-output structure. To clarify these components, the other identified concepts in section 4.2.1 were further analysed and organised. From an ES perspective, processes and data (or information) are crucial elements in enterprise integration (Giachetti 2004), including the integration between crowdsourcing and ES. Given that, we classified and positioned the remaining concepts in the next layers as: process layer, data layer, and data attribute layer.

The process layer captures the activities performed in a particular component, and thus the main relationships among concepts in the process layer and components are ‘include’ relationships. For
instance, workflow design includes three activities: identifying type of task (Dai et al. 2013), task decomposition, and results aggregation (Kittur et al. 2013). The data layer represents the data entities that are used by the activities. In terms of relationships, this usage is represented mainly through two relationship types: ‘include’ and ‘based on’. Some activities clarify (or include) data entities, e.g. ‘describing task’ includes clarification of ‘meta-data’. Other activities are based on pre-defined data, e.g. ‘identify type of task’ is based on ‘task type’. The final outermost layer then represents the attributes of each data entity. This representation is expressed through ‘include’ and ‘categorise’ relationships. The ‘include’ relationship shows the connection between an entity and its parts. For instance, the meta-data for task description consists of qualification requirement and task duration (Chilton et al. 2010), and may also consists of other attributes. Also presenting the whole-part relationship, the ‘categorise’ relationship further requires that all of the attributes make up an exhaustive decomposition of the whole concept. For instance, the reviewed articles suggest three categories of workers: core contributor, contributor, and outlier (Chanal and Caron-Fasan 2010; Stewart et al. 2010).

We note here three interesting points of the hierarchy relationships. First, these relationships enable explicitly structuring the related (sub) concepts in the domain. For instance, Figure 3 shows that the decision to crowdsource should be made based on examining the decision factors, including task characteristic, people, management, and infrastructure, which is consistent to (Thuan et al. 2013). Second, through structuring the hierarchy relationships, some interesting links that were not shown through individual studies were revealed in Figure 3. The link between incentive mechanism and crowd management can be seen as an example. In particular, organisations should understand the targeted workers when designing incentive mechanism (Chanal and Caron-Fasan 2010). This understanding can be achieved through worker profiles built by the ‘crowd management’ component (Khazankin et al. 2011). This suggests a close link between ‘incentive mechanism’ and ‘crowd management’, which is presented via the concept of ‘understand the crowd’ in Figure 3. Third, our results suggest that the number of articles supporting a relationship is far less than the number of articles discussing the related concepts within this relationship. This confirms the ad-hoc issue in the crowdsourcing literature in the sense that many reviewed sources only focus on individual concepts, rather than their links and interaction with others.

4.2.3 Decision Making Relationships and Business Rules

This section adds decision-making relationships and business rules into the lightweight ontology to build a heavyweight ontology of BPC. In particular, we find 89 ‘positive influence’, 17 ‘negative influence’, and 10 ‘association’ relationships. Following the “wisdom of the researchers”, we chose the relationships that were either suggested by multiple sources or that link popular concepts identified in section 4.2.1. To organise the chosen relationships, we based on the lightweight ontology but removed the process layer as we found only a few decision-making relationships in this layer. To simplify the presentation, Table 2 summarises the association relationships, while the positive and negative influences are showed in Figure 4.

<table>
<thead>
<tr>
<th>Concept 1</th>
<th>Relationship</th>
<th>Concept 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output quality</td>
<td>associate</td>
<td>Worker profile; task design; quality control; task complexity; monetary reward</td>
</tr>
<tr>
<td>Type of task</td>
<td>associate</td>
<td>Type of workers; incentive mechanism; benefits for organizations; task design; results aggregation</td>
</tr>
<tr>
<td>Incentive mechanism</td>
<td>associate</td>
<td>Type of worker</td>
</tr>
<tr>
<td>Task design</td>
<td>associate</td>
<td>Quality control</td>
</tr>
</tbody>
</table>

Table 2. Association relationships

As summarised in Figure 4, our analysis reveals three important trends. First, although the reviewed information sources indicate diverse relationships, many of them focus on how to influence crowdsourcing ‘output quality’ (Archak 2010; Chandler and Kapelner 2013). This is because ‘output
quality’ is the main indication for the success of crowdsourcing projects, and crowdsourcing can become an effective organisational strategy only when it can achieve high quality output. As a result, we allocated output quality in the centre of Figure 4. Second, some conflicting relationships can be found in the domain. For instance, seven sources suggest that monetary rewards positively influence output quality, whereas three sources do not find significant results to support the influence. Thus, further studies are needed to confirm the relationship. Finally, we find that the number of sources supporting a particular decision-making relationship is usually low (mainly 1 to 3), which contrasts with the large number of sources supporting hierarchy relationships. This is logical as our sources consist of academic articles in the IS field, where “IS have not been interested in publishing replications of prior studies” (Dennis and Valacich 2014 p. 1).

Figure 4. Positive and negative influence relationships

Based on the structures provided by the hierarchy and decision making relationships (Figure 3 and 4), the knowledge base has also provided some business rules related to the establishment of BPC. Due to space constraints, Table 3 only presents some examples of the business rules related to ‘output quality’. These rules, together with the decision-making relationships, provide guidance for organisations when integrating business process crowdsourcing into their ES.

<table>
<thead>
<tr>
<th>Business rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>For taxonomy creation, output quality of crowdsourcing is equivalent to 80-90% of expert output</td>
</tr>
<tr>
<td>The more redundancy in performing a task (in iterative workflow), the better outcome of task results</td>
</tr>
<tr>
<td>Without quality control, more crowd workers are needed to achieve the same level of output quality</td>
</tr>
</tbody>
</table>

Table 3. Some examples of business rules
Design Science research involves two main activities: building and evaluating IS artefacts (Hevner and Chatterjee 2010; Hevner et al. 2004). After building the enterprise ontology of BPC, we now discuss its evaluation. Venable et al. (2012) suggest that Design Science evaluation helps: establishing artefacts’ utility for achieving its stated purpose, comparing the artefact to other designed artefacts, and considering the side-effect and weaknesses of the artefact for future improvements. Although the first approach evaluates whether the artefact works and achieves its goals, and should probably be the most important criterion, this needs considerable efforts on practical, long-run applications, which according to Gregor and Hevner (2013) may not be feasible due to the constrained resources of most research projects. In the current study, we chose the second type of approach where we compared different versions of the enterprise ontology.

More precisely, we developed two automated versions of the ontology using the same sources of information. The two versions of ontologies were built using two software tools that generate ontologies from text: OntoGen (Fortuna et al. 2007) and Text2Onto (Cimiano and Völker 2005). While our ontology was built from a detailed review of a set of scientific articles (Thuan et al. 2014), the automated ontologies were built from the same sources but only using the articles’ abstracts as input, similar to the approach in (Vogrinčič and Bosnić 2011). By comparing the automated ontologies with our own ontology (Section 4.2), we found high consistency on main ontological elements. For instance, the outcomes generated by OntoGen are presented in Figure 5. Comparing Figures 3 and 5, we note a strong match between the core components (i.e. tasks, quality control, incentive mechanism, technical configuration, and the crowd). Several detailed concepts are also similar, e.g. intrinsic motivation and extrinsic motivation, though few differences can be found. The comparison validates our ontology building process through triangulation as suggested by Carlsson et al. (2011) that “to strengthen the validity of design [theories], test triangulation may be beneficial” (p. 117).

Closer examining the ontologies generated by the tools, we further note three important points. First, although the automatic approaches took less time and effort, and can capture main concepts and some
hierarchical relationships (Cimiano and Völker 2005; Fortuna et al. 2007), they are quite limited on the types of relationships, and cannot capture the non-hierarchical relationships. Second, as the automated ontologies define concepts based on the frequency of occurrence, rather than meaning, several extraneous composite concepts emerged, e.g. the combination of systems, innovation, and research in Figure 5. Third and finally, enterprise ontologies should distinguish different types of concepts, e.g. activities, data, and attributes, which currently cannot be supported by these tools. In short, we still believe that our approach is suitable to develop enterprise ontology of BPC.

6 CONCLUSION AND FUTURE WORK

There is a growing interest by enterprises in adopting crowdsourcing for their business processes (Djelassi and Decoopman 2013; Zogaj et al. 2014), which requires integrating crowdsourcing with enterprise systems. However, this integration has been difficult. Adopting the Design Science paradigm (Hevner and Chatterjee 2010), the current study structured the existing knowledge based on the crowdsourcing literature to identify the main concepts, hierarchical relationships, decision-making relationships, and business rules defining BPC. These elements were organised into a lightweight ontology first, and a heavyweight enterprise ontology later. The ontology was evaluated by triangulately comparing with the two automated ontologies generated by the software tools, which strengthens the validity of the design enterprise ontology (Carlsson et al. 2011).

This study is relevant for both organisations and academics. From an organisational perspective, the proposed ontology provides a synthesised BPC process, including the decision-making relationships and business rules, needed to integrate this process with ES. Thus, it can be used as an ontological structure for ES when analysing, planning and deploying crowdsourcing projects. This is important to allow organisations taking advantages by integrating crowdsourcing into their business processes. Although some previous studies have already discussed and defined concepts in the crowdsourcing domain (Luz et al. 2014; Zhao and Zhu 2014), the current study is the first proposing an enterprise ontology, which serves as a blueprint supporting organisations in their BPC integration. Furthermore, from the Design Science paradigm the BPC ontology serves as a knowledge base enabling artefact development (Ostrowski et al. 2014). This includes the development of decision tools that support organisations in their decision-making process related to BPC integration.

From a more academic perspective, an important contribution of this study is a broader view on the integrated crowdsourcing process, which follows the call for a more integrated and holistic view in crowdsourcing studies (Geiger and Schader 2014; Man-Ching et al. 2011). We reach this broader view by synthesising scattered findings in the research literature and providing a common understanding of the crowdsourcing domain. Another contribution is the possible complement of our work to the existing crowdsourcing ontologies (Hetman 2014; Luz et al. 2014). More precisely, our work extends these ontologies by revealing additional concepts necessary for the integration between crowdsourcing and enterprise systems, and capturing important decision-making relationships thus building a heavyweight ontology. Our work also extends the conceptual model proposed in our previous work (Thuan et al. 2014). While the model represents the process of BPC (as seen via Figure 1), the ontology details the concepts, relationships, and business rules in the process.

Through a critical lens, there are some possible improvements that could be considered in the future. First, we understand the risk of synthesising ontological elements from very diverse sources of information. However, we believe that the ontology schema developed in the current study mitigated this risk by providing a consistency to data analysis and synthesis. Furthermore, we believe that gathering data from multiple sources also benefits from the ‘wisdom of the crowd’, utilising diverse points of view and opinions that help developing a more comprehensive perspective on a particular phenomenon (Surowiecki 2004). From an ontology-engineering point of view, our ontology can only be seen as an informal ontology, rather than a formal one that should be defined using an ontology language. Future work could formalise the ontology. We nevertheless note that developing an informal ontology before transferring it into a formal one is a common acceptable practice (Wong et al. 2012).
References

