Automatic No-Reference Quality Assessment for Retinal Fundus Images Using Vessel Segmentation

Thomas Köhler, Attila Budai, Martin F. Kraus, Jan Odstrcilik, Georg Michelson, Joachim Hornegger 20.06.2013 Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Graduate School in Advanced Optical Technologies (SAOT)

Introduction

TECHNISCHE FAKULTÄT

Motivation

- Image quality assessment is essential for retinal image analysis
- Example: Analysis of anatomical structures for manual, computer aided or fully automatic diagnoses

e.g. segmentation/analysis of optic disk (cup-to-disk ratio) for glaucoma diagnosis: sharp image structures required

Goal: objective and automatic quality assessment

How to assess image quality?

- Qualitative assessment: Ask an expert
 Subjective, inter- and intra-observer variance
- Quantitative assessment:
 - Ground truth: peak-signal-to-noise ratio (PSNR), structural similarity (SSIM) ⇒ Not available in practice
 - In the absence of a ground truth: no-reference quality assessment
 - \Rightarrow Objective and reproducible
- No-reference quality assessment
 - Classification-based approaches (supervised)

Niemeijer et al., Med. Image Anal., 2006

Paulus et al., Int. J. of Computer Assisted Radiology & Surgery, 2010

No-reference quality metrics (unsupervised)

Objective Image Quality Features

Features for quality assessment:

• Blur/sharpness

Goal in this work: quantitative assessment of image noise and blur

Objective Image Quality Features

Features for quality assessment:

• Blur/sharpness

Noise

Goal in this work: quantitative assessment of image noise and blur

Objective Image Quality Features

Features for quality assessment:

- Blur/sharpness
- Noise
- Illumination/contrast
- High-level medical features: visibility of blood vessels ...

• . . .

Goal in this work: quantitative assessment of image noise and blur

No-Reference Quality Metric for Noise and Blur

 \sim

No-Reference Quality Metric for Noise and Blur¹

- Decompose image *I* of size *M* × *N* in distinct patches *P* of size *n* × *n* (typical parameter: *n* = 8).
- Important quantities:
 - Local gradient matrix

$$\boldsymbol{G} = \begin{pmatrix} P_{x}(1,1) & P_{y}(1,1) \\ \vdots & \vdots \\ P_{x}(n,n) & P_{y}(n,n) \end{pmatrix}$$
(1)

• Singular value decomposition (SVD) of G:

$$\boldsymbol{G} = \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top} = \boldsymbol{U} \begin{pmatrix} \boldsymbol{s}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{s}_2 \end{pmatrix} \boldsymbol{V}^{\top}$$
 (2)

¹X. Zhu and P. Milanfar, Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content, IEEE Transactions on Image Processing, 2010.

Automatic Quality Assessment – Algorithm

1. Calculate **coherence** for each patch:

$$R=\frac{s_1-s_2}{s_1+s_2}$$

(3)

SAOT

Automatic Quality Assessment – Algorithm

1. Calculate **coherence** for each patch:

$$R=\frac{s_1-s_2}{s_1+s_2}$$

2. Detect **anisotropic patches** (thresholding: $R > \tau$)

 $R=\frac{s_1-s_2}{s_1+s_2}$ (3)

2. Detect **anisotropic patches** (thresholding: $R > \tau$)

1. Calculate **coherence** for each patch:

3. For each anisotropic patch: Calculate **local** score

$$q(oldsymbol{P})=s_1\cdot R$$

Automatic Quality Assessment – Algorithm

(4)

Pattern Recognition Lab, SAOT | No-Reference Quality Assessment Thomas Köhler et al. 20.06.2013

Automatic Quality Assessment – Algorithm

1. Calculate **coherence** for each patch:

2. Detect **anisotropic patches** (thresholding: $R > \tau$)

3. For each anisotropic patch: Calculate **local** score

 $q(\mathbf{P}) = s_1 \cdot R$

 $R = \frac{s_1 - s_2}{s_1 + s_2}$

4. Calculate **global** score for noise and blur:

$$\mathbf{Q} = \frac{\mathbf{Q}}{\mathbf{MN}} \sum_{i,j:\mathcal{P}(i,j)=1} \mathbf{Q}(\mathbf{F}_{ij})$$

 $\alpha = \frac{1}{\sqrt{2}} \sum_{\alpha \in \mathbf{P}_{\alpha}} \sigma(\mathbf{P}_{\alpha})$

High $Q \Rightarrow$ better quality (in terms of blur and noise)

13

(3)

Quality Assessment Using Vessel Segmentation

TECHNISCHE FAKULTÄT

Vessel Segmentation Guidance

• Limitation of metric *Q*: false-positive and false-negative patch detections

Vessel Segmentation Guidance

- Limitation of metric Q: false-positive and false-negative patch detections
- Appropriate guidance: vessel tree visible in fundus images

Vessel tree is detected by **vesselness** measure

(Frangi et al., Multiscale vessel enhancement filtering, MICCAI 1998)

$$V = \exp\left(-rac{\lambda_1^2}{\lambda_2^2}
ight)\left(1 - \exp\left(-(\lambda_1^2 + \lambda_2^2)
ight)
ight)$$

 λ_1, λ_2 : Eigenvalues of pixel-wise **Hessian matrix**

 $\boldsymbol{H} = \begin{pmatrix} \frac{\partial d^2 \boldsymbol{I}}{\partial x^2} & \frac{\partial d^2 \boldsymbol{I}}{\partial x \partial y} \\ \frac{\partial d^2 \boldsymbol{I}}{\partial x^2} & \frac{\partial d^2 \boldsymbol{I}}{\partial x^2} \end{pmatrix}$

(6)

(7)

Weighted Quality Score

- **Basic idea:** Detected patch on a blood vessel (boundary) is more reliable
- Weighted quality score according to vesselness

$$Q_{v} = \sum_{i,j:\mathcal{P}(i,j)=1} \tilde{\Sigma}_{ij} \cdot q(\boldsymbol{P}_{ij})$$
 (8)

Weighting factor Σ_{ij}: local variance of vesselness in patch *P_{ij}*

Blood vessel boundary \Rightarrow high $\tilde{\Sigma}_{ij} \Rightarrow$ high reliability of $q(\boldsymbol{P}_{ij})$

Application to Color Fundus Images

- Quality metric defined for single-channel images
- Color fundus images: extraction of green channel for quality assessment \Rightarrow good contrast/illumination compared to red and blue channel

(Underexposed)

Experimental Evaluation

TECHNISCHE FAKULTÄT

Experimental Evaluation

• Synthetic images: correlation analysis

- Ground truth data available
- How good agrees no-reference quality assessment to established full-reference quality metrics?

• Real fundus images:

- Quality classification
- Agreement to human camera operator

- 40 images out of the DRIVE database: simulation of artificial Gaussian noise and Gaussian blur
- Agreement (correlation) between no-reference and full-reference metrics:
 - Full-ref. metrics: peak-signal-to-noise ratio (PSNR), structural similarity (SSIM)
 - Spearman's rank correlation (Spearman's ρ) to assess agreement
 - \Rightarrow High correlation \Rightarrow good agreement to full-reference assessment

Thomas Köhler et al. 20.06.2013

Noisy image Pattern Recognition Lab, SAOT

Blurred image No-Reference Quality Assessment Noise and blur

Spearman's ρ versus amount of **Gaussian blur**:

- Gaussian blur: 7 \times 7 kernel (fixed), $\sigma_b = 0 \dots 3.0$
- Agreement $Q, Q_v \leftrightarrow \mathbf{PSNR}$ (averaged over 40 images)

Spearman's ρ versus amount of **Gaussian blur**:

- Gaussian blur: 7 \times 7 kernel (fixed), $\sigma_b = 0 \dots 3.0$
- Agreement $Q, Q_v \leftrightarrow SSIM$ (averaged over 40 images)

Spearman's ρ versus amount of **Gaussian noise**:

- Gaussian noise: $\sigma_n = 0 \dots 0.01$ (normalized intensities: [0, 1])
- Agreement $Q, Q_v \leftrightarrow \mathbf{PSNR}$ (averaged over 40 images)

Spearman's ρ versus amount of **Gaussian noise**:

- Gaussian noise: $\sigma_n = 0 \dots 0.01$ (normalized intensities: [0, 1])
- Agreement $Q, Q_v \leftrightarrow SSIM$ (averaged over 40 images)

Overall correlation: simultaneously varying blur and noise

- 40 ground truth images (DRIVE database)
- 20 levels of Gaussian blur: $\sigma_b = 0 \dots 3.0$
- 20 levels of Gaussian noise: $\sigma_n = 0 \dots 0.01$

Spearman's ρ over the whole experiment:

Full-ref. metric	ho(Q)	$\rho(Q_v)$
PSNR	0.8227	0.8920
SSIM	0.8412	0.9076

 \Rightarrow Higher correlation for proposed Q_v metric

Real Images

High-resolution fundus (HRF) image database (http://www5.cs.fau.de/research/data/fundus-images/) Canon CR-1 fundus camera, 45 degree field of view

- 18 pairs of fundus images: good/bad image per pair (36 images)
- Poor quality due to de-focused camera
- In case of poor quality: acquisition was repeated

Experimental evaluation:

- Quality classification
- Agreement to camera operator

Real Images – Quality Classification

Quality classification implemented as thresholding:

- 2-class problem (class label: y):
 - y = 1 (good quality) and y = -1 (poor quality)
- Decision rule for quality metric x and threshold τ_0 :

$$y = \begin{cases} -1 & x < \tau_0 & \text{(poor quality)} \\ +1 & x \ge \tau_0 & \text{(good quality)} \end{cases}$$

• Comparison:

- Proposed Q_v metric
- Standard Q metric Zhu and Milanfar, 2010
- Anisotropy blind quality metric Gabarda and Cristóbal, 2007
- Cumulative probability of blur detection (CPBD) Narvekar and Karam, 2011

(9)

Real Images – Quality Classification (cont.)

• ROC analysis for different classification approaches:

 \Rightarrow Good performance of Q_v in terms of **area under ROC curve: 88.3 %**

Agreement with Human Observer

• Pair-wise agreement with human observer (good vs. bad image): 16 of 18 pairs (88.9 %)

sharp: $Q_v = 0.0240$

defocused: $Q_v = 0.0017$

Agreement with Human Observer (cont.)

Comparison of pair-wise agreement for different metrics (based on 18 image pairs):

No-ref. Metric	Agreement [%]
CPBD	55.6
Anisotropy	94.4
Q	83.3
Q_{v}	88.9

 \Rightarrow Competitive performance of proposed Q_{ν} metric

Summary and Conclusion

TECHNISCHE FAKULTÄT

Summary and Conclusion

- No-reference image quality metric to quantify noise and sharpness
 Unsupervised approach (opposed to classification-based approaches)
- Quality assessment guided by the blood vessel tree
 ⇒ Reliable quality score for fundus images
 - High correlation to full-reference quality metrics
 - Quality classification: 88.3% area under ROC curve
 - Agreement to human camera operator: 88.9%
- Applications:
 - Numerical score for image noise/sharpness (e.g. auto-focusing)
 - Feature for quality classification

Acknowledgments

The authors gratefully acknowledge funding of the **Erlangen Graduate School in Advanced Optical Technologies (SAOT)** by the German National Science Foundation (DFG) in the framework of the excellence initiative.

Thank you for your attention!