Generating Feature Model from Creative Requirements using Model Driven Design

Fernando Wanderley
Universidade de Pernambuco
Recife - Brasil

Denis Silva da Silveira
Universidade Federal de Pernambuco
Recife - Brasil

João Araujo
Faculdade de Ciência e Tecnologia
Universidade Nova de Lisboa
Lisboa - Portugal

Maria Lencastre
Universidade de Pernambuco
Recife - Brasil
Before Starting...

My apologies for not being with you
Summary

- Brief presentation
- Introduction with the main motivation
- Transformation Approach
- Study Case
- Related Work
- Conclusion and Future Studies
Brief Presentation

- conclusive student of master’s degree in Computer Engineering from the State University of Pernambuco.

- focus on research (agile) requirements modeling

- recent experiences (last 3 years) in deploying software development processes through the IBM Rational platform. (specifically in Analysis and Design by Rational Software Modeling Platform).

- And my apologies for possible mistakes in English.
Introduction

- In SPL development, domain analysis plays a central role where the relevant features are identified.

- Feature-Oriented Domain Analysis is a method which uses a feature model to specify variabilities and commonalities of an SPL.

- Activities related to the Domain Analysis process (managing commonalities and variabilities, with users visibility and relevant stakeholders) in most cases is not simple to represent.
Introduction

- Do not seem to be a simple and easy activity, since to represent these analyzes in modeling domain tools with a certain degree of formality…

- that requires a technical knowledge that domain experts do not always have it prior to use
Motivation

- Creative requirements techniques have been suggested to facilitate the elicitation activity by filling the gap the communications problems between domain experts and software engineers, making the domain analysis more agile...

- So this paper seeks to set out the use of a creative and agile technique for modeling requirements by means of mind maps for cognitive and effective support when building feature models.
Mind Map

A mind map is a diagram used to connect words, ideas and concepts to a central idea or concept; it is used to view, classify, organize concepts, and to generate new ideas (Buzan, 2003).

In this diagram, the elements are ranked intuitively in accordance with the importance of the concepts related to a domain, which are then organized into groupings, branches or areas.
Mind Map

(adapted from Czamecki, 2006)
Central Strategy

MDE Transformations
The Mind Map Role

(adapted from Hiranabe, 2008)
Feature Model

Feature modeling was proposed as part of the FODA method (Kang, 1990), and ended up being applied in other business and domain segments and field (Czamecki, 2005).

The feature model presented in this article refers to the extended FODA model based on cardinalities such as the multiplicities defined in UML models, proposed by Czamecki.
Model-Driven Engineering

Mind Map Model

Feature Model
Mind Map Metamodel
Mind Map Metamodel (Extensions)
Extension Notations

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Extension</th>
<th>Notation</th>
<th>Semantic</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>Mandatory State</td>
<td>!</td>
<td><<yes>></td>
<td>Binary Relationship</td>
</tr>
<tr>
<td>Optional</td>
<td>Optional State</td>
<td>?</td>
<td><<help>></td>
<td>Relationship</td>
</tr>
<tr>
<td>Or</td>
<td>OrStrategy</td>
<td></td>
<td><<list>></td>
<td>Group Relationship</td>
</tr>
<tr>
<td>Alternative</td>
<td>Alternative Strategy</td>
<td></td>
<td><<edit>></td>
<td>Group Relationship</td>
</tr>
</tbody>
</table>
Feature Model Metamodel
Transformation Rules
Rule 1

This rule describes that the central node of a mind map will be related to a root feature of a feature model, with minimum cardinality equal to 1 and the maximum cardinality equal to 1.
Rule 2

- This rule describes the transformation of a group node or a leaf node without the notation of a group relation, and is mapped to a **SolitaryFeature** with a minimum cardinality equals to 0 and a maximum equals to 1.
Rule 3

This rule describes the transformation of a group node or a leaf node without the notation of group strategy and with the notation of a mandatory state, and is mapped for a **SolitaryFeature** with a minimum cardinality equals to 1 and a maximum equals to 1.
Rule 4

In this rule, the transformation is undertaken by identifying the node of the `OrGroup` type characterized by the notation with a semantic `<list>` and is mapped to a `FeatureGroup` group with a group cardinality \([1, \text{sum of features child}]\).
Rule 5

In this rule, the transformation performs a mapping of the node identified by the `AlternativeGroup` strategy and is characterized by the notation, with semantic `<<edit>>` for a `FeatureGroup` with a minimum cardinality equals to 1 and maximum equals to 1.
Tool Support

XML Mind Map File

XML Feature Model File
Study Case

Target Mind Domain Model
Study Case

Target Feature Model
Study Case

<table>
<thead>
<tr>
<th>Rule</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1.</td>
<td>1</td>
<td>The central node TaRGeT was transformed into the root feature TaRGet.</td>
</tr>
<tr>
<td>Rule 2.</td>
<td>12</td>
<td>The node leaves — UseCaseEditor, Monitoring, Interruption, ConsistencyManager, ControlledNaturalLanguage, UCWeight, StepIDTest, AutomaticScriptGeneration, ActiveFlowTest, DataMass, ImportTemplate and TestCentral4_STD were transformed as SolitaryFeatures, with minimum cardinalities equal to 1 and the maximum ones equal to 0.</td>
</tr>
<tr>
<td>Rule 4.</td>
<td>1</td>
<td>The node Input was transformed as FeatureGroup (Or), with a minimum group cardinality equal to 1 and a maximum e maximum equal to 3.</td>
</tr>
<tr>
<td>Rule 5.</td>
<td>6</td>
<td>The group nodes — TestCaseExtractor, Idiom, Environment, Branding, Output and TestGeneration were transformed to FeatureGroup (Alternative), with a minimum cardinality equal to 1 and a maximum equal to 1 (due to all the groups being mandatory) and their children with a minimum cardinality of 0 and a maximum of 1.</td>
</tr>
</tbody>
</table>
Related Works

- Aiming at verifying the relevance of the study, a brief bibliographic survey was conducted, based on the systematic review technique.

- The strings were used in four of the main search portals: IEEE explore, ACM Digital Library, SpringerLink and ScienceDirect.
Related Works

- However, the few studies found were of great relevance, such as the work of Czarnecki, (2006) who states that hierarchized diagrams are suitably applicable to feature models, such as the use of tables and mind maps.

- Another very recent and relevant work that was found, also by Czarnecki, (2012) reports that as domain modeling is performed in the early stage of a design, it is more appropriate that "soft tools" for modeling features such as spreadsheets or mind maps be used.
Conclusion and Future Studies

- The main contribution of this article was simplifying and making the process of feature modeling carried out by domain experts more agile...

- ...by means of proposing the use of a cognitive technique for modeling of requirements - the use of mind maps.

- Another contribution of this paper was the result of transforming the mind map to the feature model without the need of refinements in the final model.
Conclusion and Future Studies

- For future studies are
 - The formalization of the transformation rules carried out with a specific language of ATL transformation ou MOFScript;
 - Extend the rules of transformation that are valid for the dependency relationships - requires and excludes;
 - The evolution of the proposed transformation to a set of rules that can be reused or specialized by the tool, so that, from even a mind map, it may be transformed into valid entries for other feature modeling tools such as FeatureIDE, pure :: variants, and ToolDay
THANKS!
Generating Feature Model from Creative Requirements using Model Driven Design

Fernando Wanderley
Universidade de Pernambuco
Recife - Brasil

João Araujo
Faculdade de Ciência e Tecnologia
Universidade Nova de Lisboa
Lisboa - Portugal

Denis Silva da Silveira
Universidade Federal de Pernambuco
Recife - Brasil

Maria Lencastre
Universidade de Pernambuco
Recife - Brasil