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Abstract 27 

Interacting with others to decide how finite resources should be allocated between parties which may 28 

have competing interests is an important part of social life. Considering that not all of our proposals to 29 

others are always accepted, the outcomes of such social interactions are, by their nature, probabilistic 30 

and risky. Here, we highlight cognitive processes related to value computations in human social 31 

interactions, based on mathematical modelling of the proposer behavior in the Ultimatum Game. Our 32 

results suggest that the perception of risk is an overarching process across non-social and social 33 

decision-making, whereas nonlinear weighting of others’ acceptance probabilities is unique to social 34 

interactions in which others’ valuation processes needs to be inferred. Despite the complexity of 35 

social decision-making, human participants make near-optimal decisions by dynamically adjusting 36 

their decision parameters to the changing social value orientation of their opponents through 37 

influence by multidimensional inferences they make about those opponents (e.g. how prosocial they 38 

think their opponent is relative to themselves).  39 
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Authors’ Significance Statement 52 

Humans are capable of developing sophisticated strategies for negotiating how finite resources should 53 

be distributed between parties with competing interests. This study describes a cognitive model 54 

implementing value computations in risky and uncertain situations, where one’s terms may be 55 

accepted or rejected depending on how others value them. Surprisingly, despite its everyday and 56 

socio-political importance, the evaluation of risk and uncertainty in human social interactions that 57 

involve the distribution of monetary resources has not previously been studied using a computational 58 

framework. In an ecologically valid experimental design, we provide quantitative evidence to suggest 59 

that people make nearly optimal decisions in social interactions, as they would in a non-social value-60 

based decision-making context, and that these decisions are influenced by the human ability to 61 

dynamically adjust the decision parameters, particularly those that depend on how the individual 62 

represents different dimensions of the opponents’ social value orientation. 63 
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Introduction 77 

Using the optimal decision-making strategy in non-social and social contexts is a key challenge of our 78 

everyday life, and from a broader perspective it is closely linked to our survival. Social contexts 79 

demanding optimal decision-making also involve negotiating with others over terms which might result 80 

in fair or unfair resource distributions (1-4). A common psychological observation would suggest that the 81 

optimal strategy in such social interactions (such as the Ultimatum Game(1, 3), or the Prisoner’s 82 

Dilemma(5)) should consider how others will perceive the extent of our cooperative/competitive 83 

intensions. This is a task that requires simulating others’ valuation processes. However, because our 84 

knowledge of other people’s state of mind is limited, we might miscalculate their reactions. As a result, 85 

the proposals that we make are not always accepted. In other words, the outcomes of social 86 

interactions which involve the distribution of resources between two parties are inherently probabilistic 87 

and risky. This implies that there should be a degree of overlap between cognitive models which 88 

account for economic decision-making under uncertainty (6) and those which can capture human 89 

behaviour in social interactions. However, there is limited work on computational models of value-based 90 

decision-making in social contexts, and it is not known whether similar approaches are used across non-91 

social and social situations. 92 

Previous theoretical work demonstrated that it is possible to sustain mutual cooperation even when 93 

resources are distributed unfairly between two individuals (7). Using the example of a simple social 94 

economic game (i.e. Prisoner’s Dilemma), Press and Dyson demonstrated that in order to sustain mutual 95 

cooperation under unfair conditions, the player who aims to establish favourable terms for himself still 96 

needs to give enough incentive to his opponent. Thus, the player needs to have good understanding of 97 

the opponent’s underlying value function to predict at which stage the opponent might change her 98 

strategy and stop cooperating. In this context, human social interactions have an intrinsic element of 99 

risk and uncertainty; one side setting the terms of interpersonal cooperation should consider the other 100 

side’s rejection possibility (i.e. proposer behaviour in the Ultimatum Game). Additionally, with any move 101 

that the player makes towards maximising his own payoff by offering conditions that are not in harmony 102 

with the valuation of the opponent, the player risks entering a domain where the opponent’s rejection 103 

probability increases. These conditions highlight a social interaction scenario in which a player who is 104 

interested in maximizing his payoff needs to make value-based decisions while incorporating his 105 

opponent’s rejection probability (e.g. the Balloon Analogue Task(8) in value-based domains; or the 106 
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proposer behaviour in the Ultimatum Game(3) in social decision-making domains). However, value 107 

computations in such social interactions have not been studied experimentally or quantitatively. 108 

Here, we designed a behavioural experiment to capture these decision-making processes. We focused 109 

on human participants’ Ultimatum giving behaviour and used this common behavioural economic 110 

measure as an experimental probe of how humans tackle resource distribution problems. Our primary 111 

aim was to construct a formal cognitive model that can account for how others’ valuation processes are 112 

integrated to self-decision values during social decision-making. To do so, we tested the degree to which 113 

participants utilise computational models that integrate outcome probabilities and reward magnitudes 114 

into expected values. In the context of acting as proposers in the Ultimatum Game, expected value 115 

computations would require integrating the inferred acceptance probability of one’s opponent with 116 

potential self-reward magnitudes (see Materials and Methods for mathematical definitions). Although 117 

computational models of decision-making under uncertainty are relatively well established (9), it is not 118 

known how well social decision-making models with a comparable structure can account for human 119 

behaviour during social interactions.  120 

In order capture the necessary components of a value-based decision-making model experimentally (i.e. 121 

outcome probabilities and reward magnitudes), we asked participants to: (i) learn the underlying value 122 

functions of two distinct computerised agents with different Social Value Orientations (SVOs
1,2

; one 123 

prosocial, the other individualistic; categorically defined with respect to their degree of prosociality) by 124 

observing their Ultimatum acceptance preferences (see Fig. 1 and legends for the experimental design); 125 

and (ii) transfer this information to make value-based decisions between one of two Ultimatum offers to 126 

be given to agents whom they have observed in the learning sessions. Furthermore, in order to test the 127 

prediction that value computations may be modulated differently across non-social and social contexts, 128 

we used a probabilistic value-based risk decision-making paradigm as a control condition (Fig. 1). Our a 129 

priori prediction was that, unlike a stable preference usually seen in non-social contexts, people exhibit a 130 

dynamic adjustment in social contexts, which allows them to adapt their behavioural strategies to the 131 

changing characteristics of their opponents. 132 

 133 
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 136 

Fig. 1. Details of the experimental paradigms. In total participants completed 700 trials: 100 trials in task A, 360 trials in task 137 
B and 240 trials in task C. (A) Outline of the baseline risk decision-making task, where participants’ risk perception in a non-138 
social context was evaluated. (B) Participants completed two observational social-learning sessions (represented by the 139 
schematic blue eye observing the Ultimatum Game interaction), where they were asked to predict the Ultimatum 140 
acceptance preferences of two social agents with different Social Value Orientations (SVO) who were responding to offers 141 
coming from different anonymous individuals, blue, individualistic; orange, prosocial agent (colour coding is consistent in all 142 
subsequent figures). (C) Following the observational social-learning sessions, participants completed a social decision-making 143 
experiment in which they were asked to give Ultimatum offers to those social agents from a binary selection. (D) Outline of 144 
the control social decision-making task administered to an independent cohort, in which the social agents’ acceptance 145 
probabilities (shown inside square brackets) were given explicitly alongside the Ultimatum offers. All tasks were self-paced. 146 
UG, Ultimatum Game; DM, decision-making. 147 
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Results 159 

Social Learning Session. Participants were able to predict the Ultimatum acceptance preferences of 160 

social agents with different SVOs ~ 70% correctly. Prediction accuracy was significantly higher than 161 

random guessing for both social agents (Fig. 2A; t-tests from 0.5; all t>22; p<0.001, Bonferroni 162 

corrected). Participants were able to predict the decisions of the prosocial agent significantly more 163 

frequently than the individualistic agent (t=-9.94; p<0.001). Participants’ prediction accuracy closely 164 

followed the subjective valuation of the social agents: predictive accuracy was low around the 165 

indifference point of the agents’ subjective valuations ( 0v =% ) and increased whenever the subjective 166 

valuation of the agents was either very negative or positive (Fig. 2B).   167 

 168 

                    Fig. 2. Summary of results from the observational social-learning session. (A) Participants’ prediction accuracy was 169 
significantly higher than random guessing and higher for the prosocial agent relative to the individualistic agent (*** P<0.001, 170 
error bars show SEM). (B) Prediction accuracy followed the subjective valuation of the social agents, irrespective of their 171 
SVOs. (C) Encoded value functions were highly and significantly correlated with the social agents’ actual value functions 172 
(r>.97, P<0.001), and had non-linear properties. (D) Participants SVOs calculated on the basis of their decisions in the 173 
learning sessions had significantly different distributions than their SVOs measured by the Triple Dominance Measure 174 
(D>0.60, P<0.001), suggesting participants actively made decisions which are not in accordance with their SVOs to learn 175 
about these social agents. 176 

The decisions of the computerised social agents were generated by a model which was derived from the 177 

SVO framework ((1); also see Materials and Methods). We fitted the same generative model to the 178 

participants’ predictions in the learning session to estimate the inference of their opponents’ value 179 

function ( Aq% ). The encoded value functions estimated from the learning session ( Aq% ) correlated highly 180 

and significantly with the agents’ actual value functions ( Aq ; all r(49)> .97, all p<0.001, Bonferroni 181 

corrected, see Fig. 2C). This learning model had significantly better fitting relative to a model that has 182 

the same number of parameters but makes random predictions in terms of –log likelihood values (t-test 183 

from 0.69; all t<-81, all p<0.001, Bonferroni corrected) for both social agents. The pseudo-R
2
 values (

2R ; 184 
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adjusted for the sample size and the number of free parameters(10, 11)) of the model were 0.233 and 185 

0.378 for the individualistic and the prosocial agents, respectively. McFadden (1974) suggests that
2R186 

values between 0.20 and 0.40 indicate highly desirable model fitting. Plots of the encoded value 187 

functions against the actual value functions revealed non-linear properties (Fig. 2C). The best fitting 188 

learning model also had significantly better fitting relative to two alternative reinforcement learning 189 

models which were fitted to the participants’ behaviour in the learning sessions (see Materials and 190 

Methods, all F2,147>168, all p<0.001, Bonferroni corrected). The model also predicted human behaviour 191 

significantly better relative to a Bayesian Ideal Observer model that can track social agents’ acceptance 192 

probabilities over a numerical grid of self and other reward magnitudes (mean predictive accuracy of the 193 

Ideal Observer model across both learning sessions: 78.9% vs 63.3%; main effect of learning model, 194 

F(1,98)=283.59, p<.001). 195 

A comparison between participants’ SVO in terms of degrees, as measured by the SVO Slider Measure(2) 196 

and based on participants’ choices in the learning sessions, suggested that participants should be 197 

making predictions actively to encode the preferences of the computerised agents (i.e. not choosing for 198 

oneself; 2-sample Kolmogorov-Smirnov tests, all D>0.62; all p<0.001, Bonferroni corrected; see Fig. 2D). 199 

Similarly, the distribution of participants’ SVO based on participants’ predictions in the learning sessions 200 

was significantly different between the individualistic and prosocial agents (D= 0.28; p=0.03), suggesting 201 

that participants relied on different predictions to learn about their opponents’ underlying value 202 

functions. 203 

We were also interested in understanding the participants’ affective reactions to these social agents. In 204 

order to address this issue, after each learning session, we asked the participants to rate the imagined 205 

personalities of these social agents on a number of different domains. The domains were related to 206 

social constructs such as the SVOs of the social agents and how much the participants would like the 207 

agent in real life. Responses to these questions (please see Fig. S1A legends) showed that the prosocial 208 

agent was rated consistently higher relative to the individualistic agent, which conforms to the general 209 

intuition that prosocial individuals would be regarded more positively in real life (2x4 multivariate 210 

ANOVA showing main effect of agent F3,294 =3.01, p=0.03 and main effect of the interaction term F3,294 211 

=10.163, p<0.001; see Fig. S1A). Particularly the participants’ responses to Q3, in which we asked how 212 

many people they know in real-life who behave similarly to the computerised agents whose decisions 213 

they observed, suggests that our experimental manipulation successfully mimicked interactions with 214 
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real human opponents (1-sample t-test relative to 0 (i.e. computerised agents’ decisions do not 215 

resemble any people the participant knows); all t>13; all p<.001, Bonferroni corrected).  216 

Value-based Decision-Making. All participants completed a value-based risk decision-making 217 

experiment in which they were asked to choose between 2 probabilistic gambles (see Fig 1A for the task 218 

screen). We used this experiment as our control condition to evaluate the degree to which value-based 219 

decision-making models account for human behaviour in both non-social and social settings. Model 220 

selection based on group-wise sum of BIC (Bayesian Information Criterion) scores suggested that the 221 

best fitting model to participant choices was the one with a power utility parameter that modulates the 222 

reward magnitudes and integrates the magnitudes with outcome probabilities to compute the expected 223 

value difference between available options (see Model 3 in Supplementary Materials and Methods for 224 

mathematical descriptions). The best fitting model in the value-based risk decision-making experiment 225 

had a –log likelihood value of 0.242/trial and group-wise sum of BIC score of 2699.  226 

We also considered that accumulated winnings over time might have an influence on participants’ 227 

choice behaviour. To evaluate this possibility, we included an additional free-parameter to the best 228 

fitting model to account for the influence of accumulated wealth down the trials. However, this model 229 

did not improve the model fits any further, and the value of the added free-parameter (linearly scaling 230 

accumulated winnings) approached zero (mean±SD=1.682x10
-4

 ± 5.056x10
-4

), suggesting accumulated 231 

winnings may not have profound influence on participants’ choice behaviour. 232 

Social Decision-Making. Upon completion of the learning sessions, our participants progressed with the 233 

social decision-making experiment(s), where they interacted with these social agents by making 234 

Ultimatum offers for 120 trials against each opponent (see Fig. 1C for task screen).  235 

After each social decision-making block, participants were asked to rate how much weight they put on 236 

other’s inferred acceptance probability and/or their self-reward magnitudes while making decisions (on 237 

a scale from 0 to 10). Here, a rating of 0 would refer to making decisions only based on inferred 238 

acceptance probabilities; a rating of 10 would refer to relying solely on self-reward magnitudes; and a 239 

rating of 5 would mean their equally weighted integration. In accordance with our predicted value-240 

based social decision-making model (i.e. making offers based on the expected value difference), our 241 

participants reported that they considered both the other’s inferred acceptance probabilities ( Aq% ) and 242 

how much they would win if their offer is accepted (i.e. self-reported integration weights were 243 

significantly different than relying on either self-reward magnitudes or encoded acceptance 244 
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probabilities; all p<0.001, Bonferroni corrected, see Fig. 3A). However, the self-reported integration of 245 

these decision variables while making the offers was significantly different than an integration with 246 

equal weighting (i.e. participants reported putting more weight on inferred acceptance probability ( Aq% ), 247 

all t>10.46; all p<0.001, Bonferroni corrected). Furthermore, there were no significant differences 248 

between the integration weights reported for the prosocial and the individualistic agents, suggesting 249 

that our proposed value-based social decision-making model should apply irrespective of the 250 

opponents’ SVO (also in Fig. 3A).    251 

 252 

Fig. 3. Participants’ self reported value integration and model selection in the social decision-making experiment. (A) In line 253 
with our proposed model, participants reported that they considered both their self-reward magnitudes and others’ inferred 254 
acceptance probabilities. Mean of bars are highly and significantly different than 0 (only consider inferred acceptance 255 
probability, i.e. QLA) and 10 (only consider self-reward magnitude, i.e. RO; all P<0.001). Self-reported integration weights 256 
were comparable against the prosocial and the individualistic agents (n.s: not significant, error bars show ±SEM). (B) Model 257 
selection based on Bayesian posterior probability weights recommends Model 9 (longer bars indicate better fitting), which 258 
computes the expected value difference between the offers by making use of the power utility and the probability weighting 259 
function.  (C) Participants’ SVOs calculated on the basis of their decisions in the Ultimatum giving experiments were 260 
distributed significantly differently than the distribution of their actual SVOs in real-life (all D>0.26; all P≤0.056). The vectors 261 
of the SVOs were calculated based on the chosen options and did not correlate with the participants’ actual SVO as assessed 262 
by the Slider Measure (all P>0.32). 263 

Model fits (see Supplementary Materials and Methods for mathematical descriptions) revealed that the 264 

best fitting social decision-making model was the one which modulated the other’s inferred acceptance 265 

probabilities ( Aq% ) nonlinearly by a probability weighting function and integrated this information with 266 

self-reward magnitudes modulated by a power utility parameter that captures participants’ risk attitude 267 

(i.e. Model 9; see Fig. 3B). In Social Decision-Making Model 10, we used participants’ self-reported 268 

integration weights (as in Fig. 3A) as an additional parameter to allow unequally weighted integration of 269 

the perceived probabilities and reward magnitudes. Bayesian posterior probability weights based on the 270 
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group-wise sum of BIC scores suggested that Model 10, along with others which mainly rely on either 271 

reward magnitudes or inferred acceptance probabilities could not account for the participants’ choice 272 

behaviour. A complementary Bayesian Model Selection approach also favoured the best fitting model 273 

(i.e. Model 9), which had greater exceedance probability than the second-best model (0.73 vs 0.19). 274 

One might argue that our approach to modelling participants’ choices in the social decision-making task 275 

neglects any learning which might happen in parallel during this stage. If learning continues to take place 276 

during the social decision-making period, the predictive accuracy of our model, which considers the 277 

inferred acceptance probability ( Aq% ) solely based on the learning session, should gradually decay down 278 

with increasing trials. In order to investigate this possibility, we segmented the trials in the social 279 

decision-making task into three temporal sections: early (1-40); middle (41-80); and late (81-120) trials 280 

and compared the predictive accuracy of our model across these sections. This control analysis showed 281 

that model predictions were highly stable (all F2,147 <0.31; all p > 0.73), suggesting that any additional 282 

learning which might take place during the decision-making period would not have a profound effect on 283 

the inferred acceptance probabilities participants used to compute the expected value of offers. 284 

Further analysis done by comparing participants’ SVOs calculated on the basis of the offers participants 285 

made in the Ultimatum Game versus their SVOs measured by the Slider Measure suggested that the 286 

SVOs were distributed significantly differently (Kolmogorov-Smirnov tests; all D>0.26, p≤ 0.056, 287 

uncorrected; see Fig. 3C). These numerical values (i.e. the SVOs calculated based on Ultimatum offers 288 

versus the values from the Slider Measure) were not correlated either (-.141< r (49)<-.035, 0.32< p 289 

<0.81). In tandem, these results limit the possibility that, in the social decision-making experiments, 290 

participants performed using other cognitive models related to the SVO framework that we did not 291 

consider; and lend further support to our prediction that participants used a cognitive model with a 292 

structure similar to value-based decision-making under risk and uncertainty.  293 

Modulation of value-based decision-making in non-social and social settings. So far, the main 294 

difference between non-social and social decision-making experiments is that during social decision-295 

making, people are engaged with additional cognitive processes which involve nonlinear probability 296 

weighting to compute the expected value difference between the options they face (i.e. the differences 297 

between Models 3 (non-social) and 9 (social)).  298 

Although inferred probabilities used in the social decision-making task reflects the true nature of social 299 

interactions in everyday life (i.e. one can never know the exact numerical values of the other’s 300 
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acceptance probabilities), it is important to point out that there were structural differences between the 301 

value-based risk decision-making experiment, where the probabilities were given explicitly, and the 302 

social decision-making experiment, where the probabilities were experience-based (i.e. inferred). In 303 

order to understand the degree to which such differences determined the best fitting model, we 304 

conducted an additional control experiment in an independent cohort (n=19; 63.2% males; [mean±SD] 305 

age: 21.3±1.9; SVO:27.8±15.1), in which participants completed all value-based decision-making and 306 

social-learning tasks as before, but were shown the opponents’ acceptance probabilities explicitly in the 307 

social decision-making sessions (Fig 1D). The number of participants were relatively lower in the control 308 

experiment. Nevertheless, the effect sizes to detect between-group differences were still high (based on 309 

the simple behavioural results reported in Fig 2A; main experiment Cohen’s d=1.41; control experiment 310 

Cohen’s d=1.22).  311 

The explicit presentation of others’ acceptance probabilities led to a number of differences. First of all, 312 

participants were able to accumulate higher monetary earnings in this condition (main effect of explicit 313 

probabilities (F(1,67)=3.231, p=.077), indicating a marginally more optimal, but not statistically 314 

significant, expected value difference computation. As one might expect, the best fitting model was 315 

analogous to the one which accounts for the best choice behaviour by the participants in the non-social 316 

value-based decision-making experiment (i.e. integrating explicit probabilities with reward magnitudes 317 

modulated by a power utility parameter). This means that value computations which involve nonlinear 318 

probability weighting are unique to social interactions in which the others’ valuation processes are 319 

inferred, whereas power utility modulation of reward magnitudes accounting for people’s risk attitudes 320 

is an overarching process across non-social and social contexts. 321 

In the next step we wanted to further decompose the differences between value-based decision-making 322 

in non-social and social contexts. To begin with, we conducted a model-free analysis of the participant’s 323 

choices by analysing the proportion of risky decisions made in each domain, focusing on the trials where 324 

participants were asked to choose between low probability-high magnitude and low magnitude-high 325 

probability options. This analysis revealed that the frequency of risky choices, after controlling for the 326 

number of trials meeting the criteria described above, was not significantly different across non-social 327 

and social domains (Fig. 4A; F2,147=3.263, p=0.073, Bayes factor for group differences BF10=0.516).  328 
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 329 

Fig. 4. Risk decision-making across non-social and social domains. (A) Proportion of risky decisions made in each domain was 330 

not significantly different (P=0.07). Parameter estimates modulating the participants gains ( OR ) in each domain: (B) value-331 

based risk decision-making; (C) Ultimatum giving against the Individualistic opponent; (D) Ultimatum giving against the 332 
Prosocial opponent. In panels B~D, upper panels show the power utility curves for risk-seeking preferences, whereas the 333 
lower panels show risk-averse preferences. Thin lines with the same [R,G,B] colour coding specify each subject’s power 334 
utility curve, and thick lines in black, blue and orange colours show the population means for each domain, where we 335 
observed a pronounced risk aversion across all domains (P<.001, Bonferroni corrected). 336 

By estimating the power utility parameters separately for the value-based risk decision-making 337 

experiment (i.e. the non-social context) and the two Ultimatum giving experiments against different 338 

social agents (i.e. social context), we were able to show that on average our participants displayed a 339 

pronounced risk aversion across all domains (all p<0.001, Bonferroni corrected relative to risk neutrality340 

1ρ = , see Fig. 4B-D for power utility curves). These parameters were estimated separately in each 341 

domain and correlated significantly with the proportion of risky decisions the participants made in those 342 

domains (all r(49) > .421, all p<.0024, Bonferroni corrected for pairwise comparisons). Although our 343 

participants were slightly more risk-seeking against the individualistic agent, this difference was not 344 

significantly higher (p=0.638, see Fig. S2), supporting our a priori prediction at the population level that 345 

people should not be acting in a consistently risk-seeking manner against one type of social agent. 346 

The power utility parameter estimates from the non-social value-based experiment were not 347 

significantly correlated with the estimates from the social decision-making experiments (all r(49)<.27, all 348 

p>.06, Bonferroni corrected). Furthermore, power utility parameters were not correlated within the 349 

social decision-making domain either (r(49)=.20, p=.173), indicating that people may have an 350 

independent risk attitude in social interactions. However, in sharp contrast to these findings, the risk 351 
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parameters were significantly correlated when the others’ acceptance probabilities were given explicitly 352 

(r(18)=.55, p=.015).  353 

A mostly comparable picture emerged for the probability weighting parameters estimated from the 354 

Ultimatum giving experiments (Fig 5). Despite individual variability, parameter estimates were not 355 

significantly different than M=1 at the population level (i.e. where M=1 describes the diagonal line where 356 

the actual and perceived probabilities are equal; all p>.06) and the population mean of these estimates 357 

were comparable between individualistic and prosocial agents (p>.91). However, within-subjects 358 

correlation for the probability weighting parameters was not significant (r(49)=-.065, p=.65), indicating 359 

that probability weighting in social decision-making is not a hardwired trait applicable to different 360 

scenarios, but rather adaptive to the changing characteristics of one’s opponents.  361 

 362 

Fig. 5. Probability weighting in social decision-making (based on log2 functional form). At the population level, parameter 363 
estimates (thick blue and orange lines showing the population mean) were not significantly different than 1 (diagonal dashed 364 
lines where the actual and perceived probabilities are equal; all p>.06), and these estimates were statistically comparable 365 
between individualistic and prosocial agents (p>.91). In both panels, thin lines with the same [R,G,B] colour coding specify 366 
each participants’s probability weighting curve. 367 

Intriguingly, the individual variability observed for the power utility and the probability weighting 368 

parameters mostly converge at the population level, and choice probability curves suggest that human 369 

participants make nearly optimal decisions in giving Ultimatum offers as they make non-social value-370 

based decisions under uncertainty (Fig. 6). 371 
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  372 

Fig. 6. Choice probability curves across non-social and social decision-making shows that human participants can make nearly 373 
optimal decisions while giving Ultimatum offers as they would in a non-social context (i.e. value-based risk decision-making, 374 
Fig 1A). X-Axis shows the value difference between each option computed according to Model 1 (Eq. 5). 375 

The preceding analyses of the parameter estimates and choice probability curves suggested that human 376 

participants show a degree of adaptation during social decision-making which allows them to make 377 

nearly optimal decisions as they would in a non-social setting. Next, we wanted to explain the “social” 378 

risk and probability weighting parameters estimated from our Ultimatum giving experiments by a 379 

number of predictive variables to evaluate the extent to which people’s decision parameters are 380 

influenced by social variables describing degrees of prosociality. Our hypothesis was that people’s 381 

decision parameters in social interactions should depend on their SVO; their inference about the SVO of 382 

their opponents ( SV O% ; including one’s uncertainty about this estimate); and how prosocial they think 383 

their opponent is relative to themselves. Here, the relative prosociality term (i.e. difference between self 384 

and other) allows us to model the extent of the parameter adjustment in social interactions, particularly 385 

in situations where people judge their opponents to be more or less prosocial than themselves. To test 386 

this prediction, we constructed two multiple linear regression models with these predictive variables: 387 

0 1 2 3 4[ , ] * * * *( )S S S SSVO SVO SVO SVO SVOμ σ μρ γ β β β β β ε= + + + + − +% % %   388 

where[ , ]Sρ γ are the risk and the probability weighting parameters, respectively, estimated 389 

separately from the Ultimatum giving experiments, and { },S i p∈ defines whether the opponent is 390 
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individualistic or prosocial. Here, it is important to point out that participants’ inferences about their 391 

opponent’s SVO (
SSVO% ) depend on their encoded value function ( Aq% ) from the learning sessions, which 392 

has a stochastic nature (i.e. a sigmoid function). In order to get the best estimate of the opponent’s 393 

inferred SVO in degrees, we ran the learning model with each participant’s estimated parameters 394 

through the learning stimuli 1000 times per participant per social agent and calculated the resulting 395 

SVOs in degrees (see Fig. S3A). We used both the mean ( μ )  and the standard deviation (σ )  of the 396 

distribution of calculated SVOs from these 1000 simulations as the best estimate of the opponent’s 397 

inferred SVO and the participant’s uncertainty about this estimate, and included these scalar values for 398 

each participant in our regression model (see Fig. S3B and legends).  399 

To control for potential outliers in the population, we performed a leave-one-out cross-validation 400 

procedure and repeated the described multiple linear regression analysis. Further analysis which was 401 

done on the regression coefficients by performing 1-sample t-tests from baseline, suggested that the 402 

uncertainty term has an overarching influence on both the social risk and probability weighting 403 

parameters (all |t(49)|>5.02, all p<.001), whereas one’s own SVO uniquely contributed to one’s risk 404 

attitude only in social interactions with an individualistic opponent (t(49)=-9.66, p<.001; all Bonferroni 405 

corrected, set level for the p-value is 0.003 for 16 comparisons, see Fig.7).  406 

 407 
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Fig. 7. Parameter estimates 1 4{ ... }β β from two leave-one-out cross-validated multiple linear regression models accounting 408 

for the social risk and probability weighting parameters (y-axis in panels A and B, respectively). Variables in the x-axis refer 409 

to those described in the main text: SVO, participants’ Social Value Orientation; Inferred SVO, SVOμ
% ; Uncertainty, SV O σ

% ;  410 

Inferred SVO-Self SVO, ( )SVO SVOμ −% . Apart from the effect of SVO on the power utility parameter for the prosocial 411 

agent (orange bar in panel A), all regression coefficients are significant (Bonferroni corrected, set level 6x10
-5

). 412 

Finally, we wanted to provide a complementary model-free validation of the linear regression model, 413 

which showed that the variables that describe the participant’s and the opponent’s degree of 414 

prosociality influence how people adjust their risk attitudes in social interactions (see Fig 7A). If our 415 

approach is correct, participants’ frequency of choosing risky options (see Fig 4A), the risk parameters (416 

ρ ) estimated from the Ultimatum giving experiments, and the predictions of the model described 417 

above should line-up reasonably along the diagonal of this 3-dimensional parameter space. Subsequent 418 

analysis conducted on these 3 variables suggested that the predicted risk parameters were significantly 419 

correlated with both the estimated risk parameters and the participants’ frequency of choosing risky 420 

options in the Ultimatum giving experiments (all r(49)>.383, all p<.006, Bonferroni corrected for 6 421 

comparisons, see Fig. S4 and legends), providing converging evidence that supports of our model. 422 

Response Times. Visual inspection of response time (RT) histograms suggested that RTs have a skewed 423 

distribution that violates the normality assumption. Following the recommendation of Whelan 2008 424 

(12), we analysed the distribution of RTs across three domains (i.e. risk decision-making, social learning 425 

and social decision-making). Distributions were comparable within social learning and decision-making 426 

domains (Kolmogorov-Smirnov tests; all D≥0.12, all p>.50).  427 

In a complementary analysis, we excluded data from 5 participants which were clear outliers. We 428 

transformed the concatenated data using a Box-Cox transformation (13) implemented in MATLAB. 429 

Overall, there was a significant main effect of the experiment type (i.e. risk decision-making, social 430 

learning and social decision-making) on RTs (F(2,222)=22.623, p<.001). RTs in the social decision-making 431 

experiments were significantly longer than those in the social-learning experiments (t(178)=6.576, 432 

p<.001), highlighting the suitability of the value-based risk model applied to the social decision-making 433 

context, where we predicted that our participants should integrate their opponents’ inferred acceptance 434 

probabilities with their self-reward magnitudes while making Ultimatum offers. The RTs were 435 

comparable both within the social learning and decision-making experiments between individualistic 436 

and prosocial agents (all t(88)<.141, all p>.164 ; Fig. 8). 437 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/100313doi: bioRxiv preprint first posted online Jan. 13, 2017; 

http://dx.doi.org/10.1101/100313
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 438 

Fig. 8. Response times across all experimental sessions. Response times between 3 domains were significantly different. 439 
Response times were longer in the social decision-making experiments relative to the social-learning experiments (*** 440 
P<0.001). Across social-learning and social decision-making experiments, there were no significant differences between 441 
prosocial/individualistic conditions.  442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 
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Discussion: 455 

In line with our prediction, the present results suggest that in social interactions which involve resource 456 

distributions between two individuals, people employ a cognitive model which shares properties with 457 

well-established computational models of value-based decision-making under uncertainty (14-16). 458 

However, unlike risk decision-making paradigms in which probability and reward information is usually 459 

given explicitly (17-20), in social interactions people need to infer others’ valuation processes (Fig. 2C) in 460 

order to make value-based decisions (21). Here, we showed that risk perception is an overarching 461 

process across non-social and social domains, whereas cognitive processes related to probability 462 

weighting are unique to social interactions in which the opponent’s valuation processes needs to be 463 

inferred. Even though social interactions demand higher-level cognitive inferences, human participants 464 

manage to make decisions nearly optimal decisions, as they would in a non-social context (Fig. 6). This 465 

near-optimal decision-making is achieved by people’s ability to adjust their decision parameters 466 

adaptively to the changing characteristics of their opponents (Fig. 7 and Fig. S4). The independence of 467 

risk and probability weighting parameter estimates within each domain are particularly important, 468 

because with a careful sequencing approach similar to a gradient decent, we were able to minimise the 469 

correlation between decision variables (22) over 2x10
6
< iterations, and make the face values of the 470 

reward distributions in the Ultimatum giving experiments identical for both opponents (i.e. 471 

prosocial/individualistic social agents, where the order of presentation was randomised for each subject 472 

and for each type of opponent). Our experimental design required participants to utilise their 473 

opponent’s encoded value function to compute the expected value difference between two options that 474 

were only cued by the colour of the icon representing their opponents (Fig. 1C). This approach 475 

minimises the possibility that within-subject differences in risk and probability weighting parameters 476 

(Fig. 4) were due to differences in the numerical components of the stimuli. In a control experiment, we 477 

further demonstrated that having an independent risk attitude is unique to situations which mimic real-478 

life social decision-making, where people need to infer their opponents’ acceptance probabilities. 479 

In mainstream economics and finance, people’s risk preference is often regarded as a hard-wired trait. 480 

However, a number of recent studies have suggested that risk parameters may be subjected to 481 

influence after observing others’ decisions performed in the same context(23-25), challenging this view. 482 

Here, by focusing on social interactions, we provide evidence to suggest that even in the absence of 483 

observations of comparable decisions as used by these previous studies (23-25), people’s risk-484 

preferences may be subject to change in a social context depending on the nature of the social 485 
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interaction they are engaged in. While the impact of social framing on risk-preferences has previously 486 

been investigated in the context of the Trust Game, where outcome probabilities were explicitly stated 487 

(26), to the best of our knowledge the present study is the first to describe the value computations 488 

underlying how human participants choose between Ultimatum offers where the outcome probabilities 489 

are directly related to inferences about the value functions of opponents.  490 

It is worthwhile to emphasise that our experimental design did not have any element of observing 491 

others’ risk preferences. Instead, as we have shown, we anticipated that the perception of risk should 492 

emerge naturally due to the fact that the outcomes of these social interactions were probabilistic. We 493 

propose that “social” decision parameters may be adaptive to accommodate different interpersonal 494 

negotiation scenarios. Our subsequent multiple linear regression analyses (Fig. 7) provide evidence to 495 

support this claim, considering that key social variables related to human prosociality make differential, 496 

but mostly significant contributions to fine-tune risk (Fig. 4) and probability weighting (Fig. 5) 497 

parameters irrespective of the opponent’s SVO. Although designing two different computerised social 498 

agents increased our experimental difficulty in terms of number of the trials our participants needed to 499 

complete (t=700), it also allowed us to reveal these overarching contributions, which we think are very 500 

important for developing cognitive/computational models of social interactions.  501 

It is necessary to comment on why we decided against the inclusion of a “competitive” agent (based on 502 

the definition of Murphy et. al) in our experimental design. Previous studies with relatively large sample 503 

sizes investigating SVO in the population showed that the population density of competitive individuals 504 

are only around 9% (27). Furthermore, people with competitive SVO are driven by achieving superiority 505 

over others, which limits them to only accept offers that satisfy this superiority criterion, making their 506 

underlying value function unsuitable for probing risk perception in social interactions. Additionally, the 507 

inclusion of a “competitive” agent would require our participants to complete at least an additional 300 508 

trials (across social learning and decision-making sessions), making it feasibly difficult to achieve. 509 

Considering that in our cohort participants’ SVOs and participants’ inferences about the SVOs of their 510 

opponents showed a healthy degree of variability and focusing on each pairwise combination (n=100, 511 

see Fig. S5), we think our proposed model suitably meets the generalisability criteria to account for 512 

value computations in the many different social interactions that occur in real life.  513 

Our study also has implications for understanding interactions in the Ultimatum Game, where the wide 514 

majority of the previous literature focused on responders’ behaviour (3, 28-33). In our study, the 515 

participants were explicitly instructed to treat the binary options they were presented with like thoughts 516 
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in their mind, such that they knew their opponents can only see the chosen offer and can never know 517 

whether the unchosen option was better or worse. The structure of our experiment which allowed our 518 

participants to make offers from a binary selection complements previous Ultimatum Game studies 519 

where responders were commonly asked to make decisions about a single offer per trial.  Under these 520 

conditions, a power utility parameter modulating self-reward magnitudes and a probability weighting 521 

parameter modulating other’s inferred acceptance probabilities described the best fitting model to 522 

participants’ choice behaviour (Fig. 3B). Participants’ self-reporting also suggested that both the self-523 

reward magnitudes and the others’ inferred acceptance probabilities need to be considered while 524 

making Ultimatum offers (Fig. 3A). To the best of our knowledge, the current study is also the first to 525 

address value computations underlying Ultimatum giving, and it provides evidence to suggest that 526 

proposers’ do not solely rely on responders’ acceptance probabilities, but make offers based on their 527 

expected value. Based on these findings, we recommend that future cluster(34) or hyper-scanning(35) 528 

studies of Ultimatum bargaining in neuroeconomics should consider computational models which 529 

explicitly parametrize participants’ risk and probability weighting preferences. 530 

Finally, although the social-learning session was not our main focus in this work, we showed behavioural 531 

computational evidence to suggest that our participants could suitably transfer the encoded value 532 

functions of others from one (learning) environment (i.e. observing social agents’ responses to singular 533 

Ultimatum offers) to another in which they were asked to solve an optimal social decision problem (i.e. 534 

making Ultimatum offers from binary options). We showed evidence to suggest that human learners do 535 

not represent their opponents in terms of large numerical self and other reward grids to encode their 536 

value functions like a Bayesian Ideal Observer model would do. As a result, in the context of our current 537 

experiment, a simpler social value orientation model predicted human social learning behaviour better. 538 

These results are mostly in line with previous learning literature which put forward Bayesian Ideal 539 

Observer models to reveal hidden parameters of a generative process (e.g. estimated outcome volatility; 540 

Behrens et al., 2007, Browning et al., 2015, Pulcu and Browning, 2017) but do not necessarily predict 541 

participant choice behaviour better than simpler learning models. We think that our behavioural study 542 

highlights the need for further research in three main streams, ideally involving functional magnetic 543 

resonance imaging (fMRI): (i) what are the regions involved with neural computations underlying how 544 

people transfer the encoded value functions of their opponents in social interactions; (ii) what are the 545 

neural mechanisms responsible for tracking the value functions of opponents with different SVOs; and 546 

(iii) which brain regions encode the estimated trial-by-trial variability in the social risk and probability 547 

weighting parameters.    548 
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Materials and Methods 573 

Participants. In total 50 healthy individuals (54% males) who reported no history or current neurological 574 

or psychiatric disorders, or use of any psychotropic medication were recruited from the general 575 

population. The average age of this cohort was 31.5 (range: 20-56 years; STD=±9.49). On average the 576 

participants had 16 years of education (STD= 2.1 years) and reported annual income of 1.91 million 577 

Japanese Yen (STD=1.71 million Yen). This cohort was recruited from the general population with a 578 

convenience sampling approach and contained a higher percentage of prosocial individuals (n=29 vs n=5 579 

individualistic participants according to the categorical classification of the SVO Triple Dominance 580 

Measure(36) which penalises inconsistent responses). 581 

Experimental Procedures. The study took place at the Center for Information and Neural Networks 582 

(CiNet) and was approved by the CiNet Research Ethics Committee. Participants who met the inclusion 583 

criteria were given an appointment for the behavioural experiments. The testing session began by an 584 

explanation of the research procedures, followed by obtaining an informed consent. Prior to any 585 

experiments, the participants completed a battery of questionnaires related to their demographic 586 

information and Social Value Orientation (SVO) in pen and paper format.  587 

Before the computerised experiments, the colour coding of icons was explained to the participants (see 588 

Fig 1). The red icon always represented the participant him/herself. In the paradigms which had a social 589 

component, the blue icon always designated the individualistic opponent and the orange icon always 590 

represented the prosocial opponent. Because the computerised testing involved completing 700 trials 591 

across different paradigms, we wanted to minimise participant errors (e.g. due to fatigue) by keeping 592 

the colour coding consistent throughout the testing session. 593 

The participants first completed the value-based risk decision-making task which lasted for 100 trials 594 

(Fig. 1A). This task was designed to capture participants non-social value-based decision-making 595 

preferences at baseline. The risk decision-making task involved binary decisions between two 596 

probabilistic gambles, where outcome reward magnitudes (between 10 and 100 Japanese Yen) and 597 

outcome probabilities were generated by MATLAB’s rand and randsample functions (for probabilities 598 

and reward magnitudes, respectively). These decision variables were shuffled until they were 599 

decorrelated, and the expected value difference between the options, calculated based on Eq. 5 and 10 600 

(see below), was normally distributed with mean ~0.  These features of the stimuli allow the fitted 601 
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stochastic choice function to capture how participants behaviour shift from one option to the other in 602 

relation to the changing expected value difference between options, from negative to positive.  603 

After this stage, the participants completed the learning sessions for both the individualistic and 604 

prosocial agents, in which they were asked to predict whether the social agents will accept or reject the 605 

offers coming from other anonymous individuals. The Ultimatum offers were also generated to be 606 

between 10 and 100 Japanese Yen. The participants were told that the social agents whose Ultimatum 607 

responses they needed to predict were two participants from a previous study conducted by our 608 

research group. In fact, they were computerised agents making decisions following an underlying value 609 

function (see below for details). A similar methodology is frequently used in behavioural studies 610 

conducted by other research groups (25, 37). The learning sessions contained 180 trials each, and the 611 

order of the learning sessions was counterbalanced across participants. The participants won ¥25 for 612 

every correct prediction, which was added to their performance-based reimbursement. Incorrect 613 

predictions did not change participants’ running total.  After completing the learning sessions, 614 

participants were asked to respond to various descriptive questions while considering the imagined 615 

personalities of these social agents (see the full list of questions in Fig. S1 legend).  616 

Finally, the participants completed the social decision-making experiments, for 120 trials against each 617 

social agent in the same order they completed the learning sessions. With careful sequencing of 618 

Ultimatum offers presented in the social decision-making stage, we were able to make the face values of 619 

the binary Ultimatum offers identical for each social agent. Consequently, the participants needed to 620 

use the value function of different opponents to compute the expected value difference between the 621 

binary offers in the Ultimatum giving experiment, even though their face values were the same. This 622 

approach allowed us to control for any change in decision parameters which can be attributed to the 623 

numerical differences in the stimuli. The presentation order of the trials was purely randomised across 624 

all participants. In the Ultimatum giving experiment, participants obtained the monetary amount (RO) in 625 

all of their accepted offers. This amount was also added to their performance-based reimbursement. All 626 

of the behavioural experiments were self-paced, and participants were paid the total amount they 627 

accumulated across social learning and all decision-making experiments (both non-social and social 628 

experiments; i.e. all participant decisions had real-life financial consequences). All experiments took 629 

place in a comfortable room designated for testing purposes and all tasks were presented by 630 

PsychToolbox 3.0 running on MATLAB (MathWorks, Inc.).  631 
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Description of the computerised social agents. Two distinct computerised social agents, whose 632 

behaviours were guided by the way they computed the subjective value of the Ultimatum offers they 633 

faced were defined by a model from the social value orientation (SVO) framework based on a model 634 

derived from a previous publication by our research group (1). Here, the subjective value (v%) of a 635 

condition is calculated as: 636 

S O S Ov R R R Rα δ ρ= − + −%                                             (1) 637 

where SR  (always from the perspective of the social agents) and OR depicts self and other’s reward 638 

magnitude, respectively. The agents make decisions following a stochastic choice model where Aq is the 639 

probability of accepting a condition (38): 640 

       
( )1 / (1 exp )v

Aq β−= + %

                                                     (2) 641 

Here, β is the inverse temperature term, which gives the shape of the sigmoid function based on our a 642 

priori assumption about the shape of the sigmoid function in humans, which should be the case if the 643 

number of trials in the learning session approaches to infinity; that is, if the participants had the 644 

opportunity to observe the behaviour of the computerised social agents for a very long time. 645 

The hyper-parameters defining the valuation of the agents, , , ,α δ ρ β were set to [1.096, 0.382,-2.512, 646 

0.037] for the individualistic agent; and [1.368,-0.644,-3.798, 0.045] for the prosocial agent. The key 647 

difference between these two agents was that the prosocial agent valued conditions cooperatively, 648 

whereas the individualistic agent valued them competitively, and that the prosocial agent was more 649 

sensitive to the absolute value difference between the self and other’s reward magnitude. We 650 

generated a vector of responses to 180 trials in the learning sessions by the defined model, where the 651 

SVO of the social agents was calculated by the following formula derived from Murphy et al. 2011: 652 

( ) / 50
arctan( )

( ) / 50
O A

S A

R n
SVO

R n

−
° =

−
∑
∑

                                        (3) 653 

where An is the total number of accepted conditions. After extensive simulations to evaluate how 654 

agents would behave, a selection was made such that the SVO of the prosocial agent was 31.47
o

 and the 655 

SVO of the individualistic agent was 12.36
o

; clearly falling into the categorical boundaries described by 656 

Murphy et al., 2011. Therefore, these strategies were labelled as “prosocial” and “individualistic” 657 

throughout this manuscript.  658 
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In order to make sure that the choice behaviour of these computerised agents will adequately mimic 659 

decisions of real human participants, we conducted an additional control experiment in which 660 

participants in an independent cohort (n=40; age: 21±2.1; 60% males; SVO: 25.7±15.6) responded to 661 

Ultimatum offers coming from different proposers, as it was in the social learning sessions of the main 662 

experiment. We simulated the choices of the computerised agents 100 times for each participant and 663 

investigated the extent to which their decisions coincided with the decisions made by real humans. This 664 

control experiment suggested that the behaviour of computerised agents would be well tolerated in the 665 

main experiment, particularly considering that the offers being evaluated covered the indifference point 666 

(i.e. expected value difference near 0), which is where the choices of the computerised agents and real 667 

human participants would be random (~50% accept, see Fig. S6 and legends). In addition to this 668 

numerical analysis conducted in an independent cohort, it is important to point out that our participants 669 

were able to identify at least ~4 people in their close circles whose decisions resembled the decisions 670 

made by the computerised agents (see Fig. S1, responses to Q3), suggesting that the behaviour of the 671 

computerised agents in the main experiment was overall well tolerated.   672 

Social-learning. There are a few models in the literature that account for how people learn during social 673 

interactions (21, 39, 40). Due to the widely-known complexity of this process (41, 42), we did not focus 674 

too much on specific models of social-learning by performing detailed trial-by-trial analyses here. 675 

Previous studies suggested that using the Ultimatum Game as an environment to investigate how 676 

people learn other’s social preferences is challenging due to the fact that the game structure has a 677 

strong non-monotonicity (42), as people are shown to be sensitive to unfair resource distributions 678 

irrespective of whether they are favourable or not. Nevertheless, the social learning experiments were 679 

still necessary in order to model how inferred probabilities are processed during the Ultimatum giving 680 

experiments, in which we anticipated that our experimental setting will naturally reveal how our 681 

participants evaluate the risks associated with the possibility of others rejecting their offers. Therefore, 682 

we modelled this first step based on the assumption that learning occurs through the successful 683 

simulation of another’s valuation model (43) (achieved by model-free, reinforcement or Bayesian 684 

learning, or their weighted combination) such that as the number of trials ( t ) approach to infinity, 685 

|A Aq q t→ →∞% , that is, the participant’s inferred acceptance probability ( Aq% ) will fully converge to 686 

the social agent’s true acceptance probability ( Aq ). We confirmed that social learning occurs suitably 687 

well by performing model-free analysis of the data from the learning sessions and also by fitting the 688 
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proposed valuation model of the social agents to the participants’ choice data to generate the 689 

participants’ inferred choice probability for each social agent ( Aq% ; see Fig. 2).  690 

Although the learning session was not our primary focus, we still wanted to compare the performance 691 

of the social valuation model with two alternative Rescorla-Wagner models (44) and one Bayesian Ideal 692 

observer model, which were fitted to the participants’ choice behaviour in the learning sessions.  693 

In alternative Model 1, the participant updates his/her estimate of the social agent’s overall acceptance 694 

probability on trial t in proportion to the prediction errors (ε)  on trial t-1 on a trial-by-trial basis: 695 

       ( 1) ( ) ( )AA t A t q tq q η ε+ = +
%

% %                                                      (3) 696 

where
Aqη

%

is the learning rate. In alternative Model 2, each of the social agent’s parameters in the 697 

described SVO model (Eq.1 and 2) is updated on a trial-by-trial basis, for example: 698 

       ( 1) ( ) ( )t t tαα α η ε+ = +                                                      (4)   699 

where αη is the learning rate updating the value of the free-parameterα from trial t to t+1 . This second 700 

model has 4 free parameters that represent the learning rates by which participants updated each of 701 

the parameters of the SVO-based valuation model (Eqs. 1 and 2). 702 

The Bayesian Ideal Observer model would represent each Ultimatum offer over a numerical grid of 703 

reward magnitudes for the self and the other. The model would start with flat priors (i.e. all inferred 704 

acceptance probabilities set to 0.5 on trial 1; a=1, b=1) and learn the other’s Ultimatum preferences by 705 

updating the mean of the nested beta distributions �μ � �

���
� over this numerical grid following each 706 

observation (e.g. a=a+1 after each accept and b=b+1 after each reject response). Because the 180 trials 707 

that our participants completed in the learning sessions are not enough to cover the whole numerical 708 

grid, we used a 3x3 smoothing kernel over the model’s inferred acceptance probabilities (see 709 

Supplementary Video for the behaviour of the Bayesian model throughout the learning session), 710 

allowing the model to make inferences dynamically for seemingly comparable offers as humans would 711 

do. 712 

Model comparisons for the learning session favoured the SVO-based valuation model, which had 713 

significantly lower –log likelihood values relative to the reinforcement learning models (all F2,147>168, all 714 
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p<0.001, Bonferroni corrected). Furthermore, the close relationship observed between Aq and Aq% from 715 

the SVO model as well as model fitting metrics falling into the highly desirable range (11) suggest that 716 

the present approach is suitable for obtaining the participants’ inferred acceptance probabilities. Similar 717 

approximations have been used by other research groups to reduce the model complexity of learning in 718 

social decision-making tasks (21). 719 

Description of the computational models for the control experiment. Considering that our social 720 

agents were designed to make choices following specified value functions, interacting with them in the 721 

main experiment should naturally probe a perception of risk. Consequently, we decided to select a 722 

value-based risk decision-making task (Fig. 1A) as our control experiment. This selection enabled us to 723 

understand whether people use an overarching computational model in non-social and social contexts 724 

for value-based decision-making under risk and uncertainty. We fitted various computational models to 725 

the participants’ choice behaviour, as described below. 726 

In line with the previous literature, we modelled value-based decision-making in a way which allows 727 

human participants to make binary choices between probabilistic gambles by computing the expected 728 

value (π) of the options they face: 729 

mpπ =                                      (5) 730 

where m is the reward magnitude, p is the probability associated with an option, and π is their 731 

multiplicative integration (Model 1). However, previous work showed evidence for nonlinear 732 

modulation of outcome probabilities in human value-based decision-making (25)(45). In order to 733 

capture these processes, we utilised a probability weighting function based on previous studies (43, 46): 734 

2( ( log ( ) )ˆ 2
Rpp

γ− −=       (6) 735 

where Rγ >0 is a free parameter which modulates actual outcome probabilities nonlinearly into 736 

subjective probabilities. The log2 function always crosses the p/p diagonal at 0.5 and in our point of view 737 

accurately captures the intuition that people should have a somewhat accurate perception of 50/50 738 

odds. Participants then compute the expected value of a gamble accordingly (Model 2): 739 

ˆmpπ =                                       (7) 740 

In an alternative model (Model 3), we considered an expected value computation which can account for 741 

participants’ risk-preferences by revealing the curvature of their utility functions:  742 
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m pρπ =                                       (8) 743 

where ρ is the power utility parameter, with 1ρ > indicating a risk-seeking , 1ρ < indicating a risk-744 

averse and 1ρ = indicating a risk-neutral preference. 745 

Finally, the full model (Model 4) considered both of these nonlinear processes in computing the 746 

expected value of an option:  747 

ˆm pρπ =                                       (9) 748 

Across all models, it is assumed that participants make their choices in relation to the subjective value 749 

difference between each gamble (i.e. the difference between the left and right options): 750 

L Rπ π πΔ = −%      (10) 751 

and trial-wise stochastic choice probabilities for each gamble are generated by a sigmoid function: 752 

( ( ))1/ (1 exp )Lq β π− Δ= + %

    (11) 753 

where 0β > is the inverse temperature term adopted from thermodynamics and determines the 754 

degree of stochasticity in participants’ choices. 755 

Description of the social decision-making models. In the main experiment, the participants were asked 756 

to make Ultimatum offers to the social agents. If their offer was accepted, participants would receive 757 

the amount OR , whereas if their offer is rejected both sides got nothing for that trial (as in a typical 758 

Ultimatum Game experiment).  759 

It is possible that participants completed the social decision-making task using a number of different 760 

strategies. Here, we considered cognitive models with variable complexity, where our preferred model 761 

proposed that participants simulate the social agents’ acceptance probability for both the chosen and 762 

the unchosen options and compute the expected value difference between the options by integrating 763 

these inferred acceptance probabilities with their self-reward magnitudes. We formally define these 764 

different models below.  765 

According to Model 5, the participant’s decision value ( vΔ% ) depends on the difference between the 766 

social agent’s inferred choice probability ( Aq% ) that is associated with the offers on each side { , }L R , 767 
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whereby the participant makes decisions only by considering the opponent’s acceptance probability (i.e. 768 

choosing the offer which they think is more likely to get accepted): 769 

  , ,
S S
A L A Rv q qΔ = −% % %                                                                   (12) 770 

where { },S i p∈ defines whether the opponent is individualistic or prosocial.  771 

Due to the probabilistic nature of the social decision-making task, we hypothesised that the inferred 772 

acceptance probabilities could also undergo a similar probability weighting transformation as in the non-773 

social value-based decision-making task (Eq. 6). Therefore, in Model 6, we considered that participants’ 774 

decision value ( vΔ% ) may be computed by the following two equations: 775 

2 ,( ( log ( ) )
, 2

SS
A LqS

A LQ
γ− −= %

                                                    (13) 776 

, ,
S S
A L A Rv Q QΔ = −%                                                          (14) 777 

where 0Sγ > is a free parameter accounting for the nonlinear modulation of acceptance probabilities 778 

in the social decision-making task, which are estimated separately for each social agent. Here, the 779 

introduction of a free parameter is critical and allows us to evaluate differences between the 780 

modulation of probability weighting in social and non-social contexts. 781 

In Model 7, we considered a more sophisticated value computation that also integrates participants’ 782 

own payoff ( OR ). This computation assumes that participants employ a cognitive model with a large 783 

degree of overlap with the previously defined non-social value-based decision-making model (i.e. Model 784 

2), whereby the participant can choose to make an offer with lower , ~
S
A R LQ  if the overall expected value 785 

is higher. 786 

, , , ,( ) ( )S S
A L O L A R O Rv Q R Q RΔ = ⋅ − ⋅%                                            (15) 787 

In Model 8, which largely overlaps with the non-social value-based Model 3, the decision value is 788 

computed by the following formula which would account for the participants’ risk preferences by 789 

revealing the curvature of their utility functions (25):     790 

, , , ,
S S
A L O L A R O Rv q R q Rρ ρΔ = −% % %                                                          (16) 791 
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where ρ is the power utility parameter, with 1ρ > indicating a risk-seeking , 1ρ < indicating a risk-792 

averse and 1ρ = indicating a risk-neutral preference.  793 

In Model 9, which largely overlaps with the full non-social value-based Model 4, the decision value is 794 

computed by the following formula which accounts for both the participants’ risk and nonlinear 795 

probability weighting preferences:     796 

, , , ,
S S
A L O L A R O Rv Q R Q Rρ ρΔ = −%                                                          (17) 797 

After each social decision-making experiment, we asked participants to rate how much they considered 798 

other’s acceptance probability, their own payoff, or both on a 0-to-10 scale (e.g. a rating of 5 meaning 799 

integration with equal weighting; see Fig 3A for self-reported integration weights). In Model 10, we used 800 

this rating as a linear weighting information, where the weight parameter, w , takes a value in the 801 

normalised space (i.e. between 0 to 2) with 0.2 increments because it was directly derived from the 802 

participants’ own report on a 0-to-10 scale (e.g. w=1 indicates integration with equal weighting, w=0.4 803 

indicates more weight is given to the self-reward magnitude, etc.). In essence, this model is similar to 804 

non-social value-based Model 1, but with added subjective integration weights. Here, the decision value 805 

is computed as follows:                                                                                   806 

                                 , , , ,( (2 ) ) ( (2 ) )S S
A L O L A R O Rv wq w R wq w RΔ = ⋅ − − ⋅ −% % %                        (18) 807 

Finally, as a baseline control condition, we also investigated the fitness of a model which makes 808 

decisions based on self-value difference alone (i.e. Model 11; , ,O L O Rv R RΔ = −% ). 809 

At the very last step, choice probabilities under each model { }5,6,7,8,9,10,11M ∈ were generated by a 810 

sigmoid function: 811 

( ( ))1 / (1 exp )S vM
LQ β− Δ= + %

            (19) 812 

where 0Sβ >  is the inverse temperature term estimated separately for the social decision-making 813 

experiments. 814 
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We used a Maximum Likelihood Estimation procedure to evaluate how well the proposed cognitive 815 

models explained our participants' choice behaviour. The free parameters were estimated using a non-816 

linear optimization method over a numerical grid which covered the whole parameter space, using 817 

MATLAB’s (MathWorks, Inc.) fmincon function with random starts.  818 

We selected between competing models based on their Bayesian posterior probability weights given the 819 

data (47) by the following formula: 820 

min

min

exp( ( ) / 2)

exp( ( ) / 2)
i

i
k

k

BIC BIC
weight

BIC BIC

− −=
− −∑

                                             (20) 821 

while considering each model’s Bayesian Information Criterion (BIC) value (48), which penalises more 822 

complex models with additional free parameters.  823 

For robustness, we also implemented a complementary Bayesian model selection approach (49, 50) by 824 

feeding a matrix (number of participants X number of competing models) of log likelihood values for 825 

each model to the readily available scripts from the SPM12 library (spm_BMS; www.fil.ion.ac.uk/spm) 826 

and computed the exceedance probabilities for each of the competing models.  827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 
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Supplementary Figures and Legends: 957 

 958 

Fig. S1. Descriptive ratings participants made about social agents following the observational social-959 

learning sessions. (A) Participants responded to a number of questions while thinking about the 960 

personality of these social agents (all rated on a Likert scale from 0 to 10). 961 

Q1: How much do you think this person cares about rewards to others? 962 

Q2: How much would you like this person if you spent 1 hour with him/her in real life? 963 

Q3: How many people do you know in real life who resemble this person? 964 

Q4: How socially close do you feel towards those people that you know? 965 

A fitted 4x2 MANOVA suggests there is a significant main effect of the social agent (F=3.01, P=0.03) 966 

and a significant effect of the interaction term (F=10.16, P<0.001). 967 
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 968 

Fig. S2. Risk parameters (
p

iρ ) estimated from the Ultimatum giving experiments against two 969 

different social agents with different SVOs were not significantly different (P=0.64, n.s: not significant). 970 
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 977 

Fig. S3. Distributions of opponents’ inferred SVOs ( SV O% ) based on simulations of the encoded value 978 

functions ( Aq% ) from the social-learning sessions. (A) The distribution of inferred SVOs for the whole 979 

cohort (i.e. distribution of means obtained from each subject’s simulation) based on 1000 simulations 980 

of the encoded value functions per participant per social agent (i.e. prosocial and individualistic). 981 

These distributions were significantly different from each other (D=0.78, P<0.001), suggesting that 982 

participants were able to make distinct inferences about the SVOs of their opponents. (B) The 983 

distribution of inferred SVOs in 1000 simulations from a single subject gives a normal distribution of 984 

inferred SVOs, of which the mean and the standard deviation were used as input variables for the 985 

multiple linear regression analysis. Here, the true SVO of the prosocial agent was 31.5
o

, which falls 986 

close to the mean of this distribution ( μ =30.77
o

 ± 5.4). 987 

 988 
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 989 

Fig. S4. A 3D scatter plot with fitted planes through the least squares regression lines, summarises the 990 

relationship between the participants’ normalised frequency of choosing risky options (i.e. the vertical 991 

axes in both A and B; identical to Fig. 4A), the estimated risk parameters in the Ultimatum giving 992 

experiments and the predictions of the multiple linear regression model. Predicted values of the risk 993 

parameter ( ρ ) in the Ultimatum giving experiments correlated significantly with the actual 994 

parameter estimates and the participants’ choice frequency (r>.383, p<.006, Bonferroni corrected).  995 

 996 

 997 

 998 

 999 
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 1000 

Fig. S5. Combinations of social interactions covered by the current study (n=100) with respect to the 1001 

participants’ own (x-axis) and their inference of their opponents’ SVO (y-axis). Markers with the same 1002 

[R, G, B] colour coding refer to a single subject’s data point. Marker sizes are proportional to the 1003 

uncertainty estimates ( SVOσ
% ), which was included as an input variable in the multiple linear 1004 

regression model described in the main text. 1005 

 1006 
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 1011 
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 1013 

Fig S6. Summary results of a control experiment conducted in an independent cohort (n=40). Colour 1014 

bar shows the percentage of choices overlapping between the prosocial agent and human participants 1015 

responding to Ultimatum offers (left panel), and the individualistic agent and human participants 1016 

(right panel). The decisions of the computerised agents were simulated 100 times for each participant, 1017 

and the percentage overlap was calculated accordingly. Considering that expected value difference 1018 

(~0 range) was covered with an adequate number of trials across all experiments reported in this 1019 

manuscript, where the choice behaviour is stochastic, these results provide additional support to the 1020 

subjective ratings reported in Fig. S3 (responses to Q3) that indicate the behaviour of the 1021 

computerised agents should be well tolerated by the participants in the main experiment. 1022 
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https://youtu.be/pMC9H9vV9Fs 1032 

Bayesian Ideal Observer model can track social agents’ Ultimatum acceptance probabilities optimally 1033 

by updating the estimated means of the nested beta distributions over a numerical grid of self and 1034 

other’s reward magnitudes. 1035 
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