Delay-dependent Exponential Stability of Neutral Stochastic Delay Systems

Lirong Huang and Xuerong Mao

Abstract—This paper studies stability of neutral stochastic delay systems by linear matrix inequality (LMI) approach. Delay-dependent criterion for exponential stability is presented and numerical examples are conducted to verify the effectiveness of the proposed method.

Index Terms—stochastic systems, neutral systems, time delay, exponential stability, LMIs.

I. INTRODUCTION

Many dynamical systems are described with neutral functional differential equations that include neutral delay differential equations. These systems are called neutral-type systems or neutral systems. Motivated by chemical engineering systems as well as theory of aero elasticity, studies on deterministic neutral systems have been of research interest over the past decades (see, e.g., [3]-[11]). As stochastic modelling has come to play an important role in many branches of science and industry, neutral stochastic delay systems have been intensively studied over recent year (see, e.g., [10]-[17]). Mao ([14]-[17]) studied delay-dependent stability of neutral stochastic delay differential equations while Chen et al. ([12]) proposed new criteria on exponential stability of neutral-type systems or functional equations, developed the Razumikhin-type theorems further for exponential stability of neutral stochastic functional equations and studied asymptotic properties of neutral stochastic delay differential equations. More recently, Luo et al. ([12]) proposed new criteria on exponential stability of neutral stochastic delay differential equations while Chen et al. ([2]) studied delay-dependent stability of neutral stochastic delay systems. However, the stability result in ([2]) employed an assumption on the difference operator matrix, which is also assumed in other results (see, e.g., [4] and [18]) but may be restrictive in many cases (see Examples 1 and 2). As is known, delay-independent results may be conservative when the size of time delay is small. This paper studies problem of delay-dependent stability of neutral stochastic delay systems. An exponential stability criterion is established by linear matrix inequality (LMI) approach. Numerical examples are conducted to verify the effectiveness of our proposed method.

II. PROBLEM STATEMENT

Throughout the paper, unless otherwise specified, we will employ the following notation. Let \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P}) \) be a complete probability space with a natural filtration \(\{\mathcal{F}_t\}_{t \geq 0} \) and \(\mathbb{E}[\cdot] \) be the expectation operator with respect to the probability measure. Let \(w(t) \) be a scalar Brownian motion defined on the probability space. If \(A \) is a vector or matrix, its transpose is denoted by \(A^T \). If \(P \) is a square matrix, \(P > 0 \) \((P < 0)\) means that \(P \) is a symmetric positive \((\text{negative})\) definite matrix of appropriate dimensions while \(P \geq 0 \) \((P \leq 0)\) is a symmetric positive \((\text{negative})\) semidefinite matrix. \(I \) stands for the identity matrix of appropriate dimensions. Denote by \(\lambda_M(\cdot) \) and \(\lambda_m(\cdot) \) the maximum and minimum eigenvalue of a matrix respectively. Let \(|\cdot| \) denote the Euclidean norm of a vector and its induced norm of a matrix. Unless explicitly specified, matrices are assumed to have real entries and compatible dimensions. Let \(h \geq 0 \) and \(C([-h, 0]; R^n) \) denote the family of all continuous \(R^n \)-valued functions \(\varphi \) on \([-h, 0]\) with the norm \(\|\varphi\| = \sup \{ |\varphi(\theta)| : -h \leq \theta \leq 0 \} \). Let \(C^b_{\mathcal{F}_0}([-h, 0]; R^n) \) be the family of all \(\mathcal{F}_0 \)-measurable bounded \(C([-h, 0]; R^n) \)-valued random variables \(\xi = \{\xi(\theta) : -h \leq \theta \leq 0\} \).

Let us consider an \(n \)-dimensional neutral stochastic delay system

\[
d[x(t) - Cx(t-h_1)] = [A_0x(t) + A_1x(t-h_1) + A_2x(t-h_2)] dt + [H_0x(t) + H_1x(t-h_1) + H_2x(t-h_2)] dw(t)(1)
\]

on \(t \geq 0 \) with initial data \(x_0 = \{x(\theta) : -h \leq \theta \leq 0\} = \xi \in C^b_{\mathcal{F}_0}([-h, 0]; R^n) \), where \(x(t) \in R^n \) is the state vector; positive scalar constants \(h_1, h_2 \) are time delays of the system and \(h = \max\{h_1, h_2\} \); \(C_i, A_i \) and \(H_i, i = 0, 1, 2 \), are known matrices.

Denote

\[
f(t) = A_0x(t) + A_1x(t-h_1) + A_2x(t-h_2), \quad g(t) = H_0x(t) + H_1x(t-h_1) + H_2x(t-h_2)
\]

for all \(t \geq 0 \). One can observe that

\[
|f(t)|^2 \leq K_f||x_t||^2, \quad |g(t)|^2 \leq K_g||x_t||^2
\]

for all \(t \geq 0 \), where \(x_t = \{x(t+\theta) : -h \leq \theta \leq 0\} \), \(K_f = 3 \sum_{i=0}^{2} |A_i|^2 \) and \(K_g = 3 \sum_{i=0}^{2} |H_i|^2 \). This implies that both \(f(\varphi, t) \) and \(g(\varphi, t) \) satisfy the local Lipschitz condition and the linear growth condition. It is easy to verify, by the way of induction proposed in the proof of Theorem 3.1, p208, [16], that there exists a unique continuous solution denoted by \(x(t; \xi) \) to neutral stochastic delay differential equation (1).

The objective of this paper is to establish sufficient conditions for robust exponential stability of system (1). It should be pointed out that, for simplicity only, we do not consider...
uncertainties in our models. The proposed method can be easily extended to those cases with norm-bounded uncertainties in parameters A_i and H_i. The method can also be applied to systems with multiple and distributed delays.

At the end of this section, let us introduce the following definitions and lemmas that are useful for the development of our results.

Definition 1: ([16]) The neutral stochastic delay system (1) is said to be exponentially stable in mean square if there is a positive constant λ such that

$$\limsup_{t \to \infty} \frac{1}{t} \log \mathbb{E}|x(t; \xi)|^2 \leq -\lambda. \quad (4)$$

Definition 2: ([16]) The neutral stochastic delay system (1) is said to be almost surely exponentially stable if there is a positive constant λ such that

$$\limsup_{t \to \infty} \frac{1}{t} \log |x(t; \xi)| \leq -\lambda. \quad (5)$$

Lemma 1: ([20]) For any constant matrix $M \in \mathbb{R}^{n \times l}$, inequality

$$2u^T Mt \leq ru^T M G M T u + \frac{1}{r} v^T G^{-1} v, \quad u \in \mathbb{R}^n, \quad v \in \mathbb{R}^l$$

holds for any pair of symmetric positive definite matrix $G \in \mathbb{R}^{n \times l}$ and positive number $r > 0$.

Lemma 2: ([16]) For any pair of symmetric positive definite constant matrix $G \in \mathbb{R}^{n \times l}$ and scalar $r > 0$, if there exists a vector function $v : [0, r] \to \mathbb{R}^n$ such that integrals $\int_0^r v^T(s)Gv(s)ds$ and $\int_0^r v(s)ds$ are well defined, then the following inequality holds

$$\frac{1}{r} \frac{d}{dt} \frac{1}{2} \int_0^r v(s)ds \geq \left(\int_0^r v(s)ds \right)^T M \left(\int_0^r v(s)ds \right).$$

III. DELAY-DEPENDENT EXPONENTIAL STABILITY

Delay-dependent stability of neutral deterministic delay systems has been intensively studied over recent years (see, e.g., [3]-[5], [8], [11], [18]). However, relatively little is known about delay-dependent stability of neutral stochastic delay systems. Denote $\bar{A}_0 = A_0, \bar{A}_1 = A_0C + A_1, \bar{A}_2 = A_2, \bar{H}_0 = H_0, \bar{H}_1 = H_0C + H_1, \bar{H}_2 = H_2, \bar{A} = \sum_{i=0}^{2} \bar{A}_i$ and $\bar{H} = \sum_{i=0}^{2} \bar{H}_i$. Sufficient conditions for delay-dependent exponential stability of system (1) are proposed as follows.

Theorem 1: The neutral stochastic delay system (1) is mean-square exponentially stable and is also almost surely exponentially stable provided that there exist matrices $P_1 > 0, Q_k > 0, R_k > 0, S > 0, T_k > 0, P_{21}, P_{22}, P_{31}, P_{32}, P_{33}$ and $k = 1, 2$ such that LMI (6) (on the top of next page) holds,

where

$$\Gamma_{11} = P_{21}^T \bar{A} + \bar{A}^T P_{21} + P_{31}^T \bar{H} + \bar{H}^T P_{31} + S + T_1 + T_2, \quad \Gamma_{12} = \bar{A}^T P_{22} + \bar{H}^T P_{32} + P_{11} - P_{21}^T, \quad \Gamma_{13} = \bar{A}^T P_{23} + \bar{H}^T P_{33} - P_{31}^T, \quad \Gamma_{18} = (S + T_1 + T_2) C, \quad \Gamma_{22} = -P_{22}^T - P_{22} + h_1 Q_1 + h_2 Q_2, \quad \Gamma_{23} = -P_{23} - P_{32},$$

$$\Gamma_{33} = -P_{33}^T - P_{33} + h_1 R_1 + h_2 R_2, \quad \Gamma_{88} = -S + C^T (S + T_1 + T_2) C, \quad L_{11} = P_{21}^T \bar{A}_1 + P_{33}^T \bar{H}_1, \quad L_{12} = P_{21}^T \bar{A}_2 + P_{33}^T \bar{H}_2, \quad L_{21} = P_{22}^T \bar{A}_1 + P_{33}^T \bar{H}_1, \quad L_{22} = P_{22}^T \bar{A}_2 + P_{33}^T \bar{H}_2, \quad L_{31} = P_{23}^T \bar{A}_1 + P_{33}^T \bar{H}_1, \quad L_{32} = P_{23}^T \bar{A}_2 + P_{33}^T \bar{H}_2,$$

and entries denoted by \ast can be readily inferred from symmetry of the matrix.

Proof: To simplify the expression, we define

$$\eta(t) = x(t) - Cx(t - h_1) \quad (7)$$

for all $t \geq 0$. With notations (2) and (7), we can rewrite the unforced system (1) as

$$d\eta(t) = f(t)dt + g(t)dw(t) \quad (8)$$

on $t \geq 0$ with initial data ξ.

So we have

$$\eta(t_2) - \eta(t_1) = \int_{t_1}^{t_2} f(s)ds + g(s)dw(s) \quad (9)$$

for all $t_2 \geq t_1 \geq 0$.

By (2) and (9), we can observe that

$$f(t) = \sum_{i=0}^{2} \bar{A}_i \eta(t) - \sum_{i=1}^{2} \bar{A}_i \left[\eta(t) - \eta(t - h_1) \right]$$

$$+ \sum_{i=1}^{2} \bar{A}_i Cx(t - h_1 - h_i)$$

$$= \bar{A} \eta(t) - \sum_{i=1}^{2} \bar{A}_i \int_{t-h_i}^{t} f(s)ds + g(s)dw(s)$$

$$+ \sum_{i=1}^{2} \bar{A}_i Cx(t - h_1 - h_i), \quad (10)$$

$$g(t) = \bar{H} \eta(t) - \sum_{i=1}^{2} \bar{H}_i \int_{t-h_i}^{t} f(s)ds + g(s)dw(s)$$

$$+ \sum_{i=1}^{2} \bar{H}_i Cx(t - h_1 - h_i) \quad (11)$$

for all $t \geq h$. Choose a Lyapunov-Krasovskii functional candidate for system (8) as follows

$$V(t) = \sum_{j=1}^{5} V_j(t), \quad t \geq h \quad (12)$$

where

$$V_1(t) = \eta(t) \bar{P}_1 \eta(t),$$

$$V_2(t) = \sum_{i=1}^{2} \int_{t-h_i}^{t} (s-t+h_i) f^T(s) Q_i f(s)ds,$$}

$$V_3(t) = \sum_{i=1}^{2} \int_{t-h_i}^{t} (s-t+h_i) g^T(s) R_i g(s)ds,$$}

$$V_4(t) = \int_{t-h_i}^{t} x^T(s) S x(s)ds,$$}

$$V_5(t) = \sum_{i=1}^{2} \int_{t-h_i-h_i}^{t} x^T(s) T_i x(s)ds.$$
By Itô’s lemma, we have
\[
\frac{dV(t)}{dt} = \mathcal{L}V(t)dt + \sigma(t)dw(t),
\]
where
\[
\mathcal{L}V(t) = \sum_{j=1}^{5} \mathcal{L}V_j(t) = 2\eta^T(t)P_{11}f(t) + g^T(t)P_{119}(t)
\]
\[
+ \sum_{j=2}^{5} \tilde{V}_j(t),
\]
\[
\sigma(t) = 2\eta^T(t)P_{11}g(t).
\]
Denote
\[
y(t) = \begin{bmatrix} \eta(t) \\ f(t) \\ g(t) \end{bmatrix}, \\
P = \begin{bmatrix} P_{11} & 0 & 0 \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{bmatrix}.
\]
By equalities (10) and (11), we have
\[
2\eta^T(t)P_{11}f(t)
= \eta^T(t)(PTA + A^TP)y(t) - 2g^T(t)\sum_{i=1}^{2} P^T \begin{bmatrix} 0 & A^T & A^T \end{bmatrix} \tilde{H}_i \begin{bmatrix} 0 \\ A \\ H \end{bmatrix}^T \begin{bmatrix} 0 & A^T & A^T \end{bmatrix} f(t) ds + g(s)dw(s) + Cx(t - h_1 - h_i),
\]
where
\[
A = \begin{bmatrix} 0 & I & 0 \\ A & -I & 0 \\ H & 0 & I \end{bmatrix},
\]
\[
P^T A + A^TP = \begin{bmatrix} P_{A1} & P_{A2} & P_{A3} \\ P_{A2} & P_{A22} & P_{A23} \\ * & P_{A32} & P_{A33} \\ * & * & P_{A3} \end{bmatrix}
\]
where
\[
P_{A1} = P_{T1}A + A^TP_{21} + P_{T2}A + P_{T3}H + \tilde{H}P_{31}, \\
P_{A2} = A^TP_{12} + \tilde{H}P_{22} + P_{11} - P_{T2}, \\
P_{A3} = A^TP_{13} + \tilde{H}P_{33} + P_{31} - P_{T3}
\]
and
\[
PT \begin{bmatrix} 0 & A^T & A^T \end{bmatrix} \tilde{H}_i \begin{bmatrix} 0 \\ A \\ H \end{bmatrix}^T = \begin{bmatrix} L_{i1} & L_{i2} & L_{i3} \end{bmatrix}^T
\]
where L_i is the ith row of L.

Direct computations with Lemma 2 and equation (7) give
\[
\tilde{V}_2(t) \leq \sum_{i=1}^{2} \left[f^T(t)h_iQ_i f(t) - \int_{t-h_i}^{t} f^T(s)ds \cdot (h_iQ_i) \right] + \int_{t-h_i}^{t} \frac{1}{h_i} f(s)ds,
\]
\[
\tilde{V}_3(t) \leq \sum_{i=1}^{2} \left[g^T(t)h_iR_i g(t) - \int_{t-h_i}^{t} g^T(s)R_i g(s) ds \right],
\]
By isometry property, for $i = 1, 2$, we have
\[
\mathbb{E} \left[\int_{t-h_i}^{t} g^T(s)R_i g(s) ds \right] = \int_{t-h_i}^{t} \mathbb{E} \left[g^T(s) g(s) \right] ds
\]
\[
= \mathbb{E} \left[\int_{t-h_i}^{t} g^T(s) dw_i(s) R_i \int_{t-h_i}^{t} g^T(s) dw_i(s) \right].
\]
Therefore, substituting inequalities (16)-(20) into (14) and taking expectation on both sides of (14) yield
\[
\mathbb{E} \mathcal{L}V(t) \leq \mathbb{E} \left[z^T(t) \Gamma z(t) \right],
\]
where
\[
z(t) = \begin{bmatrix} \eta(t) \\ x(t - h_1) \end{bmatrix}^T \\
\Gamma = \begin{bmatrix} \frac{\lambda T}{\lambda_M(S)} & \frac{\lambda T}{\lambda_M(S)} \\ \frac{\lambda T}{\lambda_M(S)} & \frac{\lambda T}{\lambda_M(S)} \end{bmatrix}
\]
\[
\frac{\lambda T}{\lambda_M(S)} \leq \frac{1}{2} \frac{1}{\lambda_M(S)} \frac{1}{\lambda_M(S)} = \frac{1}{2} \frac{1}{\lambda_M(S)} ^2 = \frac{1}{2} \frac{1}{\lambda_M(S)} ^2
\]
By LMI (6), we have
\[
\mathcal{E} V(t) \leq -\lambda \mathbb{E} \left[z(t)^2 \right] - \lambda \mathbb{E} \left[|\eta(t)|^2 + |x(t - h_1)|^2 \right]
\]
with $\lambda = \lambda_m(-\Gamma)$ and
\[
C^T SC - S < 0.
\]
For any $\kappa \in (0, 1)$, equation (7), inequalities (22)-(23) and Lemma 1 give
\[
\mathbb{E} \mathcal{L}V(t)
\leq -\left(1 - \frac{\kappa}{\lambda T} \right) \mathbb{E} \left[|\eta(t)|^2 \right] - \kappa \mathbb{E} \left[|\eta(t)|^2 \right] + \frac{1}{\kappa} \mathbb{E} \left[|x(t - h_1)|^2 \right]
\]
\[
\leq -\left(1 - \frac{\kappa}{\lambda T} \right) \mathbb{E} \left[|\eta(t)|^2 \right] - \kappa \mathbb{E} \left[|\eta(t)|^2 \right] + \frac{1}{\kappa} \mathbb{E} \left[|x(t - h_1)|^2 \right]
\]
\[
\leq -\left(1 - \frac{\kappa}{\lambda T} \right) \mathbb{E} \left[|\eta(t)|^2 \right] - \kappa \mathbb{E} \left[|\eta(t)|^2 \right] + \frac{1}{\kappa} \mathbb{E} \left[|x(t - h_1)|^2 \right]
\]
\[
\leq -\left(1 - \frac{\kappa}{\lambda T} \right) \mathbb{E} \left[|\eta(t)|^2 \right] - \kappa \mathbb{E} \left[|\eta(t)|^2 \right] + \frac{1}{\kappa} \mathbb{E} \left[|x(t - h_1)|^2 \right]
\]
\[
\leq -\lambda_0 \mathbb{E} \left[|\eta(t)|^2 + |x(t)|^2 \right],
\]
with $\lambda_0 = \frac{1}{\lambda_M(S)}$.
where \(\lambda_0 = \min \{ (1 - \kappa)\lambda_T, \kappa \lambda_T \lambda_m(S)[1 + \kappa] \lambda_M(S) \}^{-1} \)
> 0.

It is obvious from the definition of \(V(t) \) that
\[
\alpha_0 |\eta(t)|^2 \leq V(t) \leq \alpha_1 |\eta(t)|^2 + \alpha_2 \int_{t-2h}^{t} |x(s)|^2 ds,
\] (24)
where \(\alpha_0 = \lambda_m(P_{11}), \alpha_1 = \lambda_M(P_{11}), \alpha_2 = \sum_{i=1}^{n} \lambda_M(Q_i)K_f + \lambda_M(R_i)K_g + \lambda_M(S) + \sum_{i=1}^{n} \lambda_M(T_i). \)

Choose \(\varepsilon > 0 \) such that
\[
\max\{\varepsilon \alpha_1, 2h \varepsilon \alpha_2 \varepsilon^{2h} \} \leq \lambda_0 \quad \text{and} \quad \varepsilon^{2h} C^T S \leq S < 0.
\] (25)

By Itô’s lemma, we have
\[
d[\varepsilon x V(s)] = \varepsilon x [\varepsilon V(s) + LV(s)] ds + \varepsilon \sigma(s) dw(s), \quad \forall s \geq 0.
\] (26)

Let \(t_0 = h \), then integrating from \(t_0 \) to \(t \) and taking expectation on (26) give
\[
e^{\varepsilon t} E[V(t)] - e^{\varepsilon t_0} E[V(t_0)]
= E \int_{t_0}^{t} e^{\varepsilon s} [\varepsilon V(s) + LV(s)] ds
\leq E \int_{t_0}^{t} e^{\varepsilon s} [\varepsilon \alpha_1 |\eta(s)|^2 + \varepsilon \alpha_2 \int_{t-2h}^{t} |x(v)|^2 dv
- \lambda_0 |\eta(s)|^2 + |x(s)|^2] ds
\leq E \int_{t_0}^{t} e^{\varepsilon s} [\varepsilon \alpha_2 \int_{t-2h}^{t} |x(v)|^2 dv - \lambda_0 |x(s)|^2] ds.
\] (27)

Therefore, for all \(t \geq t_h \), inequality (30) implies
e^{\varepsilon (t-h)h} x^{T}(t) S x(t)
\leq \lambda M(S) e^{\varepsilon (t-h)h} \sup_{-h \leq \theta \leq 0} \{ e^{\varepsilon t} E[x^{T}(t) S x(t)] \}.
\] (31)

Now let us proceed to discuss the almost sure exponential stability. Let \(\gamma \in (0, \varepsilon) \) be arbitrary. We claim that there is a finite positive number \(t_h \) such that for all \(t \geq t_h \)
\[
|\eta(t)|^2 \leq e^{-(\gamma - \varepsilon) t} a.s.
\] (33)

Note that \(\eta(t) S \eta(t) = x^{T}(t) S x(t) - 2x^{T}(t) S C x(t - h_1) + C^T S C x(t - h_1) \) for all \(t \geq 0 \). By Lemma 1, we have
\[
e^{\varepsilon t} x^{T}(t) S x(t)
\leq \frac{e^{\varepsilon t}}{1 - \mu} \eta^{T}(t) \eta(t)
+ \frac{e^{\varepsilon t}}{\mu} x^{T}(t - h_1) C^T S C x(t - h_1).
\] (30)
where $\beta_h = 3C_h(1 + K_f h^2 e^{hc} + 4 K_g h e^{hc})$. But, by Chebyshev’s inequality, this implies
\[
P\left\{ \omega: \sup_{0 \leq \theta \leq h} |\eta(kh + \theta)|^2 > e^{-(\varepsilon-\gamma)kh} \right\} \leq \beta_h e^{-\gamma kh}.
\]
By Borel-Cantelli lemma, there is a finite integer k_0 such that
\[
\sup_{0 \leq \theta \leq h} |\eta(kh + \theta)|^2 \leq e^{-(\varepsilon-\gamma)kh} \text{ a.s.}
\]
for all $k \geq k_0$. Therefore, inequality (33) holds with $t_h \geq k_0 h$.

Remark 1: From the proof of Theorem 1, it is observed that, letting $z(t) = \int_0^t f(t) g(t) \int_0^s g(t)dw(s) \int_0^t h(t) x(T - h(t)) x(T - h(T - h(t))C T x(T - h(T - h(t))C T$, we can have a corollary derived from Theorem 1 with
\[
\begin{bmatrix}
-T_i & C T W_i \\
W_i & -W_i
\end{bmatrix} \leq 0, \quad i = 1, 2
\]
(35)
where $W_i > 0$. This corollary can be easily applied to problems of stabilization by the approach of LMIs.

IV. EXAMPLES

Example 1. Let us look at the following neutral stochastic delay system
\[
d[x(t) - Cx(t - h)] = [A_0 x(t) + A_1 x(t - h)]dt + [H_0 x(t) + H_1 x(t - h)]dw(s) \tag{36}
\]
with
\[
C = \begin{bmatrix}
-0.2 & 0 \\
1 & 0.2
\end{bmatrix}, \quad A_0 = \begin{bmatrix}
0.5 & 0 \\
0 & 0.3
\end{bmatrix}, \quad A_1 = \begin{bmatrix}
-1 & 0 \\
-1 & -1
\end{bmatrix},
\]
\[
H_0 = \begin{bmatrix}
0.2 & 0 \\
0 & 0.2
\end{bmatrix}, \quad H_1 = \begin{bmatrix}
0.3 & 0 \\
0 & 0.3
\end{bmatrix}.
\]
It is easy to verify that the existing results (see [2], [10], [12]-[17]) do not work. But, by Theorem 1, the upper bounds of time delay for exponential stability of system (36) is $h_{max} = 0.35$.

Example 2. Deterministic systems may be regarded a special class of stochastic systems, e.g., the following deterministic neutral system is exactly system (1) with $A_0 = A, A_1 = B$ and $A_2 = H_0 = H_1 = H_2 = 0$, i.e.,
\[
\dot{x}(t) - C \dot{x}(t - h) = Ax(t) + Bx(t - h) \tag{37}
\]
for all $t \geq 0$, where
\[
A = \begin{bmatrix}
-0.9 & 0.2 \\
0.1 & -0.9
\end{bmatrix}, \quad B = \begin{bmatrix}
1.1 & 0.2 \\
0.1 & 1.1
\end{bmatrix}, \quad C = \begin{bmatrix}
-0.2 & \gamma \\
0.2 & -0.1
\end{bmatrix}
\]
and γ is a constant real number.

The case of $\gamma = 0$ has been studied by many works (see, e.g., [4], [8] and [11]). However, results of [2], [4], [9], [11] and [18] are not (conveniently) applicable when $|\gamma| \geq 1$. For $\gamma \geq 2$, the criterion in [5] does not work, but the upper bounds h_{max} for exponential stability of (37) by other methods are listed in Table I, which shows that the results obtained by the methods proposed in this paper are less conservative in these cases.

Table I : h_{max} by different methods

<table>
<thead>
<tr>
<th>γ</th>
<th>h_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0.29</td>
</tr>
<tr>
<td>2.2</td>
<td>0.25</td>
</tr>
<tr>
<td>2.4</td>
<td>0.21</td>
</tr>
<tr>
<td>[3]</td>
<td>0.40</td>
</tr>
<tr>
<td>[8]</td>
<td>0.32</td>
</tr>
<tr>
<td>Theorem 1</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
</tr>
</tbody>
</table>

V. CONCLUSION

In this paper, delay-dependent criterion for stability of neutral stochastic delay systems has been presented by approach of LMIs. Numerical examples have been given to verify the effectiveness of the method proposed in this paper. Particularly, Example 2 demonstrates that our result developed for stochastic systems is competitive even when it is specialized to the deterministic cases.

REFERENCES

