Theory of Mind in Schizophrenia Spectrum Disorders

Emre BORA

Abstract

Objective: To review studies that investigated theory of mind (ToM) deficits in schizophrenia spectrum disorders.

Method: After a thorough literature search, 71 studies were included in this review. Data regarding the relationship between ToM, and other cognitive skills, symptoms, and the impact of the state of illness were reviewed.

Results: ToM instruments used in schizophrenia spectrum disorders have some major psychometric limitations; however, previous research was still able to provide some important findings regarding mentalizing impairments in schizophrenia. While ToM deficits are more pronounced in the acute phase of illness, it seems to persist during periods of remission. There is also evidence of ToM deficits in the healthy relatives of schizophrenics, patients with delusional disorder and bipolar disorder (BD), and individuals with high schizotypy scores. ToM dysfunction might be secondary to other cognitive deficits in patients with schizophrenia that have a good prognosis, asymptomatic schizophrenia, delusional disorder, and BD. Other cognitive deficits do not seem to explain ToM dysfunction in patients with psychosis and severe negative symptoms. These findings support the contribution of impairment in both domain-general and domain-specific mechanisms to ToM deficits in schizophrenia spectrum disorders. ToM deficits may be important for understanding poor social functioning and poor insight in psychotic disorders.

Conclusion: While ToM is influenced by state variables, it might be an endophenotype of schizophrenia; however, ToM is likely to be an indicator of other frontal lobe-related endophenotypes. Longitudinal studies conducted with high-risk individuals are particularly important.

Key Words: Theory of mind, mentalizing, schizophrenia

INTRODUCTION

One of the main characteristics of primate evolution was the development of cognitive skills necessary for adapting to an increasingly complex social environment. The term theory of mind (ToM) is used to define one of the essential cognitive abilities, which has a role in social interaction among humans. Originally this term was defined in 1978 by Premack and Woodruff with regards to one of their experiments with chimpanzees. ToM was described as the ability to explain the observed behaviors of others by referring to their mental states (Premack and Woodruff, 1978). Others referred to this concept as metallocization (Langdon and Coltheart, 1999).

For the past 20 years researchers have shown interest in the role of ToM in human development and psychopathology. Following a study by Baron-Cohen et al. (1985), which reported ToM impairment in autistic disorder, a substantial number of studies supported the view that suggests there is severe dysfunction in mentalizing ability in autistic spectrum disorders (Baron-Cohen, 2001). Subsequent to studies of autistic spectrum disorders, other evidence suggesting a relationship be-
tween ToM impairment and other mental disorders was published. One of these mental disorders is schizophrenia, and following the theory of Frith, who suggested that ToM impairment plays a role in the development of delusions, a large number of studies investigated the relationship between ToM deficits and schizophrenia (Brüne, 2005b; Harrington, 2005). Despite the fact that many studies have been conducted on this subject, there remain numerous highly debated points about the nature of ToM impairment in schizophrenia. Some of these unresolved issues follow:

1- Which symptoms are associated with ToM?
2- Are ToM deficits a temporary problem related to acute psychosis, or a trait characteristic of the disorder?
3- Is ToM impairment a primary impairment or is it secondary to cognitive deficits in other domains?
4- How does ToM impairment affect the functional capacity and clinical phenotype of the patient?

We aimed to review all studies that investigated ToM in schizophrenia and to discuss the nature of mentalizing impairment based on the questions above.

Relevant articles were chosen following a PUBMED search for articles published between January 1990 and December 2007 using the following keywords: Theory of mind, mentalizing, social cognition, schizophrenia, psychosis, and schizotypy*. Reference lists of the published articles and reviews were also searched.

In this manuscript we first summarize the different views regarding the concept of ToM. Later, tests that were developed to measure ToM ability, and their weaknesses are discussed. Finally, ToM studies conducted with schizophrenia spectrum disorder patients are reviewed and their results are discussed in the context provided by the 4 questions listed above.

Theoretical Accounts Regarding ToM and Proposed Subtypes of this Ability

Examining the development of ToM from infancy to adulthood and the importance of mentalizing ability in primate evolution are beyond the scope of this review; however, we will briefly review the mental structure of ToM and the proposed subtypes of this ability, as this information is relevant to interpreting the findings of schizophrenia studies.

Based on autism studies, researchers suggest that there is a separate module in the brain that evolved specifically for mentalizing ability (Scholl and Leslie, 1999); however, other authors oppose the idea of a modular cognitive structure completely isolated from other cognitive processes. According to this account, mental structures that are important for other cognitive processes are also used for mentalizing. The most common explanations of ToM are theory theory (Perner, 1991; Apperley, 2008) and simulation theory (Gordon, 1986; Gallese et al., 2004). According to theory theory, there are some superordinate rules and representations for describing mental states of self and others. Individuals create a theory to explain others’ behaviors based on information about them. Simulation theory defines mentalizing in a less cognitive way; individuals use their own mental states to examine behaviors or information reflecting the mental state of others. Understanding the thoughts of another person is only possible by creating a similar experience inside the observer’s own brain. Mirror neurons were suggested to mediate this process (Gallese et al., 2004). These 2 theories remain contentious and other alternative theories have been proposed (Apperly, 2008).

During the last 20 years many tests were developed to measure ToM ability, which have expanded the boundaries of the concept defined by ToM. It is difficult to understand ToM as a unitary concept. Some authors attempted to define subtypes of ToM. Tager-Flusberg and Sullivan (2000), and Sabbagh (2004a) defined 2 subtypes of ToM. One of these ToM subtypes is social-cognitive ToM, which can be defined as the ability to infer the mental state of others based on observation of their behavior. False-belief tasks are classical examples of this type of ToM. The second subtype of ToM defined by these authors is the ability to perceive the mental state of others based on directly observed information (social-perceptual ToM). The eyes task is most commonly used to measure this ability. Unlike social-cognitive ToM, social-perceptual ToM is suggested to be independent of other cognitive abilities, but dependent on emotion recognition skills. Normally, we require both abilities to understand the mental state of others. For example, to comprehend that what a friend said to us has an ironic meaning, we must pay attention to his mimicking, gestures, and tone of voice. In addition, we should examine the words he used and consider his past thoughts regarding the current subject. Nonetheless, it is also possible to suggest that social-perceptual ToM does not require building a theory and so it is another kind of social cognitive ability that cannot be referred to as ToM. In another study, affective and cognitive ToM subtypes were defined based on the content of inference (Shamay-Tsoory et al., 2007b).
A series of imaging studies were conducted in order to identify the functional neuroanatomy of mentalizing ability. During ToM tasks the ventromedial frontal cortex, posterior superior temporal sulcus (STS), temporal pole, and temporoparietal junction were the most commonly activated regions (Fletcher et al., 1995; Goel et al., 1995; Gallagher et al., 2000; Vogeley et al., 2001; Brunet et al., 2003; Völlm et al., 2005). While the ventromedial frontal cortex specializes in mentalizing ability, other regions seem to be important for analyzing social cues (Frith and Frith 2003, Gallagher and Frith 2003).

Only a few studies investigated the neuroanatomy of social-perceptual ToM. Sabbagh et al. (2004) demonstrated orbitofrontal and medial temporal cortex activation during the eyes task. The orbitofrontal cortex appears to play a more important role in social-perceptual aspect of ToM and empathy (Lee et al., 2004). Brain regions that mediate ToM abilities were less responsive to social cues in schizophrenia. Brunet (2003) showed that there was right prefrontal cortex activation in controls, but not in schizophrenics during nonverbal ToM tasks. Marjoram et al., (2006) reported decreased prefrontal cortex acti-

TABLE 1. Studies that investigated ToM in schizophrenia spectrum disorders

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Description</th>
<th>ToM test</th>
<th>Other Information</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corcoran et al., 1995</td>
<td>55 Sch, 30 HC, 14 anxious/depressive controls</td>
<td>Hinting</td>
<td>Patients were grouped according to symptoms, 8 Sch patients in remission</td>
<td>ToM is impaired in Sch (even after IQ is corrected). No deficit in remission. IQ correlated to ToM</td>
</tr>
<tr>
<td>Frith and Corcoran, 1996</td>
<td>55 Sch, 22 HC, 13 anxious/depressive controls</td>
<td>1st and 2nd degree FB and deception</td>
<td>Patients were grouped according to symptoms, 9 Sch patients in remission matched for IQ</td>
<td>Sch: impaired only in 2nd degree FB</td>
</tr>
<tr>
<td>Corcoran et al., 1997</td>
<td>44 Sch, 40 HC, 7 anxious/depressive controls</td>
<td>10 ToM-jokes (7 FB-3 deceptions), 10 control-jokes</td>
<td>IQ associated with ToM Patients were grouped according to symptoms</td>
<td>Sch: impaired ToM</td>
</tr>
<tr>
<td>Langdon et al., 1997</td>
<td>20 Sch, 20 HC</td>
<td>FB- picture-sequencing</td>
<td>SAPS, SANS 3 factors of Liddle</td>
<td>ToM impaired in sch. General sequencing deficit was related to all symptoms. Negative symptoms were associated with FB sequencing deficit</td>
</tr>
<tr>
<td>Sarfati et al., 1997a</td>
<td>12 Sch (6 FTD+), 12 depression, 12 HC</td>
<td>15 FB cartoon, 15 CIT</td>
<td>SAPS, SANS, TLC</td>
<td>Sch impaired ToM FDB+ group was more impaired in CIT</td>
</tr>
<tr>
<td>Sarfati et al., 1997b</td>
<td>24 Sch (12 FTD+), 24 HC 12 depression</td>
<td>CIT cartoon</td>
<td>PANSS</td>
<td>Sch impaired in 2nd degree ToM</td>
</tr>
<tr>
<td>Doody et al., 1998</td>
<td>28 Sch, 10 depressive, 19 mild learning deficit, 18 Sch + learning deficit, 20 HC</td>
<td>1st and 2nd degree ToM tasks</td>
<td></td>
<td>Sch: low performance</td>
</tr>
<tr>
<td>Drury et al., 1998</td>
<td>14 Sch, 10 psychotic, 12 depression</td>
<td>2. FB, metaphor, irony</td>
<td>Acute and remitted phases</td>
<td>Sch impaired in acute psychosis, no between-group difference in remission</td>
</tr>
<tr>
<td>Mitchley et al., 1998</td>
<td>18 Sch, 13 psychiatric controls</td>
<td>Irony</td>
<td>PANSS, IQ</td>
<td>Sch: low performance</td>
</tr>
<tr>
<td>Murphy, 1998</td>
<td>37 Sch, 23 personality disorder</td>
<td>1st and 2nd degree FB and deception</td>
<td>IQ, memory, executive functions</td>
<td>IQ, memory, and executive function deficits were related to ToM impairment</td>
</tr>
<tr>
<td>Langdon and Coltheart, 1999</td>
<td>40 students</td>
<td>FB-picture sequencing</td>
<td>SPQ</td>
<td>Students with high schizotypy scores had ToM impairment</td>
</tr>
<tr>
<td>Pilowsky et al., 2000</td>
<td>12 early onset Sch, 12 autism, 12 HC</td>
<td>FB, deception</td>
<td></td>
<td>Sch impaired only in FB, autistic patients had the greatest impaired</td>
</tr>
<tr>
<td>Russell et al., 2000</td>
<td>5 sch, 7 HC</td>
<td>Eyes</td>
<td></td>
<td>Sch more impaired</td>
</tr>
<tr>
<td>Sarfati et al., 1999</td>
<td>13 disorganized Sch, 13 Sch, 13 depression, 13 HC</td>
<td>Comics</td>
<td></td>
<td>ToM impaired in disorganized patients</td>
</tr>
<tr>
<td>Sarfati and Hardy-Bayle, 1999</td>
<td>25 Sch (15 FTD+), 10 BD, 15 SK</td>
<td>CIT cartoon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
vation in positive symptom positive relatives of patients with schizophrenia. Russell et al., (2000) reported decreased inferior frontal and insular cortex activation in response to the eyes task in schizophrenic patients.

Methods Used to Assess ToM and Their Reliability

Many tasks have been developed for measuring ToM. Moreover, various tests have been developed by different researchers and in subsequent studies the same authors measured ToM with different assessment tools, which makes comparing the results difficult.

Most well known examples of ToM tests employ false belief tasks (Frith and Corcoran, 1996). The Sally and Anne test is the most widely known of these tasks. In this task, subjects are told (verbally or visually) a story in which they should understand that there was a change that is known by them, but not with another character.
in the story. Subjects should predict the behavior of the other based on this information (first-degree ToM). Normal children acquire this skill by about age 3 or 4 years. In more complex versions of these tasks, the number of characters is increased and subjects should predict the behavior of the other based on the other’s knowledge about another character (second-order ToM). In deception tasks subjects should recognize the deceptive behavior of the story character towards another character in the story. This task also has first-order, second-order, and third-order versions. Nonverbal versions of these tasks have also been developed (Langdon et al., 1997; Harrington et al., 2005). A different task developed by Sarfati et al. (1997a) asks subjects to infer the intention of characters in the story.

Indirect speech tasks measure the ability to understand hidden meanings (ironic, hinting, or metaphoric) behind what is said by one character in the story to another (Corcoran et al., 1995; Sprong et al., 2007).

TABLE 1. continued from previous page

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>ToM test</th>
<th>Other</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langdon and Coltheart, 2004</td>
<td>18 high-schizotypy, 18 low-schizotypy</td>
<td>irony, metaphor</td>
<td>SPQ</td>
<td>Irony impairment schizotypy related</td>
</tr>
<tr>
<td>Brüne, 2005</td>
<td>23 Sch</td>
<td>FB sequencing and 1st and 2nd FB, deception</td>
<td>Social functioning, face recognition, other cognitive</td>
<td>ToM and duration of illness predicts social functioning</td>
</tr>
<tr>
<td>Brüne and Bodenste in, 2005</td>
<td>31 Sch</td>
<td>FB sequencing and 1st and 2nd Degree FB, deception</td>
<td>PANSS, executive function, proverbs</td>
<td>Proverbs variance 39% predicted by ToM</td>
</tr>
<tr>
<td>Harrington et al., 2005</td>
<td>25 Sch (13 persecution+ 12 persecution-) HC</td>
<td>FB sequencing and 1st and 2nd Degree FB, deception</td>
<td>IQ, SAPS, SANS</td>
<td>ToM impaired only in persecution+</td>
</tr>
<tr>
<td>Kelemen et al., 2005</td>
<td>52 Sch, 30 HC</td>
<td>Eyes</td>
<td>PANSS</td>
<td>ToM impaired both in acute phases and remission</td>
</tr>
<tr>
<td>Kelemen et al., 2005</td>
<td>52 Sch, 30 HC</td>
<td>Eyes</td>
<td>PANSS</td>
<td>ToM related to negative symptoms</td>
</tr>
<tr>
<td>Kelemen et al., 2005</td>
<td>52 Sch, 30 HC</td>
<td>Eyes</td>
<td>PANSS</td>
<td>ToM impaired in patients. Delusions were related to ToM</td>
</tr>
<tr>
<td>Marjoram et al., 2005</td>
<td>15 Sch, 15 affective psychosis, 15 HC</td>
<td>Hinting</td>
<td>Inpatient, outpatient, positive symptoms</td>
<td>Sch impaired in ToM</td>
</tr>
<tr>
<td>Marjoram et al., 2005b</td>
<td>20 Sch, 20 HC</td>
<td>Visual ToM comics</td>
<td>IQ, executive functions, visual/linguistic concept processing, childhood social functioning</td>
<td>ToM deficit was related to social functioning and concept processing, ToM related to negative symptoms (SANS r = 0.33)</td>
</tr>
<tr>
<td>Schenkel et al., 2005</td>
<td>42 Sch</td>
<td>Hinting</td>
<td>Executive functions, emotion recognition, memory, attention, negative symptoms</td>
<td>ToM related to negative symptoms</td>
</tr>
<tr>
<td>Bell and Mishara, 2006</td>
<td>267 stabile Sch outpa tients</td>
<td>Hinting</td>
<td>PANSS, theory of biology</td>
<td>Sch impaired in ToM</td>
</tr>
<tr>
<td>Bonhstein et al., 2006</td>
<td>41 Sch, 22 HC, 24 mood disorders, 7 other psychotic</td>
<td>ToM cartoon</td>
<td>SAPS, theory of biology</td>
<td>Sch impaired in ToM</td>
</tr>
<tr>
<td>Bora et al., 2006</td>
<td>50 Sch</td>
<td>Eyes, Hinting</td>
<td>Social functioning</td>
<td>ToM related to social functioning, working memory and other executive functions</td>
</tr>
<tr>
<td>Bömmer and Brüne, 2006</td>
<td>21 delusional disorder, 22 HC</td>
<td>Proverbs, FB sequencing and 1st and 2nd degree FB</td>
<td>Executive functions</td>
<td>Impaired ToM in inpatients, did not persist after correction for executive function</td>
</tr>
<tr>
<td>Inoue et al., 2006</td>
<td>30 Sch, 30 HC</td>
<td>Picture sequencing</td>
<td>Near discharge or outpatients</td>
<td>Sch ToM is impaired</td>
</tr>
<tr>
<td>Irani et al., 2006</td>
<td>10 Sch, 10 Sch-relative, 10 HC</td>
<td>Eyes</td>
<td>Self face recognition</td>
<td>Patients and relatives are impaired in ToM</td>
</tr>
</tbody>
</table>
Tests that aim to measure social-perceptual aspects of ToM are quite rare. In schizophrenia studies the only test that has been used to measure this ability is the eyes task. In the eyes task a subject’s ability to infer the mental state (not simple emotions) of another person by viewing his eyes is measured (Baron-Cohen et al., 2001).

The psychometric characteristics of all of these tests have not been investigated in detail. The number of items on these different tests are vary widely. While some tests include only one story, others have many more items. Even tests that assess the same type of ToM task vary in difficulty. Moreover, the same task is applied differently from one study to another (for example, some researchers present the ToM story visually, while others verbally, and some researchers repeat the task item). Furthermore, most of these tasks have been developed for autistic chil-

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>ToM test</th>
<th>Other</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langdon et al., 2006a</td>
<td>22 Sch, 18 HC</td>
<td>FB Picture sequencing</td>
<td>outpatients</td>
<td>Sch ToM is impaired</td>
</tr>
<tr>
<td>Langdon et al., 2006b</td>
<td>34 Sch, 21 HC</td>
<td>FB Picture sequencing</td>
<td>outpatients</td>
<td>Sch ToM is impaired</td>
</tr>
<tr>
<td>Marjoram et al., 2006</td>
<td>13 Sch, 12 Sch relative psychotic +, 13 akraba psychotic-</td>
<td>Hinting, cartoon,</td>
<td></td>
<td>Sch and psychotic + relatives were impaired</td>
</tr>
<tr>
<td>Mazza et al., 2006</td>
<td>20 Sch, 20 HC, 18 frontal lobe injury</td>
<td>FB</td>
<td>Executive functions, social cognition</td>
<td>Both patient groups are impaired in ToM</td>
</tr>
<tr>
<td>Murphy, 2006</td>
<td>13 Sch, 13 Asperger, 13 personality disorder</td>
<td>Eyes, FB1, FB2</td>
<td>IQ</td>
<td>Sch and Asperger impaired in ToM</td>
</tr>
<tr>
<td>Pinkham and Penn, 2006</td>
<td>49 Sch, 44 HC</td>
<td>Hinting, FB deception</td>
<td>Outpatients with minimal symptoms</td>
<td>Social cognition contributed to functioning, independent of other tests. Sch impaired in both ToM tasks</td>
</tr>
<tr>
<td>Pickup, 2006</td>
<td>62 university students</td>
<td>Strange stories</td>
<td>Schizotypy scale</td>
<td>Positive-schizotypy related to ToM</td>
</tr>
<tr>
<td>Russell et al., 2006</td>
<td>61 Sch, 22 HC</td>
<td>ToM- animation</td>
<td>Patients divided into subgroups, 13 remitted</td>
<td>Behavioral (negative and FTD+ most impaired, paranoid patients were also impaired</td>
</tr>
<tr>
<td>Zalla et al., 2006</td>
<td>40 Sch, 18 HC</td>
<td>ToM story</td>
<td>22 disorganized, 18 non-disorganized</td>
<td>ToM deficit was related to other cognitive deficits in disorganized patients</td>
</tr>
<tr>
<td>Bora et al., 2007</td>
<td>58 Sch</td>
<td>Eyes, 1st and 2nd degree FB</td>
<td>Insight, executive functions</td>
<td>ToM deficit was related to poor insight, working memory, and executive functions</td>
</tr>
<tr>
<td>Brüne et al., 2007</td>
<td>38 Sch, 29 HC</td>
<td>Picture sequencing</td>
<td>Executive functions, PANSS and social skills</td>
<td>ToM was the best predictor of social skills in sch</td>
</tr>
<tr>
<td>Fiszdon et al., 2007</td>
<td>199 Sch, 73 SA</td>
<td>ToM Questionnaire</td>
<td>Executive functions, memory, psychomotor speed, emotion recognition, stable outpatients</td>
<td>SA performed better than Sch in Hinting. Both groups performed similarly in other tests</td>
</tr>
<tr>
<td>Mizrahi et al., 2007</td>
<td>71 psychotic disorder (17 non-medicated)</td>
<td>Hinting</td>
<td>82% Sch, 15% SA, 6 weeks longitudinal in non-medicated</td>
<td>ToM was related to negative symptoms. Positive symptoms and ToM improved after antipsychotic treatment.</td>
</tr>
<tr>
<td>Shamay-Tsoory et al., 2007a</td>
<td>22 Sch, 55 HC</td>
<td>1st and 2nd degree</td>
<td>SANS, PANSS</td>
<td>Sch: only affective ToM is impaired. Affective ToM is related to negative symptoms</td>
</tr>
<tr>
<td>Jahnsan and Sergi, 2007</td>
<td>52 high- schizotypy, 40 low-schizotypy</td>
<td>Cognitive battery</td>
<td></td>
<td>ToM unrelated to schizotypy</td>
</tr>
<tr>
<td>Martino et al., 2007</td>
<td>21 stable Sch, 15 HC</td>
<td>Executive functions, negative symptoms, decision making</td>
<td></td>
<td>Negative symptoms related to ToM. SANS (r = –0.68)</td>
</tr>
<tr>
<td>Savina et al., 2007</td>
<td>84 Sch, 24 HC (23 typicals, 18 clozapine, 20 olanzapine, 23 risperidone)</td>
<td>Picture sequencing, 2. FB</td>
<td></td>
<td>ToM impairment was greater in patients using typical antipsychotics or risperidone</td>
</tr>
</tbody>
</table>

TABLE 1. continued from previous page
dren. All of these factors should be considered when interpreting findings about ToM.

ToM Investigations in Schizophrenia

Frith suggested that many symptoms of schizophrenia could be explained by deficits in inferring the mental state of others and self. According to Frith, difficulties in inferring others’ intentions and thoughts can cause reference and paranoid delusions, and very severe impairment in ToM can cause volitional difficulty (negative and disorganized symptoms). Frith suggested that the delusion of control is only related to self-monitoring deficits. This theory predicts that ToM ability should be relatively intact in patients that have the final group of symptoms or remitted patients.

ToM performance in patients with schizophrenia and healthy controls were compared in 46 studies (Table 1). Lower performance in patients with schizophrenia is the common finding in all these studies. In a recent study Sprong et al. (2007) reported findings of the first meta-analysis of ToM impairment in schizophrenia. According to this study, schizophrenia patients have very severe ToM impairment (Cohen D = 1.25). This effect size is comparable to the largest effect sizes reported for other cognitive tests; however, their study has some shortcomings. There was significant heterogeneity between the studies they analyzed. This is an expected finding when one considers that outcomes of very different tasks were combined. Additionally, the researchers used dichotomous data to calculate effect sizes, which for some is a controversial approach. Other studies used only a psychiatric control group (Drury et al., 1998; Mitchley et al., 1998).

ToM deficits have also been investigated in other schizophrenia spectrum disorders. A single study conducted with delusional disorder patients reported lower ToM performance in schizophrenia patients than in controls (Bommer et al., 2006). The relationship between schizotypal features and ToM has also been examined. Studies that investigated the association between schizotypy and ToM reported a moderate but positive relationship (Langdon and Coltheart, 1999; Langdon and Coltheart, 2004; Pickup, 2006); however, another study reported that was no relationship between schizotypy and ToM impairment (Jahnsan et al., 2007).

Relationship Between Symptoms and ToM

One of the main focuses of previous studies in schizophrenia is the relationship between mentalizing and symptoms. Theories regarding this association are rooted in the theory of Frith (1992). The 2 main methods used to investigate the ToM-symptom relationship are sub-grouping patients and correlational analysis. The first studies to examine this subject were conducted by Corcoran and

TABLE 1. continued from previous page

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>ToM test</th>
<th>Other</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shamay-Tsoory et al., 2007b</td>
<td>24 Sch, 43 brain injury, 28 HC</td>
<td>1st and 2nd degree cognitive and affective ToM</td>
<td>Sch and frontal lesion patients impaired affective ToM</td>
<td></td>
</tr>
<tr>
<td>Shamay-Tsoory et al., 2007c</td>
<td>26 Sch, 31 HC</td>
<td>1st and 2nd degree cognitive and affective ToM</td>
<td>Empathy, cognitive tests</td>
<td>Affective ToM related to social functioning, negative symptoms-empathy association</td>
</tr>
<tr>
<td>Stratta et al., 2007</td>
<td>20 Sch</td>
<td>Irony</td>
<td>PANSS</td>
<td>Irony related to positive signs</td>
</tr>
<tr>
<td>Bertrand et al., 2007</td>
<td>36 Sch, 27 HC</td>
<td>Hinting, 4 factors, social intelligence test</td>
<td>First episode Cognitive tests</td>
<td>Social cognition was impaired in schizophrenia, not related to symptoms</td>
</tr>
<tr>
<td>Bora et al., 2008a</td>
<td>91 Sch, 55 HC</td>
<td>Hinting, Eyes</td>
<td>Divided into 3 groups based on PANSS (asymptomatic, negative symptoms+, positive + negative symptoms +)</td>
<td>ToM impaired in all patient groups. ToM deficits did not persist after correcting for working memory in asymptomatic patients</td>
</tr>
<tr>
<td>Bora et al., 2008b</td>
<td>30 Sch, 30 HC</td>
<td>Hinting, Eyes</td>
<td>Empathy</td>
<td>Sch: empathy deficits in others’ assessments. ToM impairment related to empathy deficit</td>
</tr>
<tr>
<td>Mo et al., 2008</td>
<td>29 Sch (remitted) 22 HC</td>
<td>Metaphor/irony</td>
<td>PANSS</td>
<td>Sch irony, hinting, 1st and 2nd degree FB impaired</td>
</tr>
</tbody>
</table>

Sch: Schizophrenia; HC: healthy controls; ToM: theory of mind; CIT: Character Intention Test; FB: false belief; FTD: formal thought disorder; SPQ: Schizotypal Personality Questionnaire.
Frith in which they grouped patients according to Frith's theory (Corcoran and Frith, 1996; Frith and Corcoran, 1996; Corcoran et al., 1997). In these studies ToM deficits were only observed in patients with paranoid or behavioral symptoms. These studies appear to have used the same sample and have some contentious features, the most important of which is the hierarchical definition of symptom groups. In these studies, only in hierarchically above groups, subjects were allowed to have symptoms of other groups. As such, it is possible to suggest that the findings of these studies could be related to the severity of symptoms in some groups, rather than specific symptoms. Furthermore, studies that investigated the relationship between delusions and ToM reported contradictory findings (Table 1.). Many of these studies did not observe a positive relationship between the severity of delusions and ToM impairment (Langdon et al., 2001; Mizrahi et al., 2007); however, findings of other studies support the theory that there is a relationship between ToM deficit and delusions (Greig et al., 2004; Harrington et al., 2005).

Following Frith, Harde-Bayle suggested another well-known theory to explain ToM dysfunction in schizophrenia. This model posited that thought disorders are the source of ToM deficits in schizophrenia (Sarfati et al., 1997a, 1997b). According to this theory, ToM performance should be intact in non-thought-disordered patients. Consistent with this theory, studies by Frith, Harde-Bayle, and others (Greig et al., 2004; Russell et al., 2006) reported severe ToM impairment in patients with schizophrenia (Table 1.); however, there are contradictory findings regarding the second assumption of the theory, which is that patients without a thought disorder have intact ToM ability. Furthermore, as discussed below, studies that reported ToM deficits, even in remitted patients, contradict the theories of Frith and Harde-Bayle.

Other studies reported a relationship between ToM impairment and negative symptoms (Mazza et al., 2001; Bell and Mishara, 2003; Martino et al., 2007; Mizrahi et al., 2007), and the fact that there were some similarities observed between patients with severe negative symptoms and autistic patients is noteworthy.

The above-mentioned studies suggest that all 3 symptom clusters of schizophrenia could contribute to ToM deficits in schizophrenia; however, these associations might have many possible causes and can change according to illness state. Furthermore, the relationship between symptoms and other cognitive deficits may play a role in the ToM-symptom relationship.

Could ToM Deficits Be a Trait Characteristic of Schizophrenia?

Most studies about ToM and schizophrenia were conducted with symptomatic patients. Some early studies included, in addition to symptomatic patients, a small number of remitted patients and did not find any ToM impairment in these patients (Corcoran and Frith, 1996; Frith and Corcoran, 1996). These findings support the notion that ToM impairment is a characteristic of acute psychosis; however, studies conducted in the years that followed did not support these earlier studies. Herold et al. (2002) reported ToM deficits in schizophrenia patients whose positive and negative symptoms were not significant. One of the most important of these studies was conducted by Jannsen et al. (2003). In these studies schizophrenia, both patients that were in remission and their healthy relatives were observed to have impaired ToM abilities.

Other studies conducted by Bell and Mishara (2006), Inoue et al. (2006), Martino et al. (2007), Mo et al. (2007), and Bora et al. (2008a) provided additional support regarding the prevalence of ToM deficits in remitted schizophrenia patients. The meta-analysis of Sprong (2007) also reported ToM impairment of medium effect (d = 0.69) in remitted patients. There are several possible reasons that these studies, but not earlier ones, observed ToM impairment in remitted patients:

1. More difficult tasks like faux pas and hinting were more commonly used in later studies. Earlier studies tended to use easier and shorter tasks;
2. Lack of power in earlier studies related to small samples;
3. Earlier studies were conducted by researchers that suggested there was a relationship between symptoms and ToM impairment; however, a weak point of some later studies was a poor definition of remission and neglect of residual symptoms. For example, Inoue et al. (2006) examined patients before discharge, and Martino et al. (2007) recruited patients that had not been admitted to hospital and whose medications had not been changed in previous 4 months. We should expect residual symptoms in all these studies, except Herold et al.’s (2002).

In a study conducted by our group, ToM impairment was investigated in 91 stable schizophrenia patients (Bora et al., 2008a). The inclusion criteria of this study were similar to Martino et al.’s (2007); however, patients were subsequently further sub-grouped. According to the remission criteria used by Herold et al.
(2002), only 35% of the patients were free of positive and negative symptoms. In this study residual positive and negative symptoms were associated with more severe ToM impairment; however, patients with residual symptoms were also more impaired than controls. ToM abilities were also impaired in the relatives of schizophrenia patients (Jannsen et al., 2003; Irani et al., 2006); yet, ToM impairment in relatives was reported to be associated with psychosis-like features in some studies (Kelemen et al., 2004; Marjotam et al., 2006).

Another factor that can influence ToM abilities in remitted patients is antipsychotics, but very few studies have investigated this possibility. Salvina et al. (2007) reported better ToM performance in patients using clozapine or olanzapine than in patients using risperidone or typical antipsychotics. Nonetheless, it is not possible to conclude if these results are related to differences in treatment or other group characteristics. In another study (Mizrahi et al., 2007), improvement in ToM deficits was observed following 2 weeks of antipsychotic treatment.

Are ToM Deficits Independent of Other Cognitive Deficits?

Studies of healthy subjects showed relationships between ToM and other cognitive abilities, such as memory, executive functions, and working memory. Patients with schizophrenia are impaired in all these domains. This fact raises the possibility that ToM deficits are a secondary finding to other cognitive deficits. Corcoran et al. (2003) reported a relationship between cognitive deficits and ToM impairment. Brüne (2003) observed an association between IQ impairment and ToM deficits, and Langdon et al. (2001) reported that ToM deficits in schizophrenia might be due to deficits in executive functions. Other studies also reported associations between ToM impairment and executive functions/working memory (Murphy, 1998; Langdon et al., 2001; Bora et al., 2006; Bora et al., 2007), verbal memory (Murphy, 1998), and IQ deficits (Corcoran et al., 1995; Murphy, 1998; Brüne, 2003).

Explaining ToM impairment in schizophrenia as being exclusively due to other cognitive deficits does not seem possible, at least in symptomatic patients; however, in patients without residual negative and positive symptoms ToM deficits were reported to remit following correction of working memory deficits (Bora et al., 2008). In another study conducted in patients with delusional disorder, ToM impairment lost its significance, compared to controls, after correction for executive functions (Bömmel and Brüne, 2005). ToM deficits in schizophrenia were reported to be more severe than in schizoaffective disorder (Fiszdon et al., 2007) and mood disorders (Sarfati et al., 1997a); however, it is possible to suggest that lower performance in schizophrenia patients than in schizoaffective, delusional disorders, and affective psychoses patients is related to subgroups of patients with severe negative symptoms and poor prognosis. Furthermore, recent genetic findings, such as those reported by Owens et al. (2007), raise questions about the classification of schizophrenia and bipolar disorder. ToM deficits have been shown to persist in remitted BD patients (Bora et al., 2005; Olley et al., 2005). As in delusional disorder, ToM deficits in BD seem to be secondary to other cognitive deficits (Bora et al., 2005).

Impact of ToM Impairment on Clinical Presentation

One of the most significant findings in schizophrenia patients is poor social functioning. Social impairment is relatively independent of symptoms, which suggests that poor social functioning might be related to other factors, such as cognitive deficits. Most studies of schizophrenia have investigated the relationship between social impairment in such cognitive domains as attention, memory, and executive functions. In addition to these impairments, ToM deficits might be expected to contribute to social impairment in schizophrenia. This subject has not been sufficiently investigated; yet, several recent studies showed that ToM deficits are an important predictor of poor social functioning (Roncone et al., 2002; Brüne et al., 2005; Bora et al., 2006; Pinkham and Penn, 2006; Brüne et al., 2007). Empathy, an important ability for social functioning, might also be related to ToM (Bora et al., 2008b).

Another important characteristic of schizophrenia is poor insight. Both psychological defense mechanisms and cognitive deficits are suggested to play a role in poor insight. A substantial number of studies investigated the neuropsychology of insight deficits in schizophrenia and suggest that poor insight is related to only some executive functions. Among executive function tests, low Wisconsin Cart Sorting Test (WCST) scores have been most commonly associated with poor insight. Cognitive flexibility, which is measured with this test, is suggested to be important for self-awareness of illness; however, as a recent meta-analysis (Aleman et al., 2006) confirmed, this relationship is only moderately strong ($r = 0.25$). Other studies have shown that metacognition might be important for insight. For example, the ability to notice errors on the WCST was more strongly associated with poor insight than the task itself (Koren et al., 2004).
ToM might also be important for self-awareness of illness. ToM is essential to the ability to see one's self from the perspective of others, but an insufficient number of studies have tested this hypothesis. Drake et al. (2004) did not observe a relationship between mentalizing ability and the visual ToM task. Bora et al. (2007) reported a relatively strong relationship between ToM and poor insight in remitted schizophrenia patients. This is the first evidence to indicate a relationship between ToM and self-awareness of illness in schizophrenia patients. Nonetheless, this result should be confirmed by other researchers.

CONCLUSION

Severe ToM impairment is a ubiquitous feature of schizophrenia. While there is evidence that ToM deficits are exacerbated in acute psychosis, mentalizing impairment persists in remission. Furthermore, ToM dysfunction is observed in the healthy relatives of patients with schizophrenia. These results raise the possibility that ToM deficits might be an endophenotype of the illness.

These results should be interpreted with caution. The relationship between subsyndromal signs and ToM deficits in relatives has not been sufficiently studied. Moreover, ToM deficits in relatives and remitted patients seem to be secondary to other cognitive deficits, such as frontal lobe impairment, rather than being primary characteristics of the illness. A multidimensional explanation beyond the theories of Frith and Harde-Bayle is necessary to fully explain ToM impairment in schizophrenia. Neither a model based on temporary dysfunction in the ToM module during psychosis nor considering ToM impairment secondary to other cognitive deficits can entirely explain ToM impairment in schizophrenia. Moreover, ToM ability consists of multiple social cognitive skills. Examining the subcomponents of this ability is important.

Neuropsychological and imaging studies conducted with the healthy relatives of patients with BD and schizophrenia, and with other high-risk groups should be considered. These studies should be conducted with larger samples and other cognitive deficits should be controlled for. Additionally, developing new ToM measures with better psychometric features is important for future studies.

REFERENCES

Brunet E, Sarfati Y, Hardy-Bayle MC et al. (2003b) Abnormalities of brain function during a nonverbal theory of mind task in schizophrenia. Neuropsychologia, 41:1574-82.

Hove: Lawrence Erlbaum Associates

Mazzola M, Costagliola C, Di Michele V et al. (2006) Deficit of social cognition in subjects with surgically treated frontal lobe lesions and in
subjects affected by schizophrenia. Eur Arch Psychiatry Clin Neurosci, 185:
in schizophrenia. Cognit Neuropsychiatry, 3: 127-138.
Mo S, Su Yanjie, Chan RCK et al. (2008) Comprehension of metaphor
and irony in schizophrenia during remission: the role of theory of mind
and IQ. Psychiatry Res, 157, 21-29.
Murphy D (1998) Theory of mind in a sample of men with
schizophrenia detained in a special hospital: its relationship to symptom
profiles and neuropsychological tests. Curr Behav & Ment Health, 8:13-
26.
Murphy D (2006) Theory of mind in Asperger's syndrome,
schizophrenia and personality disordered forensic patients. Cognit
Neuropsychiatry, 11:99-111.
Murphy D (2007) Theory of mind functioning in mentally disordered
offenders detained in high security psychiatric care: its relationship to
clinical outcome, need and risk. Crim Behav & Ment Health, 17:300-311.
Olley AL, Malhi GS, Bachelor J et al (2005) Executive functioning and
theory of mind in bipolar disorder. Bipolar D sorrow, 7: 43-52 (Suppl 5)
MA, MIT Press.
Pickup GJ, Frith CD (2001) Theory of mind impairments in
schizophrenia: symptomatology, severity and specificity. Psychol Med, 31: 207-220
Cognit Neuropsychiatry, 11:177-92.
of children with schizophrenia, children with autism and normally
predictors of interpersonal skill in schizophrenia. Psychiatr Res, 143: 167-
178.
Premack D, Woodruff G (1978) Does the chimpanzee have a theory
Randall F, Corcoran R, Day JC et al. (2003) Attention, theory of
mind, and causal attributions in people with persecutory delusions: A
Roncone R, Falloon IR, Mazza M et al. (2002) Is theory of mind in
schizophrenia more strongly associated with clinical and social functioning
than with neurocognitive deficits? Psychopathology, 35:280-288
Russell TA, Rubia K, Bullmore ET et al. (2000) Exploring the social
brain in schizophrenia: left prefrontal underactivation during mental state
Russell TA, Reynaud E, Herba C et al. (2006) Do you see what I see?
Interpretations of intentional movement in schizophrenia. Schizophr Res, 81:101-11.
Sabbagh MA (2004a) Understanding the orbitofrontal contributions
to theory of mind reasoning: implications for autism. Brain Cog, 55: 209-
219.
Sabbagh MA (2004b) Neural correlates of mental state decoding in
human adults: an event-related potential study. J Cogn Neurosci, 16:415-
26.