Sleep and Sleep Electroencephalogram in Depressed Patients Treated With Phenelzine

Hans-Peter Landolt, PhD; Eric B. Raimo, MD; Bradley J. Schnierow, MD; John R. Kelsoe, MD; Mark H. Rapaport, MD; J. Christian Gillin, MD

Background: The beneficial effect of antidepressant interventions has been proposed to depend on suppression of rapid eye movement (REM) sleep or inhibition of electroencephalographic (EEG) slow-wave activity (SWA) in non-REM sleep. Use of the monoamine oxidase inhibitor phenelzine sulfate can eliminate REM sleep. We studied the relation between REM sleep suppression and antidepressant response and the effect of phenelzine therapy on sleep EEG power spectra.

Methods: Open-labeled prescriptions of 30 to 90 mg of phenelzine were given to 11 patients with major depressive disorder (6 men and 5 women; mean age, 41.4 years); all were physically healthy. Mood, dream recall, sleep, sleep EEG, and ocular and muscular activity during sleep were studied before treatment and during the third and fifth weeks of pharmacotherapy.

Results: Six patients remitted from depression, 2 responded partially, and 3 showed no antidepressant response. Independent from clinical response, REM sleep was dramatically suppressed. On average, only 4.9 minutes of REM sleep was observed in treatment week 5, and it was completely absent in 6 patients. This effect was compensated for by increased stage 2 sleep. In non-REM sleep, EEG power was higher than at baseline between 16.25 and 25 Hz. Slow-wave activity (power within 0.75-4.5 Hz) and the exponential decline of SWA during sleep were not affected.

Conclusions: Antidepressant response to phenelzine treatment does not depend on elimination of REM sleep or inhibition of SWA in non-REM sleep. In depressed patients, REM sleep is regulated independently from non-REM sleep and can be manipulated without altering the dynamics of SWA.

Arch Gen Psychiatry. 2001;58:268-276
PATIENTS AND METHODS

PATIENTS

Patients with major depressive disorder were recruited by the University of California at San Diego Mental Health Clinical Research Center, San Diego, via advertisements for individuals with depression. After telephone screening, respondents were administered the Structured Clinical Interview for DSM-IV by a trained staff member of the Mental Health Clinical Research Center and were evaluated by medical and psychiatric history, physical examination, standard laboratory tests (chemistry panel, complete blood cell count, human immunodeficiency virus screen, urinalysis, and drug screen), and electrocardiography. Severity of depression was assessed with the Hamilton Rating Scale of Depression (HRSD), the Beck Depression Inventory, and the Profile of Mood States. All diagnoses were presented to and arrived at by consensus conferences of the Mental Health Clinical Research Center.

Patients with current alcohol or substance abuse, bipolar disorder, recent or current major medical comorbid disorder, or the inability to comply with the MAO inhibitor diet were excluded. Subsequently, patients were screened by polysomnography in the sleep laboratory to exclude sleep apnea and nocturnal myoclonus. Written informed consent was obtained before screening.

Twelve patients were enrolled in this depression treatment study. They were paid for the sleep studies in the laboratory. One patient did not meet all inclusion criteria the morning after the baseline night (BL), and his data were excluded from all analyses. All remaining patients (3 women and 6 men; mean ± SD age, 41.4 ± 7.3 years) had a minimum score of 14 on the 17-item HRSD for at least 1 week before BL (Table 1). The mean ± SD number of depressive episodes was 3.0 ± 1.6. The current episode was the first for 2 patients (patients 01 and 14). The mean ± SD duration of the current episode was 203.8 ± 350.6 weeks. It lasted 6 to 150 weeks in 9 patients and 1144 weeks in patient 14 and 572 weeks in patient 18. The mean ± SD age at first onset of depression was 20.0 ± 9.1 years. Except for patients 13 and 15 being treated for hypertension, no patient had a physical condition. Patient 12 did not disclose the use of a centrally acting agent, ie, St John’s wort, until completion of the study. None of the patients had been treated with any psychoactive or sleep medication within at least 2 weeks before initiation of phenelzine treatment or received additional psychotherapy during the study. Four patients were taking minor analgesics occasionally (Table 1). On recording days, moderate caffeine consumption was limited to the morning hours. No alcohol was permitted for the duration of the study, and patients were instructed to keep a regular sleep-wake cycle, with sleep scheduled at their habitual bedtime.

PROCEDURE

The study protocol was approved by the local institutional review boards of the University of California at San Diego and the Veterans Administration Medical Research Foundation, San Diego. In each patient, 3 experimental nights preceded by at least 1 adaptation night were recorded in the completely darkened bedrooms of the sleep laboratory. Adaptation nights were excluded from analyses. The first experimental night served as a drug-free BL. Open-labeled treatment with phenelzine was initiated within 3 days after the BL. An initial dose of 15 mg of phenelzine was increased as tolerated and needed individually to 30 to 90 mg/d by a psychiatrist (E.B.R., B.J.S., J.R.K., or M.H.R.) blind to the sleep EEG findings (Table 1). Follow-up polysomnography was scheduled during weeks 3 and 4 (P3) and 5 and 6 (P5) of phenelzine treatment. Because of a back injury experienced in treatment week 5, night P5 of patient 16 was recorded in week 9 after initiation of treatment.

RESULTS

TREATMENT RESPONSE AND DOSE OF PHENELZINE

The total score of the HRSD (24 items) decreased significantly with treatment (F2,20 = 12.0; P < .004). Mean ± SEM HRSD values dropped from 23.5 ± 1.3 at BL to 14.5 ± 2.7 (P < .004, 2-tailed paired t test) at P3 and 12.5 ± 2.7 (P < .001) at P5. At P5, 6 of the 11 patients were treatment responders, with an HRSD score of 9 or lower.
Correlation analysis revealed no significant correlation between nonresponder, patient 06 (0.7 minutes). Spearman rank analysis patients 01 (16.7 minutes) and 16 (5.3 minutes), and responders, a short duration of REM sleep was left: 2 responded in 6 patients: 2 of 6 responders (patients 12 and 13); their HRSD scores had decreased 36% and 46%, respectively. The remaining 3 responders (patients 11 and 13); their HRSD scores had a reduction of 50% or more from the initial HRSD value (Table 1). Two of the other 5 patients were partial responders (patients 11 and 13); their HRSD scores had decreased 36% and 46%, respectively. The remaining 3 patients did not show improvement in depressive symptoms. The final average daily dose of phenelzine was 65 mg for the 6 responders, 45 mg for the 2 partial responders, and 60 mg for the 3 nonresponders.

VISUALLY SCORED SLEEP VARIABLES AND DREAM RECALL

The major change in sleep induced by phenelzine consisted of a gradual and pronounced suppression of REM sleep (Table 2). In P5, REM sleep was completely eliminated in 6 patients: 2 of 6 responders (patients 12 and 14) and 4 of 5 nonresponders (patients 03, 11, 13, and 18). During the first 5 hours after sleep onset, no REM sleep occurred in 8 patients. In the remaining 3 patients, a short duration of REM sleep was left: 2 responders, patients 01 (16.7 minutes) and 16 (5.3 minutes), and 1 nonresponder, patient 06 (0.7 minutes). Spearman rank correlation analysis revealed no significant correlation between drug-induced reduction of REM sleep and change in the total HRSD score.

Suppression of REM sleep was compensated in part by an increase in stage 2 sleep (duration and percentage) (Table 2). No significant differences between BL and the treatment nights were observed for total sleep time, sleep efficiency, sleep latency, slow-wave sleep, and wakefulness after sleep onset.

Patients reported remembering at least 1 dream in a mean ± SEM 23.2% ± 9.3% of nights in treatment week 1 (n = 11), in 15.0% ± 7.0% of nights in week 2 (n = 10), in 16.0% ± 7.0% of nights in week 3 (n = 10), in 10.5% ± 4.5% of nights in week 4 (n = 10), and in 11.7% ± 5.3% of nights in week 5 (n = 9). Treatment had a different effect on dream recall in antidepressant responders and nonresponders (including partial responders). A 2-way ANOVA with the between factors “group” (responders and nonresponders) and “week” (1-5) disclosed a significant group × week interaction (F4,40 = 2.0; P = .05; group: F1,40 = 6.2; P < .02; week: F4,40 = 0.4; P > .7). Responders recalled significantly fewer dreams after morning awakening in weeks 4 and 5 than in week 1, whereas nonresponders showed no significant change (Table 3).

EEG POWER SPECTRA

Mean all-night EEG power spectra in BL, P3, and P5 were calculated in non-REM sleep (stages 2, 3, and 4).
Statistical analyses revealed no significant phenelzine-induced changes in frequencies below 15 Hz. In contrast, EEG power was higher in P5 than in BL and P3 in the entire 16.25- to 25-Hz band.

In Figure 1B, EEG power values in each frequency bin in non-REM sleep in the second, third, and fourth 90-minute intervals after sleep onset are expressed relative to the corresponding value in the first 90-minute interval. A 2-way repeated-measures ANOVA on absolute power values with the within factors “treatment” (BL, P3, and P5) and “90-minute interval” (1-4) confirmed the significant effect of phenelzine treatment on all bins in the beta frequency range (16.25-25 Hz; minimum $F_{2,20}=4.56; P<.03$). In BL, P3, and P5, power in the delta and theta bands decreased over consecutive intervals. ANOVA revealed significant effects of the factor “interval” between 0.25 and 7 Hz (minimum $F_{3,30}=12.37; P<.001$) and between 9.25 and 17 Hz (minimum $F_{3,30}=4.6; P<.04$). No significant treatment \times interval interaction was detected for any frequency bin.

DYNAMICS OF 1-HZ EEG FREQUENCY BANDS DURING SLEEP

To characterize the effect of phenelzine treatment on the ultradian modulation of EEG frequencies during sleep, the time course of 1-Hz frequency bands between 0.25

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Patient No./Sex/Age, y</th>
<th>MDD</th>
<th>Secondary SCID Diagnoses</th>
<th>Condition</th>
<th>HRSD Score</th>
<th>Phenelzine, mg/d</th>
<th>Concomitant Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/M/43.9</td>
<td>Single episode, severe</td>
<td>None</td>
<td>BL</td>
<td>14/21</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>8/10</td>
<td>60</td>
<td>Multivitamins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>6/8</td>
<td>75</td>
<td>None</td>
</tr>
<tr>
<td>02/F/35.8</td>
<td>Recurrent, moderate</td>
<td>GAD</td>
<td>BL</td>
<td>16/22</td>
<td>0</td>
<td>Ferrous sulfate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>8/8</td>
<td>30</td>
<td>Aspirin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>7/7</td>
<td>45</td>
<td>None</td>
</tr>
<tr>
<td>05/M/39.2</td>
<td>Recurrent, moderate</td>
<td>ADSFR and CoDSFR</td>
<td>BL</td>
<td>15/15</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>16/17</td>
<td>75</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>13/15</td>
<td>90</td>
<td>None</td>
</tr>
<tr>
<td>06/M/29.4</td>
<td>Recurrent, severe</td>
<td>SpecPH</td>
<td>BL</td>
<td>19/25</td>
<td>0</td>
<td>Minoxidil, finasteride, and loperamide hydrochloride</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>22/30</td>
<td>45</td>
<td>Minoxidil, finasteride, and loperamide hydrochloride</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>21/25</td>
<td>60</td>
<td>Minoxidil, finasteride, and loperamide hydrochloride</td>
</tr>
<tr>
<td>11/M/42.2</td>
<td>Recurrent, moderate</td>
<td>Dysthymia</td>
<td>BL</td>
<td>15/25</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>10/15</td>
<td>45</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>11/16</td>
<td>45</td>
<td>None</td>
</tr>
<tr>
<td>12/M/53.5</td>
<td>Recurrent, moderate</td>
<td>ADSFR and CaDSFR</td>
<td>BL</td>
<td>14/21</td>
<td>0</td>
<td>St John’s word and aspirin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>4/6</td>
<td>60</td>
<td>St John’s word</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>6/6</td>
<td>90</td>
<td>St John’s word</td>
</tr>
<tr>
<td>13/F/48.8</td>
<td>Recurrent, moderate</td>
<td>None</td>
<td>BL</td>
<td>19/26</td>
<td>0</td>
<td>Hydrochlorothiazide and captopril</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>22/23</td>
<td>75</td>
<td>Hydrochlorothiazide and captopril</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>10/14</td>
<td>45</td>
<td>Hydrochlorothiazide and aspirin</td>
</tr>
<tr>
<td>14/M/37.5</td>
<td>Single episode, severe</td>
<td>ADSFR, CaDSFR, and CoDSFR</td>
<td>BL</td>
<td>20/27</td>
<td>0</td>
<td>Multivitamins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>15/19</td>
<td>60</td>
<td>Multivitamins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>8/9</td>
<td>75</td>
<td>Multivitamins</td>
</tr>
<tr>
<td>15/F/31.7</td>
<td>Recurrent, moderate</td>
<td>GAD</td>
<td>BL</td>
<td>15/19</td>
<td>0</td>
<td>Hydrochlorothiazide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>3/3</td>
<td>60</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>2/2</td>
<td>60</td>
<td>None</td>
</tr>
<tr>
<td>16/F/44.8</td>
<td>Recurrent, moderate</td>
<td>PDWA, ADEPR, and PTSDFR</td>
<td>BL</td>
<td>20/26</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>4/4</td>
<td>45</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>4/4</td>
<td>45</td>
<td>None</td>
</tr>
<tr>
<td>18/F/48.0</td>
<td>Recurrent, severe</td>
<td>GAD, PDWA, SpecPH, and SocPH</td>
<td>BL</td>
<td>23/31</td>
<td>0</td>
<td>Estrogen, multivitamins, and ginkgo biloba</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>17/24</td>
<td>30</td>
<td>Estrogen and multivitamins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>23/31</td>
<td>30</td>
<td>Estrogen, multivitamins, and ibuprofen</td>
</tr>
</tbody>
</table>

* MDD indicates major depressive disorder (primary Structured Clinical Interview for DSM-IV [SCID] diagnosis); HRSD, Hamilton Rating Scale of Depression; GAD, generalized anxiety disorder; ADSFR, alcohol dependence in sustained full remission; CoDSFR, cocaine dependence in sustained full remission; SpecPH, specific phobia; CaDSFR, cannabis dependence in sustained full remission; PDWA, panic disorder with agoraphobia; ADEPR, alcohol dependence in early partial remission; PTSDFR, posttraumatic stress disorder in full remission; SocPH, social phobia; BL, drug-free baseline night; P3, weeks 3 and 4; and P5, weeks 5 and 6.
and 25 Hz was analyzed in BL and P5 for consecutive 5-minute intervals during the first 5 hours after sleep onset. Figure 2 illustrates relative EEG power, expressed as a percentage of the corresponding all-night mean value in non-REM sleep (stages 2, 3, and 4) as a function of time and frequency. Ultradian modulation by the non-REM/REM sleep cycles was present in virtually all 1-Hz frequency bins (approximately 1-7 Hz), however, existed in the first hour after sleep onset (Figure 2). A 2-way ANOVA with the within factors “treatment” (BL and P5) and “5-minute time bin” (1-60) revealed highly significant main effects (treatment: minimum F_{1,1262} = 223.4; P < .001; time bin: F_{59,1262} = 31.9; P < .001) yet no significant interaction (treatment × time bin: F_{59,1262} = 11.9; P < .001).

The decline in SWA was further analyzed across the first 3 non-REM sleep episodes in BL and across the first three 90-minute intervals after sleep onset in P5. A 2-way repeated-measures ANOVA with the within factors “treatment” (BL and P5) and “interval” (1-3; non-REM episodes or 90-minute intervals) revealed a significant effect of “interval” (BL: F_{2,20} = 27.0; P < .001; time bin: F_{59,1262} = 31.9; P < .001) yet no effect of “treatment” or a significant treatment × interval interaction (Figure 4). In both nights, linear regression analysis on logarithmic relative SWA values disclosed significant correlation coefficients, indicating an exponential decline in SWA (BL: r^2 = 0.997; P5: r^2 = 0.997; P < .004). Slopes and intercepts of the 2 regression lines did not differ.

Table 1. Sleep Variables Derived From Visual Scoring

<table>
<thead>
<tr>
<th>Variable</th>
<th>BL</th>
<th>P3</th>
<th>P5</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep latency, min</td>
<td>6.1 ± 4</td>
<td>6.28 ± 8</td>
<td>6.16 ± 11</td>
<td>0.7</td>
<td>.52</td>
</tr>
<tr>
<td>REM sleep, %</td>
<td>16.5 ± 3.3</td>
<td>14.6 ± 4.3</td>
<td>13.7 ± 4.1</td>
<td>6.0</td>
<td>.05</td>
</tr>
<tr>
<td>Stage 2, min</td>
<td>236.9 ± 9.6</td>
<td>269.4 ± 15.7</td>
<td>272.6 ± 15.7</td>
<td>8.9</td>
<td>.01</td>
</tr>
<tr>
<td>WASO, min</td>
<td>44.5 ± 13.5</td>
<td>55.2 ± 15.2</td>
<td>51.8 ± 15.2</td>
<td>4.4</td>
<td>.11</td>
</tr>
<tr>
<td>REM sleep, min</td>
<td>28.0 ± 8.2</td>
<td>28.0 ± 8.2</td>
<td>28.0 ± 8.2</td>
<td>1.3</td>
<td>.08</td>
</tr>
<tr>
<td>Total sleep time, min</td>
<td>388.0 ± 11.9</td>
<td>382.7 ± 17.1</td>
<td>362.1 ± 20.7</td>
<td>1.6</td>
<td>.44</td>
</tr>
<tr>
<td>Slow-wave sleep, %</td>
<td>5.0 ± 3.2</td>
<td>6.7 ± 6.7</td>
<td>5.4 ± 3.7</td>
<td>18.2</td>
<td>.001</td>
</tr>
<tr>
<td>Sleep efficiency, %</td>
<td>59.5 ± 8.6</td>
<td>61.2 ± 9.1</td>
<td>62.1 ± 9.1</td>
<td>11.7</td>
<td>.001</td>
</tr>
</tbody>
</table>

*Data are given as mean ± SEM of 11 patients. BL indicates drug-free baseline night; P3, treatment weeks 3 and 4; P5, treatment weeks 5 and 6; REM, rapid eye movement; WASO, wakefulness after sleep onset; and F, Friedman 1-way repeated-measures analysis of variance with factor “treatment” (df = 2).
†Percentages are expressed per total sleep time (TST) except for sleep efficiency, which represents the percentage of TST per time in bed.
‡Time from lights-out to the first occurrence of stage 2.
§The REM sleep was present in 9 patients in P3 and in 6 patients in P5.
*Data are given as mean ± SEM percentage of nights per week in which patients reported to remember at least 1 dream.
††P < .05 compared with BL (2-tailed Wilcoxon matched-pairs signed rank test).
§§P < .001.
* *P < .02.

Table 2. Dream Recall in Antidepressant Responders and Nonresponders During Phenelzine Treatment

<table>
<thead>
<tr>
<th>Week</th>
<th>Responders (n = 6)</th>
<th>Nonresponders (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.1 ± 13.7</td>
<td>2.9 ± 2.9</td>
</tr>
<tr>
<td>2</td>
<td>26.2 ± 13.8</td>
<td>2.9 ± 2.9</td>
</tr>
<tr>
<td>3</td>
<td>26.2 ± 13.6</td>
<td>3.3 ± 3.3</td>
</tr>
<tr>
<td>4</td>
<td>14.3 ± 6.4†</td>
<td>6.7 ± 6.7</td>
</tr>
<tr>
<td>5</td>
<td>3.3 ± 3.3††</td>
<td>22.1 ± 9.1</td>
</tr>
</tbody>
</table>

*Data are given as mean ± SEM percentage of nights per week in which patients reported to remember at least 1 dream.
††P < .05 compared with week 1 (2-tailed paired t test).

©2001 American Medical Association. All rights reserved.
DYNAMICS OF EMG ACTIVITY AND EOG/EEG VARIANCE DURING SLEEP

The median of all 20-second values of the variance of the EMG signal during sleep (stages 1, 2, 3, and 4 and REM sleep) served as a measure of nocturnal tonic EMG activity.9 Tonic EMG activity was significantly higher in P5 than in BL (5.9±0.8 vs 1.9±0.2 µV; *P* < .001, 2-tailed paired *t* test). The dynamics of relative EMG values during sleep were analyzed in the same way as described for SWA. A 2-way ANOVA with the between factors “treatment” (BL and P5) and “5-minute time bin” (1-60) on relative EMG values revealed a significant effect of “time bin” (*F*_{59,1118} = 4.1; *P* < .001) and a significant treatment × time bin interaction (*F*_{59,1118} = 1.9; *P* < .001). Whereas the tonic EMG level was modulated by the non-REM/REM sleep cycles in BL, no clear ultradian variation was evident in P5 (Figure 3B).

To quantify eye movements during sleep in BL and P5, the variance of the EOG signal was analyzed. To eliminate the contamination of the EOG by the EEG, the ratio of the EOG variance divided by the EEG variance was computed for consecutive 5-minute intervals. The EOG/EEG variance exhibited low values in non-REM sleep and high values in REM sleep, with a prominent ultradian modulation in BL (Figure 3C). A significantly different time course with no ultradian variation was seen in P5 (2-way ANOVA; treatment [BL and P5]: *F*_{1,1239} = 38.8; time bin [1-60]: *F*_{59,1239} = 5.0; treatment × time bin: *F*_{59,1239} = 5.0; *P* < .001 for all).

COMMENT

The results of this study confirm those of earlier studies30-32,34,43 that phenelzine therapy can safely eliminate REM sleep in depressed patients without altering the duration of visually scored slow-wave sleep. Our investigation is the first to conduct a detailed computer-assisted analysis of the sleep EEG before and after administration of an MAO inhibitor in humans or animals. It demonstrates that abolition of REM sleep by phenelzine treatment does not alter the intensity of non-REM sleep or the exponential decline of SWA during sleep. These observations have important implications for models of sleep regulation and hypotheses on the mechanisms of antidepressant drugs.

It is generally assumed that MAO inhibitors, tricyclic antidepressants, and selective serotonin reuptake inhibitors enhance postsynaptic neurotransmission of serotonin, norepinephrine, and, possibly, other neurotransmitters. Serotonin may hyperpolarize cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei,44 and its increased concentration in the brainstem45 may underlie the phenelzine-induced suppression of REM sleep. Some authors46 suggest that the changes of visually scored sleep during antidepressant therapy mainly reflect the absence of muscular atonia during REM sleep. In support of this view and in accordance with qualitative observations in early studies,30 we found a significant increase in tonic EMG activity during sleep under phenelzine therapy. Nevertheless, our data demonstrate that the suppression of REM sleep...
After sleep onset were subdivided into 60 five-minute intervals. Data were aligned with respect to sleep onset and averaged across patients. plotted against the mean timing of non-REM and REM sleep episodes. Horizontal black bars at the top and bottom indicate REM sleep. In P5, the first 5 hours bin represented approximately 5 minutes. Data were aligned with respect to sleep onset (ie, the first occurrence of stage 2), averaged across patients (n=11), and non–rapid eye movement (REM) sleep (stages 2, 3, and 4). At BL, individual non-REM and REM sleep episodes were subdivided into equal time bins such that a bin represented approximately 5 minutes. Data were aligned with respect to sleep onset (ie, the first occurrence of stage 2), averaged across patients (n=11), and non–rapid eye movement (REM) sleep (stages 2, 3, and 4). At BL, individual non-REM and REM sleep episodes were subdivided into equal time bins such that a bin represented approximately 5 minutes. Data were aligned with respect to sleep onset (ie, the first occurrence of stage 2), averaged across patients (n=11), and non–rapid eye movement (REM) sleep (stages 2, 3, and 4).

Figure 2. Color-coded relative electroencephalographic (EEG) power density in 1-Hz bins as a function of time and frequency at baseline (BL) (A) and during weeks 5 and 6 of phenelzine treatment (P5) (B). Power density in each frequency bin was expressed as a percentage of the corresponding all-night mean value in non–rapid eye movement (REM) sleep (stages 2, 3, and 4). At BL, individual non-REM and REM sleep episodes were subdivided into equal time bins such that a bin represented approximately 5 minutes. Data were aligned with respect to sleep onset (ie, the first occurrence of stage 2), averaged across patients (n=11), and plotted against the mean timing of non-REM and REM sleep episodes. Horizontal black bars at the top and bottom indicate REM sleep. In P5, the first 5 hours after sleep onset were subdivided into 60 five-minute intervals. Data were aligned with respect to sleep onset and averaged across patients.

Figure 2. Color-coded relative electroencephalographic (EEG) power density in 1-Hz bins as a function of time and frequency at baseline (BL) (A) and during weeks 5 and 6 of phenelzine treatment (P5) (B). Power density in each frequency bin was expressed as a percentage of the corresponding all-night mean value in non–rapid eye movement (REM) sleep (stages 2, 3, and 4). At BL, individual non-REM and REM sleep episodes were subdivided into equal time bins such that a bin represented approximately 5 minutes. Data were aligned with respect to sleep onset (ie, the first occurrence of stage 2), averaged across patients (n=11), and plotted against the mean timing of non-REM and REM sleep episodes. Horizontal black bars at the top and bottom indicate REM sleep. In P5, the first 5 hours after sleep onset were subdivided into 60 five-minute intervals. Data were aligned with respect to sleep onset and averaged across patients.

is not merely due to a drug-induced dissociation of REM sleep phenomena but also includes abolishment of the typical EEG and EOG signs of this sleep state. In non-REM sleep, the effect of phenelzine therapy was limited to prolonged stage 2 and enhanced EEG power in the beta frequency range (Figure 1). Because the latter effect was restricted to P5 and paralleled the increase in tonic EMG activity, it is tempting to assume that it represents the contamination of the EEG spectrum by the sustained contraction of craniofacial muscles during sleep. It has been shown that artifacts in EEG power spectra due to muscle contractions are restricted to frequencies higher than 14 Hz.47 The suppression of REM sleep during phenelzine treatment revealed the natural course of SWA in the absence of normal non-REM/REM sleep cycles. Power in the low-frequency EEG bands rose normally after sleep onset and then declined in an exponential manner in the absence of REM sleep. This time course (Figure 4) is reminiscent of the plasma pharmacokinetics of an orally administered drug. From the shape of this curve, we could speculate that sleep onset initiates a process or the release of an unknown SWA-promoting factor, which reaches a peak within the first hours of sleep and then declines exponentially over the course of the sleep episode. This formulation is consistent with process S in the 2-process model.10,23,48 REM sleep, on the other hand, could reflect an ultradian oscillator of REM sleep, the neural mechanisms of which are not yet identified. A regular rhythm of nocturnal penile tumescence has been reported in MAO inhibitor-treated depressed patients without REM sleep50–51 and in a man who no longer had REM sleep after experiencing a shrapnel wound to his brainstem.52,53 These reports may suggest that an underlying ultradian rhythm may persist even if REM sleep is abolished. It cannot be excluded from our data that averaging over patients has obliterated a weak ultradian modulation of EEG, EOG, or EMG variables in P5.

The present results do not support the REM sleep deprivation19,20 or the non-REM sleep deprivation hypotheses23 for the mechanism of antidepressant therapies. The REM sleep suppressive effect of phenelzine did not correlate with its antidepressant effect, and SWA did not change during treatment. On the contrary, slow-wave sleep tended to increase during treatment (Table 2).

With regard to dream recall, the present data suggest that dreaming occurs in the absence of REM sleep. Use of phenelzine had different effects on the frequency of dream recall in treatment responders and nonresponders (Table 3). Specifically, a significant reduction in dream recall was found only in responders. In contrast, nonresponders remembered only a few dreams at the beginning of phenelzine administration and showed an increasing trend in dream recall during treatment. Unpleasant dreams toward the end of the night have been associated with impaired mood regulation during sleep.54

Our findings suggest that adults can live without REM sleep without obvious harm. If anything, our responders were better because their depression was successfully treated. Lavie et al52,53 described a man without REM sleep for many years. He conducted a normal life and graduated from law school after wounding his brainstem. In contrast to these observations in humans, selective REM sleep deprivation for 3 to 7 weeks in rats, with the disk over water method, has been associated with death.55 The mechanism of death in rats is unknown. These studies highlight how little is known about the basic functions of sleep in general and REM sleep in particular.
Accepted for publication October 16, 2000.

This study was supported in part by grant 823A-056616 from the Swiss National Science Foundation, Bern, Switzerland; grant MH38738 from the National Institute of Mental Health, Bethesda, Md; grant MH30914 from the University of California at San Diego (UCSD) Mental Health Clinical Research Center; grant M01-RR00827 from the UCSD General Clinical Research Center, the Department of Veterans Affairs, Washington, DC; and the UCSD Fellowship in Psychopharmacology and Psychobiology.

We thank Matthew R. Marler, PhD, for his helpful comments and discussions on the statistics; R. Wong, BA, L. Post-huma de Boer, MA, K. Resovsky, RN, D. Greenfield, MA, L. Gayette, BA, M. Smith, RN, L. Sutton, RN, D. Sweat, BA, and A. Schlosser, BA, for their assistance with patient recruitment and data collection; and Alexander A. Borbely, MD, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland, for lending us 2 PS1 recording systems.

Corresponding author and reprints: Hans-Peter Landolt, PhD, c/o J. Christian Gillin, MD, University of California at San Diego, Mental Health Clinical Research Center, Psychiatry Service (116-A), Veterans Affairs Medical Center, 3350 La Jolla Village Dr, San Diego, CA 92161 (e-mail: landolt@pharma.unizh.ch).

Figure 3. Time course of electroencephalographic (EEG) slow-wave activity (SWA) (power within 0.75-4.5 Hz) (A), tonic electromyographic (EMG) activity (B), and electro-oculogram (EOG)/EEG variance (C) at baseline (BL) and during weeks 5 and 6 of phenelzine treatment (P5). Relative SWA values were expressed as a percentage of the corresponding all-night value in non-rapid eye movement (REM) sleep (stages 2, 3, and 4). Tonic EMG activity was standardized with respect to the corresponding median of all 20-second values of the variance of the EMG signal during sleep (stages 1, 2, 3, and 4 and REM sleep). Subdivisions of non-REM and REM sleep episodes at BL, and of the first 5 hours of sleep in P5, are the same as in Figure 2. Vertical bars indicate ±1 SEM; dashed vertical lines, sleep onset and delimit REM sleep episodes. Please note the different scaling of the ordinate for tonic EMG activity in the 2 groups.

9. Brunner DP, Dijk D, Borbély AA. A quantitative analysis of phasic and tonic sub-

30. Cohen RM, Pickard D, Barnett D, Lipper S, Gillin JC, Murphy DL. REM sleep sup-

33. Gillin JC, Rapaport M, Erman MK, Kinokur A, Alba BJ. A comparison of nefa-

37. Gillin JC, Rapaport M, Erman MK, Kinozur A, Alba BJ. A comparison of nefa-

40. Landolt HP, Dijk D, Achermann P, Borbély AA. Effect of age on the sleep EEG:

43. Beersma DG, Dijk DJ, Borbély AA. Timing of human sleep: recovery process gated

44. Jobert M, Jeaehig P, Schulz H. Effect of two antidepressant drugs on REM sleep

45. MacLean R, Nicholson WJ, Pare CM, Stacey RS. Effect of monoamine oxidase

46. Jobert M, Jeaehig P, Schulz H. Effect of two antidepressant drugs on REM sleep

47. Daan S, Beersma DG, Borbély AA. A comparison of nefa-

48. Daan S, Beersma DG, Borbély AA. A comparison of nefa-

49. MacLean R, Nicholson WJ, Pare CM, Stacey RS. Effect of monoamine oxidase

50. Daan S, Beersma DG, Borbély AA. A comparison of nefa-

51. MacLean R, Nicholson WJ, Pare CM, Stacey RS. Effect of monoamine oxidase

53. MacLean R, Nicholson WJ, Pare CM, Stacey RS. Effect of monoamine oxidase

56. Beersma DG, Dijk DJ, Borbély AA. Timing of human sleep: recovery process gated

57. Daan S, Beersma DG, Borbély AA. A comparison of nefa-

58. Daan S, Beersma DG, Borbély AA. A comparison of nefa-

59. Daan S, Beersma DG, Borbély AA. A comparison of nefa-

60. Daan S, Beersma DG, Borbély AA. A comparison of nefa-