A Structural Synthesis System for Argument Protocol from
High-Level Descriptions

2010

Abstract

As web service choreography matures, there is greater demand for multi-agent
protocols to support argument and argumentation. There is not, however a single
canonical argumentation protocol. Instead we find many different styles of argumen-
tation depending on the contest for service interaction. This offers a need for rapid
protocol syntheses. In this paper we propose a high level control flow specification
language for designers to build interaction protocols by reusing Lightweight Coor-
dination Calculus (LCC)-argumentation patterns thus accelerating the construction
process and reducing manual effort. Our tool receives as input a Dialogue Inter-
action Diagram (DID) and returns the LCC protocol generated by LCC-Argument
patterns. We illustrate our proposal with a persuasion dialogue use-case.

Key words: Structural Synthesis, Lightweight Coordination Calculus , Argument
Interchange Format

1 Introduction

An argument offers a reason for believing a statement, taking an action, changing
a goal, etc. Argumentation has for some time been an important area for research
in natural language processing, knowledge representation and construction of auto-
mated reasoning systems. It also has attended to multi-agent systems (MAS), in
particular to model the communication between agents, where it supports mecha-
nisms for designing, implementation and analyzing models of the interaction among
agents. However, a wide ranging approach of this kind carries with it various chal-
lenges. An important challenge is to ensure that agent arguments can be reliable
communicated using argument-based protocols.

Argument Interchange Format (AIF) [1, 2] is an approach that has been used
successfully to tackle this challenge. Recognizing that as single style of argumenta-
tion fits all circumstances, the AIF stipulates a layered style of specification in which
a high level language is used to specify the argument and this is then implemented
as a protocol.

Interaction protocols in AIF are represented using a protocol language called the
Lightweight Coordination Calculus (LCC) [3, 4] an executable specification language
which gives an overall architecture for coordination of MAS.

The goal of this research is to develop a useful tool that can enable designers
to build an efficient LCC program in the easiest and quickest way. The aim is to
build a high level control flow specification language for designers to build an agent
by reusing common LCC argumentation patterns. The selection and instantiation
of these patterns is performed automatically given a high level specification in the
ATF.

The paper is organized as follows. Next, in Section 2, we summarize the basic
concepts of AIF. In Section 3 we present a high level specification of interaction
protocol. Then, in Section 4 we describe the Lightweight Coordination Calculus. In
Section 5, provides an example of a dialogue protocol defined in LCC. In Section 6
we show how this is synthesized. Finally, section 7 presents conclusions and future
work.

2 The Argument Interchange Format (AIF)

ATIF [1, 2] is an international effort which has been proposed for representation and
communication (data exchange) of argument resources between agents, research
groups, argumentation tools, and specific domains. It provides an ontology which
represents an argument as a network of linked nodes. This network consists of
two types of nodes: Information nodes (I-nodes) that content specific data (such
as claims, proposition and premises) that depend upon the domain of discourse,
and scheme application nodes (S-nodes) that describe the domain independent pat-
terns of reasoning. S-nodes come in three different types, including rule of inference
application nodes (RA-nodes) that define the support or inference of argument, pref-
erence application nodes (PA-nodes) that define the value judgments or preference
orderings of argument, and conflict application nodes (CA-nodes) that define the
conflict of argument.

There are various restrictions on how nodes connected. For example, I-nodes
cannot be connected to other I-nodes directly; they must be connected across S-
nodes. On the other hand, S-nodes can be connected to other S-nodes directly.
Basically, two types of edges can be added to connect any two nodes: scheme edges
that support conclusions and start form S-nodes and end either in I-nodes or S-
nodes, and data edges that supply data and start form I-nodes and end in S-nodes.
Table 1 [1] summarizes smantics of support for node-to-node relationships.

AIF envisages three groups of concepts for communication in the context of
argumentation:

e Locutions: Particular words, phrases or form of expressions which are used by
agents.;

e Interaction Protocols: define communication between agents via a set of rules
governing how two or more agents should interact in order to reach a specific
goal.;

e Communication Context: includes elements which form the context of argu-
mentation like: communication language which defines the set of possible lo-
cutions, participants ID, roles that the participants take on in the dialogue,

dialogue topic, and dialogue type such as persuasion or information seeking di-
alogue, commitment stores and commitment rules.

to I-node to RA-node to PA-node to CA-node
from I-node I-node data used | I-node data used I-node data in conflict
in applying in applying with information
an inference a preference in node supported
by CA-node
from RA-node inferring inferring inferring inferring
a conclusion a conclusion a conclusion a conclusion
in the form of in the form of in the form of in the form of
a claim an inference a preference a conflict definition
application application application
from PA-node applying a applying a meta-preferences: preference application
preference over preference over applying a in supporting
data in I-node inference preference over PA-node in conflict
application in preference with preference
RA-node application in application in PA-node

supported by CA-node
showing a conflicr holds
between a conflict

supported PA-node
applying conflict
definition to

from CA-node | applying conflict | applying conflict

definition to data definition to
in I-node inference pereference defintion and some other
appliction in application in piece of information
RA-node PA-node
Table 1: Dialogue Types
¥ 1 L
~~"FA noda L

*“f1-esippus)” preferred
due 10 praater degrae of supgart) -

-— = _"f'l'i=l'|:||:u=.] comracicis f'I'iE!.InFus..l_

T

Frn mde Z

Hodus Fomans

'n mode 1
Jefaasibla Hode Paners

penguintgpus - ‘f11e-5|.|:u|:l.|-u| ||:lE"IgI.I‘|I‘|I apus 1

olrdigpusy -+ 1.8 f11e5n:||:-|.5]| |I:|1r|:1l.u|:-u51

Figure 1: Flying abilities in birds: a concrete example of an argument network

ATF Example

The following Flying Abilities in Birds [1] is a simple example of an argument
network (Figure 1):

e The argument for flies(opus) is composed of one RA-node, namely Modus
Ponens and two child nodes (premises)

e The argument for flies(opus) is composed of one RA-node, namely defeasible
Modus Ponens and two child nodes (premises)

e CA-node linking (bi-directionally) the two conflicting nodes: flies(opus) and
flies(opus)

e The argument for flies(opus) has a higher degree of support because the
premises support it with a higher degree of probability (1 degree). Whereas,
the argument for flies(opus)) weak, because the premises support it with only
0.8 degree (a low probability). So flies(opus) is preferred to the argument
for flies(opus). That’s why the intermediate PA-node linking flies(opus) to
flies(opus).

3 Interaction Protocol Representation

We use the traditional protocol of dialogue games [5, 6] where a dialogue is presented
as a game in which each participant of dialogue make moves to attacks or surrenders
the previous move of other participant. A Dialogue game protocol defines different
rules such as:

e Locutions rules: represent the permitted moves,;

e Commitment rules (post-conditions): define the propositional commitments
made by each participant with each move during the dialogue,

e Structural rules (reply rules): define legal moves in terms of the available moves
that a participant can select to follow on the previous move.

See[5, 6] for further detail about the protocol different rules (locution rules,
commitment rules and structural rules).

Figure 2 illustrates the overall structure of our Dialogue Interaction Diagram
(DID). The illustration provides mechanisms to represent interaction protocol rules,
by giving an overview of the permitted moves and their relationships. DID is a re-
cursive diagram. It is a unique-move and immediate-reply protocol. The turn-taking
between agents switches after each move, and each agent must reply to the move
of the previous gent. An oval shape represents the locutions in our protocols and
the links represent attack (reply) relations between arguments. There are five locu-
tions: three attack locutions (claim, argue, and why), and two surrender locutions
(concede and retract). Dot rectangles represent the locution type: Starting (claim
and argue), Termination (concede and retract), and Recursive (why and argue) lo-
cution. In practice, the argument may start with either claim or argue and end
with a concede or retract locution. A Rhombus shape represents conditions which
apply to each move. KB (Knowledge Base list) represents the domain of discourse
(e.g. claims, propositions, or data). CS (Commitment Store list) contains a set of
propositions to which the player is committed in the discussion.

-y | Strem gl poeten(EL)

o7 AddTeCS .
~an, (E0Ey \ Chaim[E)
it a
startCism, rantiam]
£, {5, KB, Gy
i s Temiatics LoartioalTL)
| FemursiveloomiceRL) * R T T e e
' s '
wir{) o g Fizdle KBS e \ [L L)
s 5 v N -
Starting b ocusion(SL) rephyTellam) | reghyTelisimd) R f-u‘ﬂ’, i ‘:—-.._.__‘_‘___‘_‘1 repyTalipm)) | seayTelinmd
And = it i - 4 2
RecursiveLocutim(RL) i L, O 2 MG LA8, C5 1KBy %
- T 1B 0, -~ JRG)- 1D 0,
- i - - Ty, & - H
- -
- Ty l
- Free - | Teeazsiee LocotiaslTL)
" i » I .] Hde
b RERCS . - e
S - g (Pre| va Crmsafindonm e | ratraenla]
L b PR - le u:. - —._____‘_\‘
£ :) reeh oA Rt rephyTeWhyll | repbyTaWhy)
P =-"""FFFFF. e - - Fa
£ AddTol3 “a Pra, X, KB, C5 ¥, KB C5e By - = XA 5, ey
Bra X - -
i -
et i L i s 0 18

" -
L - - ~
- r - = %
-

- -~ Feadla)] - =
whiPra) o Dai= - arqua(Def) - .._‘:IJ\EQ‘ u_‘ o concede())
{Pra) - FizdDulfnats 4 - Hxﬁe.kﬂ.ﬂﬁu o - _
1 - . » repiy Todrgue, e}
repiyToirgnd) l sl - i ':fr"uﬁ]_, . \‘LH"“ arguigd] replyTodrgue) A : iy Todrgue, arguel
%, KB Che Fra X8, 5 et !/x Pre, Def i, O3, Pre, 0B, €%, . Y ‘(_zr_,.r A8, Ch Frre X8, C5;
- s AddTalE .
10 b
1=H iy i T iBy Iy ™ (Pre,C5) .~ o = v
- -

Figure 2: Dialogue Interaction Diagram

In this dialogue, Agentl can open the discussion by sending either a claim(X)
or argue(X) locution. Then, turn-taking switches to Agent2. Agent2 has to choose
between two different possible reply locutions: why(X) or concede(X). Agent2 will
make his choice using the conditions which appear in the Rhombus shape. In order to
choose concede(X), Agent2 must be able to satisfy the two conditions which connect
with concede. If he is not able to satisfy these conditions, Agent2 will send why(X).
After that, the turn switches to Agentl, and so forth. The argument terminates
once Agentl sends retract(X) or Agent2 sends concede(X).

We obtained the idea of characterizing locutions and interaction protocols in the
ATF’s argument network ontology from paper [7]. The idea is to represent locutions
as the content in I-nodes and interaction protocols as an additional scheme node
type (Protocol Interaction Application (PTA) nodes).

We next need a simple protocol language that is sufficiently sophisticated to
provide the capabilities of the AIF in a distributed system. For this we used the

Framework := {Clause,....}
Clause = Agent :: Dn
Agent = a{Tvpe, Id)
Dn = Agent | Message | Dn then Dn | Dn or Dn | Dn par Dn | null € C
Message = M === Agent | M ==> Agent < C | M === Agent | C < M === Agent
C=Term|CUCAC|CVC
Tyvpe := Term
M := Term

Figure 3: The abstract Syntax of LCC

lightweight coordination calculus (LCC), a declarative choreography language based
on a process calculus is described in the following section.

4 The Lightweight Coordination Calculus (LCC)

The abstract syntax of LCC clause is shown in Figure 3 [8, 9]. It describes the
interaction behavior of a role. The role is described by the role type and the agent
unique identifier. The role behavior’s is specified using of the sequence ”then” or
choice ”or” operators to connect messages and roles.

Messages are the only way to exchange information between roles. There are
two types of LCC messages: outgoing messages "M” from a role ”=", and incoming
messages "M” to a role ”<=". Message passing; role changing and recursion over role
may be required to satisfy a constraint ”C”. Constraint represented by using 7"
simple and defined by conjunction and disjunction operators. There are two types of
constraint: pre and post condition. Pre-conditions specify the required conditions
for an agent to send a message and for the receiver to accept it and process it.
Post-conditions explain the states of the sender after sending a message and of the
receiver after receiving a message. Agent can satisfy the constraints internally by
using the agent’s method or externally by using a set of Horn clauses which defines a
shared knowledge. Null represents an event which is not related to message passing.
Term represents constant or variable.

An Example of LCC protocol

we now demonstrate LCC using the argumentation example of the previous section
.Two agents, Z and Q, are having a conversion:

1) Z: My car is safe. (claim)
2) Q: Why is your car safe? (why)
3) Z: Since it has an airbag (argue)

LCC protocol for the first argument:

a(R1,2):

claim("My car is safe”) = a(R2, Q)
a(R2,Q)::

claim(”My car is safe”)< a(R1, Z)

This is read as: agent Z send claim message to the agent Q and then agent Q
received claim message from agent Z.
LCC protocol for the second argument:

a(R4,Q)::
why(” Your car is safe”) = a(R3, Z)
a(R3,2)::
why(”Your car is safe”) <a(R4, Q)

This is read as: agent Q send why message to the agent 7Z and then agent Z
received why message from agent Q.
We can write general LCC protocol that fits with the first and second argument:

a(R1,ID1):
Locution (X) = a(R1, ID2)
a(R2,ID2)::
Locution (X) <« a(R2, ID1)

Where Locution represents any permitted movies in the protocol, X represents
the speech acts (topic) and ID1 and ID2 are agent’s identifier.

5 Types of Dialogue

Walton and Krabbe [10] identify 5 different general types of dialogue in MAS based
on their preconditions and goals. Table 2 shows a summary. We want to create a
general framework in which we can synthesise the many different specific argument
protocols that are within these general types. In order to achieve that, we will
start by work in persuasion dialogue and then try to extend our work to fits with
others types. In persuasion dialogues one participant is trying to persuade another
participant to change their point of view. In the following sections we will present
an example of persuasion dialogue and then we will use this example to generate
the structure synthesis of persuasion dialogue games.

5.1 An Example Persuasion Dialogue

The following example persuasion dialogue, adapted from [11] will be used in this
paper to illustrate the steps of structure synthesis:

Z: My car is safe. (making a claim)

Q: Why is your car safe? (asking grounds for a claim)

Z: Since it has an airbag, (argue: offering grounds for a claim)

Q: OK, your car is safe. (concede)

5.2 The Basic Scenario of Interaction Protocol of Persuasion Dialogue

Figure 4 represents the persuasion dialogue graph of care safe example represented
in the AIF:

1. Dialogue takes place between two agents, Z and Q.
2. Z has KBZ and CSZ, and Q has KBQ and CSQ.

3. Z and Q can access CS Z and CSQ.
4

. Z opens the discussion by sending claim (”My car is safe”).

Dialogue typesn

Initial Situatiom

Participant’s Goal

Goal of Dialogue

Persuasion Confliect of opiniens Persuade other party Resolve or clarifiy issue
Inquiry Need to have proof Find and Verify evidence Prove(disprove) hypothesis
Negotiation Confilict of interests Get what you most want Reasonable settlement

Informaiton seeking

One party lacks information

Acquire or give informaion

Exchange inforamtion

Deliberation

Dilemma or pracitcal choice

Co-ordinate goals or actions

Decide best course of action

Table 2: Dialogue Types

I-nodel

z
@ | My car is safe

Q@ | Why is your car safe

I-node2

L
l It has an airbag

I-node3

I-noded

Q
C:—C""“.E I_*_.Fnu.r car is safe

Figure 4: The persuasion dialogue graph represented in the AIF

5. Q checks with its argumentation system ASQ (ASQ = {KBQ, CSQ}) whether
"My car is safe” is acceptable or not:

e it finds that "My car is safe” is not acceptable, ;

e Q challenges "My car is safe”. In others words, it asks what the reason
behind Z’s proposal of ”My car is safe”. In this example, Q will challenges
"My car is safe” by sending why(”My car is safe”) locution.

6. Z responds to the challenge by declaring the supporting premises Pre for "My
car is safe”. For Pre premises, QQ checks with ASQ whether ”My car is safe” is
acceptable or not. In this example, Z offering grounds for a claim by sending
argue(”It has an airbag”) locution.

7. Q checks with its argumentation system ASQ whether ”if car has an airbag,
car is safe” is acceptable or not. In this example Q) finds that and concedes
the main claims by sending concede (”your car is safe”) locution.

5.3 LCC Protocol for Persuasion Dialogue

Table 3 represents the persuasion dialogue protocol of care safe example represented

in the LCC.

Agent Z

Agent Q

a(startClaimZ(KBZ,CSZ),IDZ)::
claim(X) = a(startclaimQ(KBQ,CSQ),IDQ)
+— AddInCS(X, CSZ)
then
a(replyToClaimZ(X,KBZ,CSZ),IDZ).
a(replyToClaimZ((X,KBZ,CSZ),IDZ)::
concede(X) < a(replyToClaimQ ((X,KBQ,CSQ),IDQ)
or
(why(X) < a(replyToClaimQ ((X ,KBQ,CSQ),IDQ)
then
a(replyToWhyZ (X ,KBZ,CSZ),IDZ)).

a(replyToWhyZ(X ,KBZ,CSZ),IDZ)::
retract(X) = a(replyToWhyQ(X,KBQ,CSQ),IDQ)
+— CannotFindPremise(X,KBZ) and SubtractFromCS(X,CS)

or

a(argue(X,Pre, KBZ,CSZ),IDZ) <— Pre=FindPremise(X,KBZ).

a(argueZ(X,Pre,KBZ,CSZ),IDZ) :
(argue(Pre) = a(ReplyToArgueQ(X,KBQ,CSQ),IDQ)
<— AddToCS(Pre ,X,CSZ)
then
concede(X) < a(ReplyToArgueQ(X,KBQ,CSQ),IDQ)
or
((why(Pre) <= a(ReplyToArgueQ(X,KBQ,CSQ),IDQ)
then
a(ReplyToWhyZ(Pre ,KBZ,CSZ),IDZ)))
or

a(ReplyToArgueZ(Pre,KBZ,CSZ),IDZ).

AddInCS(X,CSZ)= agent Z will update its commitment store
by adding X to CSZ (X represents the claim topic
and CS represents agent believes list)
CannotFindPremise(X,KBZ) =agent Z checks with its KBZ whether
premises for X exist it or not. If agent Z cannot finds any premises,
this constraint returns true
SubtractFromCS(X,CS) =agent Z will delete X from
its commitment store list (CS)

Pre= FindPremise (X,KBZ)= agent Z checks with its KBZ whether

premises for X exist it or not. If agent Z finds premises,

it saves the premises in Pre

a(startclaimQ(KBQ,CSQ),IDQ)::
claim(X) < a(startClaimZ((KBZ,CSZ),IDZ)
then
a(replyToClaimQ (X, KBQ,CSQ),IDQ).

a(replyToClaimQ((X,KBQ,CSQ),IDQ)::
concede((X) = a(replyToClaimZ (KBZ,CSZ),IDZ)
+— FindInKBorCS((X,CSQ,KBQ) and AddInCS(X, CSQ)
or
(why((X) = a(replyToClaimZ (KBZ,CSZ),IDZ)
then
a(reply ToWhyQ((X,KBQ,CSQ),IDQ)).
a(replyToWhyQ(X,KBQ,CSQ),IDQ)::
retract(X)< a(replyToWhyZ(X ,KBZ,CSZ),IDZ)
or

a(replyToArgueQ(X,KBQ,CSQ),IDQ).

a(replyToArgueQ(X,KBQ,CSQ),IDQ)::
argue(Pre) < a(argueZ (X ,Pre,KBZ,CSZ),IDZ)
then
concede(X) = a(argueZ (X,Pre,KBZ,CSZ),IDZ)
+— FindInKBorCS(X,Pre,CSQ, KBQ) and AddInCS(Pre,CSQ)
or
a(argue((Pre, Def, KBQ,CSQ),IDQ))
<— Def= FindDefeat(Pre,KB,CS) and AddInCS(Def,CSQ)
or
why(Pre) = a(argueZ (X,Pre,KBZ,CSZ),IDZ)
then
a(replyToWhyQ (Pre ,KBQ,CSQ),IDQ)).

AddInCS(Pre ,X, CS) = agent Z will update its
commitment store by adding Pre and X to CSZ (X represents
the claim topic and Pre represents the X supporting Premise)
FindInKBorCS(X,CSQ,KBQ)= agent Q checks with its argumentation
system KBQ and CSQ whether X is acceptable or not.
If X is acceptable, this constraint returns true
Def = FindDefeat(Pre,KB,CS) =agent Q checks with its
argumentation system KBQ and CSQ whether defeat premises for pre

exist it or not. If agent Q finds defeat,it saves the defeat in Def

9

Table 3: LCC protocol for persuasion dialogue (care safety example)

Dialogue Interaction
Diagram

GeneratelCCProtocol

Pamernl

Patern

LCC-Argument patterns

LCC protocol

afstartClaim (KB,,C5,)ID,)::
clam(X) =>
astareclam, (KB C5.)1D)
€ AddInCS(X, C5p)
then

oreply ToClaim (X KB, C5,11D,)

alstartclaiml KB .. (5.0, 105):
daim(¥) <==
alstartClaim,| KB, C5,1,10:)

then

afreptyToClalmQyX, KB, C54),10:)

4

Figure 5: GenerateLCCProtocol

6 Structural Synthesis System for Argument Protocol

Our algorithm GenerateLCCProtocol, Figure 5, receives as input a DID such as Fig-
ure 2, and returns LCC protocol such as the one in Table 3 by using LCC-Argument
patterns. In practice, representing interaction protocol as a DID and using LCC-
Argument patterns can speed up the protocol’s building process by providing guid-
ance to the software engineer. By taking a closer look at the LCC protocol in Table
3, we realize that this protocol is quite complex, and therefore requires considering
issues that the software engineer may not realize until later in the implementation
process—such as synchronization of the role. Use of DID and LCC-Argument pat-
terns helps to prevent subtle issues that can cause some problems. It also improves

code readability and the efficiency of role synchronization mechanisms.

LCC- Argument Pattern (Structure Synthesis)

Our purpose is to find a common LCC argument pattern that can reused by different
types of argument. The patterns are supported by the strutured design method from
[4]. The general idea is that there are a very useful methods used in Prolog editors
which can give as some good ideas for methods for LCC. However, we cannot use
those methods in LCC directly because there are fundamental differences between

LCC and Prolog.

Techniques editing [12] is a method used to synthesize Prolog clauses, which
cannot used directly in LCC because LCC is a process calculus but where we can

adapt using structural patterns to the LCC case.

10

This approach of using LCC

patterns in argumentation seem to reduce the effort of building argument protocols
quite well. In this section we will identify these patterns by using car safe example
and Figure 2 as an example of DID which demonstrates the different type of LCC
argument patterns.

Two patterns have been defined: Starter pattern (S-P) and Termination Recur-
sive Pattern (T-R-P). The first one S-P is going to be used to start the argument
between two agents (Z and Q) and the second one T-R-P is going to be used in
other arguments.

First pattern: Starter pattern (S-P)

Let we consider the first role in agent Z and agent Q which are startClaimZ and
startClaimQ.

a(startClaimZ(KBZ,CSZ),IDZ)::

claim(X) = a(startclaimQ(KBQ,CSQ),IDQ) «+— AddInCS(X, CSZ)
then

a(replyToClaimZ(KBZ,CSZ),IDZ).
a(startclaimQ(KBQ,CSQ),IDQ)::

claim(X) < a(startClaimZ((KBZ,CSZ),IDZ)

then

a(replyToClaimQ(X,KBQ,CSQ),IDQ).

From this example we can see that first role sends a locution and then changes its
role, the second role receives a locution and then changes its role. We can consider
that as pattern where the general idea is that both agents send /receive message and
then change their roles so as is remain in dialogue.

a(RZ1(KBZ,CSZ),IDZ)::

SL(X) = a(RQ1(KBQ,CSQ),IDQ) +— C1(X, CSZ)
then

a(RZ2 (KBZ,CSZ),IDZ).
a(RQ1(KBQ,CSQ),IDQ)::

SL(X) < a(RZ1(KBZ,CSZ),IDZ)

then

a(RQ2(KBQ,CSQ),IDQ).

where SL represents the starter locution and C1(X, CSZ) represents unspecified
conditions between X and CSZ (Agent commitment store)

Transfer from Dialogue Interaction Diagram (DID) to Start pattern

1. The first step in the process of creating LCC protocol is to determine starting
locution (SL). As we can see from Figure 2 SL could be either claim or argue.
In the car safety example, SL = claim (which appears at the top of figure 2).

2. The next step is to apply the Starting Pattern. Before doing that, the system
has to replace RZ1 with startClaimZ1, RQ1 with startClaimQ1, RZ2 with
replyToClaimZ and RQ2 with replyToClaimQ. To this effect, the system is
ready to apply the Starting Pattern. This will be done by matching the SL to
claim (stepl), matching C1(X, CSZ) to the acquire condition which represented
in Rhombus shape in DID (step2). In car safe example, SL = claim, from DID

11

we can see that the acquire condition is addInCS(CS,X). So the systems will
match C1(X, CSZ) to addInCS(X, CS)

Second Pattern: Termination Recursive Pattern (T-R-P)

a(replyToClaimQ(X,KBQ,CSQ),IDQ)::

concede(X) = a(replyToClaimZ (KBZ,CSZ),IDZ) <+— FindInKBorCS(X,CSQ,KBQ)
AddInCS(X, CsQ)

or

(why(X) =a(replyToClaimZ (KBZ,CSZ),IDZ)

then

a(replyToWhyQ (X, KBQ,CSQ),IDQ)).

a(replyToClaimZ(KBZ,CSZ),IDZ)::

concede(X) <« a(replyToClaimQ (X ,KBQ,CSQ),IDQ)
or

(why(X) < a(replyToClaimQ (X ,KBQ,CSQ),IDQ)
then

a(replyToWhyZ (X ,KBZ,CSZ),IDZ)).

and

If we look at any other roles in the car safe example such as replyToClaimQ
dReplyToClaimZ, we can see that the first role sender sends a locution to terminate
the argument or sends a permitted locution and then recourses. The second role
receives a locution which intends to terminate the argument or receives a permit-
ted locution and then recurses. We can use this as a general recurseve skeletons.
Skeleton describe the basic control flow of LCC argumentation clauses then we can
develop the basic clause further by rewriting it to build more complex programs.

a(RZ1(KBZ,CSZ),IDZ)::
RZ1 Tl~> RQ1
or

RZ1 Bl ~> RQ1

a(RQ1(KBQ,CSQ),IDQ):
RQl <~TL RZ1

or

RQ1 <~RL RL RZ1

This Skeleton represents a generic recursive clause. The variable R in the defi-
nition above represents the role name. KB, CS are the role argument and ID is the
agent identifier. TL represent Termination Locution (such as retract and concede)
and RL represents a Recursive Locution (such as argue, why and claim). > =’
represents outgoing messages from a role, and ’ <&’ represents incoming messages.

Rewriting of Termination Recursive Skeleton
First: Rewriting of ” RZ1 "f~>~ RQ1”

The main function of rewriting is to allow generic relations between R Z1 and
R Q1 to be rewritten into a specific way. There might be a direct or so complex or

12

indirect relation between them. If there is a general relation of 7 RZ1 TF~>~ RQ1”
then it is possible to specialize within 3 different statements:

Rewrite 1:

We might specialize ” RZ1 TP~~ RQ1” to an interaction statement that sends
TL (X) Termination message to agent IDz which is done under C1(X, KBQ,CSQ)
and C2(X,CSQ) which represents condition between X, CS and KB.

TL (X) = a(RQ1(KBQ,CSQ,CSZ),IDQ) «+— C1(X, KBQ,CSQ) and C2(X,CSQ)

Rewrite 2:

We might specialize ” RZ1 T~~~ RQ1” to an interaction statement that sends
TL (X) Termination message to agent IDz which is done under C1(X, KBQ,CSQ)
and C2(X,CSQ) . Then, there is another termination relation between RZ1 and R

QL.

TL (X) = a(RQ1(KBQ,CSQ,CSZ),IDQ) +— C1(X, KBQ,CSQ) and C2(X,CSQ)
or

RZ1 Tl~> RQ1

Rewrite 3:

We might specialize ” RZ1 TP~~ RQ1” to an interaction statements that receive
L(-) message from agent IDQ and then sends TL (X) Termination message to agent
IDz which is done under C2(X, KBQ,CSQ) and C3(X,CSQ).

L(-) «a(RQ1(KBQ,CSQ,CSZ),IDQ) +— C1(X,CSQ)
then
TL (X) = a(RQ1(KBQ,CSQ,CSZ),IDQ) +— C2(X, KBQ,CSQ) and C3(X,CSQ)

Second: Rewriting of ” RZ1 ' ~~ RQ1 ”
Rewrite 1:

We might specialize "RZ1 # ~~ RQ1” to an interaction statement that sends
message RL (X) to agent IDz which is done under C5(X, KBQ,CSQ) and C6(X,CSQ).
Then it recurses.

(RL(X) = a(RQ1(KBQ,CSQ,CSZ),IDQ) +— C5(X, KBQ,CSQ) and C6(X,CSQ)
then
a(RZ2 (KBZ,CSZ,CSQ),IDZ))

13

Rewrite 2:

We might specialize "RZ1 #F ~>~ RQ1”to an interaction statement that sends
message RL (X) to agent IDz which is done under C5(X, KBQ,CSQ) and C6(X,CSQ)
and then it recurses. After that there is another Recursive relation between R Z1
and R Q1.

(RL(X) = a(RQ1(KBQ,CSQ,CSZ),IDQ) «— C5(X, KBQ,CSQ) and C6(X,CSQ)
then

a(RZ2 (KBZ,CSZ,CSQ),IDZ)

or

RZ1 Bl ~~ RQ1

Rewrite 3:

We might specialize "RZ1 7L ~> RQ1”to change the role to RZ2 which is done
under C5 (X, KBQ,CSQ).

a(RZ2 (KBZ,CSZ,CSQ),IDZ) +— C5 (X, KBQ,CSQ).

Transfer from DID to Termination Recursive Pattern

1. In order to apply the Termination Recursive Pattern, the system has to replace
RZ1 with replyToClaimZ and RQ1 with replyToClaimQ.

2. As we can see from Figure 2 the legal move after claim could be either concede
or why. Concede consider as Termination Locution and why as Recursive
Locution, as shown in dot rectangles in Figure 2. To this effect, the system
will match TL to concede and RL to why.

3. The next step after applying T-R pattern is the incremental rewriting of the
clause:

(a) Since we have only one TL the system will apply the first rewriting method
of ” RZ1 TFa~> RQ1” by matching TL to concede (stepl) and matching
C1 (X, KBQ,CSQ) to the acquire condition ” FindInKBorCS(X,CS,KB)”
which represented in Rhombus shape in DID (step2).

(b) Since we have only one RL the system will apply the first rewriting method
of "RZ1 #L ~= RQ1” by matching RL to why (stepl) and replacing RZ2
with replyToWhy. (step2).

7 Conclusion and Future work

The contribution of this paper is to show by example how a form of structured
syntheses from basic logic programming (techniques editing) can be applied to the
problem of syntheses of argumentation protocols. A key insight in doing so is that
the sort of specification used as the high-level language in the Argumentation In-
terchange Format (an example of a domain- specific specification language)can be
used to drive the automatic synthesis algorithm.

14

There are a two interesting future directions in this area. Firstly, we have illus-
trated our proposal in the context of persuasion dialogue but in future, we want to
investigate other kinds of dialogue, such as negotiation and deliberation dialogues.
Secondly, our current approach is limited to two agents(which is the norm for argu-
mentaion). In future, we aim to extend the work to handle a negotiation among N
agents.

References

[1] Chesnevar, C., McGinnis, J., Modgil, S., Rahwan I., Reed, C., Simari, G.,
South, M., Vreeswijk, G., Willmott, S. : Towards an argument interchange
format. The Knowledge Engineering Review 21(4), pp. 293-316, (2007)

[2] Willmott, S., Vreeswijk, G., Chesnevar, C., South, M., McGinnis, J., Modgil,
S., Rahwan 1., Redd C., Simari G. :Towards an Argument Interchange Format
for Multi-Agent Systems, In Proceedings of the 3th International Workshop on
Argumentation in Multi-Agent Systems (ArgMAS2006), (2006)

[3] Robertson D.:Multi-agent coordination as distributed logic programming. In
”Logic programming” 20th International Conference, Proceedings, vol. 3132 of
Lecture Notes in Computer Science, pp. 416-430, (2004)

[4] Grivas A.: A Structural Synthesis System for LCC Protocols, PhD thesis, Uni-
versity of Edinburgh, (2005)

[6] Prakken, H.: On dialogue systems with speech acts, arguments, and counterar-
guments. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzman, I.P.
(eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 224-238. Springer, Heidelberg
,(2000)

[6] Prakken, H.: Coherence and flexibility in dialogue games for argumentation.
Journal of logic and computation vol. 15, pp. 1009-1040, (2005)

[7] Modgil S., McGinnis J. :Towards Characterising Argumentation Based Dia-
logue in the Argument Interchange Format. In Proceedings of the 4th Inter-
national Workshop on Argumentation in Multi-Agent Systems (ArgMAS2007),
pp. 80-93, (2007)

[8] Robertson D.: Multi-agent Coordination as Distributed Logic Programming.
University of Edinburgh,(2005)

[9] Hassan F., Robertson D., and Walton C.: Addressing Constraint Failures in
Agent Interaction Protocol. Center for Intelligent Systems and their Applica-
tions, University of Edinburgh, (2005)

[10] D.N Walton and E.C.Krabbe. : Commitment in Dialogue. Basic concepts of
interpersonal reasoning. State university of New York Press, Albany, NY, (1995)

[11] Prakken H.: Formal systems for persuasion dialogue, Department of Informa-
tion and Computing Sciences, Universiteit Utrecht Centre for Law and ICT,
Faculty of Law, University of Groningen The Netherlands, (2006)

[12] Bowles A., Robertson D., VasconcelosW., Vargas-Vera M., and Bental D. :

Applying prolog programming techniques. International Journal of Human-
Computer Studies, 41(3), pp. 329-350, (1994)

15

