Implementation of Image Processing System using Handover Technique with Map Reduce Based on Big Data in the Cloud Environment

Mehraj Ali and John Kumar
Department of Computer Application, Thiagarajar College of Engineering, India

Abstract: Cloud computing is one of the emerging techniques to process the big data. Cloud computing is also, known as service on demand. Large set or large volume of data is known as big data. Processing big data (MRI images and DICOM images) normally takes more time. Hard tasks such as handling big data can be solved by using the concepts of hadoop. Enhancing the hadoop concept will help the user to process the large set of images. The Hadoop Distributed File System (HDFS) and MapReduce are the two default main functions which is used to enhance hadoop. HDFS is a hadoop file storing system, which is used for storing and retrieving the data. MapReduce is the combination of two functions namely map and reduce. Map is the process of splitting the inputs and reduce is the process of integrating the output of map’s input. Recently, medical experts experienced problems like machine failure and fault tolerance while processing the result for the scanned data. A unique optimized time scheduling algorithm, called Dynamic Handover Reduce Function (DHRF) algorithm is introduced in the reduce function. Enhancement of hadoop and cloud and introduction of DHRF helps to overcome the processing risks, to get optimized result with less waiting time and reduction in error percentage of the output image.

Keywords: Cloud computing, big data, HDFS, mapreduce, DHRF algorithm.

Received September 13, 2013; accepted March 20, 2014

1. Introduction

Cloud computing is the sought after field nowadays in information technology. Cloud computing is a package comprising of server and client machines. Cloud computing processes the data in the distributed and parallel modes. Cloud computing is also, known as service on demand. The services of the cloud computing enables end users to pay and obtain required data from the service providers like IBM, AMAZON and INTEL among others. In this proposed work, an enhanced cloud tool called INTEL (a product of Intel) is utilised. Enhancing the concept of hadoop over the cloud computing gives the better result in the process of computing big data. The hadoop enhances the Hadoop Distributed File System (HDFS) and MapReduce functions in it. The MapReduce concept will execute the complicated tasks very easily, with simple requirements of machines. Google first introduced the concept of MapReduce programming model [2, 6]. MapReduce concept has few basic functions like master, slave, job manager, job node, etc. The master function supervises the execution of map and reduce operations.

The image processing techniques like grayscale, sobel edge detection, gaussian blur and fast corner 9 detection are also, enhanced in the proposed work. Presently, this regular set of work is made with the other corner detection method and scheduling algorithm for 2D to 3D data processing [2, 11]. In the proposed work, it has been proved that, there is another better corner method, improved Sum of Absolute Differences (SAD) matching and an optimized scheduling algorithm, which could benefit the client in the useful manner. Dynamic Handover Reduce Function (DHRF) algorithm has proved that, it works better than the existing algorithm in the reduce function. JPEG files can be viewed and opened mostly by many image viewers. Some image formats may get deleted while compressing. Even some reduction in the quality of image may occur while compressing. In the proposed model, a template has been made in such a way that, it accepts the input data in any format. An attempt has been made to show that all the accepted input is to be compressed to that of the fixed frame size. The raw data formats are converted to the fixed frame size and then the data compression is done to a fixed scale. The output will be a better one with high flexibility, less waiting time and less error percentage. Mostly the medical data will be in the DICOM format and rarely in the .JPEG format. As an outcome of this work the output templates received will be in the .JPEG format.

Implementation of fast corner_9 method has proved that it can give the users a better result than harris corner method. Also, the implementation of improved SAD reduces the error percentage when compared to the existing method. The computation of small files is proved to be better in the existing system. The concept of big-data is being used in the proposed work, so that it could manage the input into fixed frame size. Patel et al. [8] reports the experimental work on big data.
problem and its optimal solution using hadoop cluster, HDFS for storage and using parallel processing to process large data sets using map reduce programming template. In the reported work, the word junks meaning intermediate data will be sent to the reduce function. In the reduce function, the proposed DHRF algorithm is added to give the result. Big data chunks with different size and sequence is computed in each node, so that transfer of a chunk is overlapped with the computation of the previous chunk in the node, as much as possible \[3, 4, 5\]. These junks are computed in the reduce functions. The data transfer delay can be comparable or even higher than the time required to compute the data \[1, 9, 10\]. To overcome the problem of transfer delay from the existing system, a novel optimization scheduling algorithm has been implemented in our study. In the existing module, processing large data is by a large number of small files, which exhibits better performance \[7\]. In this work, handling of large set of data has been implemented with the enhanced tool.

The Figure 1 shows format by which the inputs in the various formats are stored in the data container. The job manager function is use to assign work for the servers. These inputs of the data will be stored in HDFS to start the mapreduce function. Each job will be assigned as a task.

2. Data Processing Procedures

In this work, the process comprises of few data processing techniques as shown in Figure 3. Such as grayscale, sobel, gaussian blur, fast corner and SAD matching to find the difference between two data. The grayscale method is used because, when an image is converted to grayscale, the image’s quality will be improved. Sobel method is used to find the edges of the images. The gaussian blur is used to blur the image, so that it will be useful for fast corner_9 method to detect the corners of the image. The enhancement of these methods results in better quality of the image. Hence, these are surveyed as the best. The given equation finds the solution for the harris corner method to find the image patch area with the argument \((u, v)\). Where \((u, v)\) denotes the image patch point and while processing, \((x, y)\) get shifted to \((u, v)\), where \(w\) is the center point on the \((x, y)\).

\[E(u,v) = \sum_{x,y} w(x,y)[I(x+u,y+w)-I(x,y)]^2 \]

In harris corner, a square mask with point \(p(x, y)\) was established. The Figure 4 shows the output of harris corner method.

When the mask of grayscale value is higher than the threshold, the point \(p\) is defined as the corner. Here, \(E\) denotes the patch area, \(I\) denotes the given image.

3. Methodology

3.1. Fast Corner_9

In the presence of various corner detection methods include harris corner method, Susan, Zheng and Harr. Among these methods, fast corner_9 is used due to higher clarity when compared with other corner detection method. This fast corner detection has come from moravec Sum of Squared Differences (SSD) and the harris corner detection (second derivative of SSD). By using the non minimal suppression it is determined.
This is calculated by subtracting the original value, by comparing the \(p \) value and with \(t \) value. This has been implemented on client machine with the configuration Intel (R) Core 2 duo, 4 GB RAM and 2.93 GHz processor and the Server with the configuration of IBM X 3400 M3 Server, Intel Xeon E 5507 (Quad Core), 2.26 Ghz Processor, 146 GB DDR3-1333 Mhz ECC RAM, 146 GB 10K SAS hard disk drive.

\[
\nu = \min \begin{cases} \sum (p-value)n \text{ if } \frac{1}{t} < (value-p) & \frac{1}{t} \geq (p-value) \sum (pixelvalue-p)n \text{ if } (p-value) > t \end{cases}
\]

(2)

Where, \(\nu \) is the corner value, \(p \) denotes the grayscale value, \(t \) denotes the Threshold value and \(n \) denotes to the non-maximum suppression.

3.2. Sum of Absolute Differences

SAD is a mathematical term that has been enhanced here to find between differences the two \(P \) blocks of the processed data.

\[
SAD = \sum_{(u,v) \in v} [A_1(u,v) - A_2(x + u, y + v)]
\]

(3)

Where, \(A_1 \) and \(A_2 \) are the two images. Like the harris corner method, here also, \((u, v) \) denotes the image patch area and while processing \((x, y) \) gets shifted from \((u, v) \). Where, \(w \) refers to the fraction of image points. Before the implementation of SAD there is an existence of SSD to find the difference. As SSD is an old, it isn’t able to produce a clear result like SAD. The Relationship between the intersection points detected by harris corner detection method and labels the corresponding points for computers to judge the corresponding locations of intersection. In relationship between the corners, the interpolations are used to judge the location of the corner while being photographed to simulate the data.

4. Dynamic Handover Reduce Function Algorithm

The Figure 5 shows the Illustration of DHRF algorithm. After the installation of INTEL Manager is over, next the hadoop set up has to be done in the system. Now the system can work on the MapReduce functions and use the facility of the HDFS. After the successful installation of the INTEL Manager and hadoop and its content, the proposed DHRF algorithm has to be inserted in the reduce function. Since the MapReduce is an open source, it can be edited and modified according to the user’s need. When a task is applied to the nodes on the cluster, the map function starts its job of splitting the data. The task node assigns the job for the each node, and also it supervises the job node and its functions. When the job assigned by the task node gets over, the output of the map function is ready with the intermediate data. In the proposed work DHRF algorithm receives the map result and finally recognizes the labeling for the output. In this map, as defined earlier the four methods of processing have been involved. The master node monitors all the functions of the map function. The task of the map function is the hardest task, which manages the server and client machines.

![Figure 5. Illustration of DHRF Algorithm.](image)

Algorithm 1: DHRF

```java
BufferedImage res = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_GRAY);
// Initialize the image process
byte[] bytesCompressed = compressor.compress(imageToCompress);
Deflater deflater = new Deflater();
deflater.setInput(bytesToCompress);
// Produce the data compression
BufferedImage resizedImage = new BufferedImage(IMG_WIDTH, IMG_HEIGHT, type);
Graphics2D g = resizedImage.createGraphics();
g.drawImage(originalImage, 0, 0, IMG_WIDTH, IMG_HEIGHT, null);
g.dispose();
// put the data into scaling
static{
URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());
}
// write the map reduce structure
in = new URL(PATHTOBEMAPPED).openStream();
IOUtils.copyBytes(in, System.out, 2, false);
// set the server to handle mapper
FSDataOutputStream out = fileSystem.create(path);
InputStream in = new BufferedInputStream(new FileInputStream(new File(source)));
// mark data into HDFS of hadoop
Process the image until completing the grayscale, sobel, guassian, fast corner, SAD matching of the image.
// operate the data process until the data processed
map(in_key, in_val) -> list(out_key, intermediate_val)
reduce(out_key, list(intermediate_val)) -> list(out_value)
```
// Set the MapReduce Operation
FileSystem fs =
file.getFileSystem(context.getConfiguration());
FSDataOutputStream fileOut = fs.create(new
Path("your_hdfs_filename");
// write the data mapper
reduce(WritableComparable, Iterator, OutputCollector,
Reporter)
continue until reducer task is complete
// send mapper output data to reducer
JobConf.setNumReduceTasks(int)
// set small unit value to the task and reducer wait queue
interrupt.task
store the result(image).

The MapReduce function handles the data to produce
the desired output as shown in Figure 4. Finally map
results are sent to reduce operation. The implementation of DHRF algorithm focuses on reduce
function integrating the task and allots the process to
produce the result in jpg format.

5. Proposed Work
To obtain an optimized result from the existing image
processing techniques, the proposed work implements
the hadoop and cloud computing using INTEL
Manager. A set up of ten machines configured with
Intel (R) Core 2 duo, 4 GB RAM and 2.93 GHz
processor is used in this study. In these machines.
INTEL Manager a Cloud tool is installed. INTEL
Manager has basically Master and Slave in it. Since
hadoop is an open source, it can be modified according
to our need. So, the editing is done in the reduce
function, by adding the proposed DHRF algorithm. In
this work, an enhanced cloud tool called INTEL
Manager is utilized. The coding or the application of
image processing techniques is installed on the INTEL
Manager, to run the proposed experiment. The main
advantage of this enhanced INTEL Manager is it works
on the Normal Window XP (64 bit) infrastructure. In
this work INTEL Manager which is open source
software available as private cloud cum hybrid cloud is
used.

5.1. Performance Analysis and Evaluation
Previously, an analysis was done using a different
algorithm with four servers. Analysis shows, the time
consistency by designing an optimized scheduling
algorithm. The proposed DHRF algorithm reduces the
time and error percentage using the reduce function.
The DHRF algorithm has to be coded with java and the
input has to be given in jar file format. When the start
option is selected, the operation gets started. The same
operation can be paused and stopped. There will be a
screen with two segmentations. First segment shows
the given input which is to be processed. Second one
shows the output. Once the operation gets over, it
automatically shows the output. Figure 6 explains the
process.

The task node, automatically selects the server to do
the map function. Then, the output of the map function
will be taken as the input for reducer function. The
reducer function is to integrate the input of map before
the map function. The implementation of DHRF
algorithm will work on the reduce function and will
perform the scheduling process. That is to reduce the
waiting time by comparing DHRF algorithm and
existing DSRF algorithm. The DHRF algorithm is
designed mainly to reduce the time and to decrease the
waiting time.

6. Implementation
6.1. Structure
The map function structure shows the flow of process
that takes place while processing the map function.
The original input is shown in the Figure 7-a. The
process of converting the original image to Grayscale
image is shown in the Figure 7-b, which means the original
image is, converted into Black and White format. The
conversion of Grayscale to Sobel edge detection is
shown in the Figure 7-c, which reduces the edge’s
noise in the image.
Finally the conversion of Sobel edge detection to
Gaussian Blur is shown in the Figure 7-d, which blurs
the image for further processing. The differences
between the original images Figure 7-e and the
infected image Figure 7-f are found by using SAD
matching. The result of SAD matching is shown in the
Figure 7-g.
applied in the proposed algorithm works better than the existing system. Whatever the size or format of images may be, the result will be produced in the predefined format. The result occupies less memory space when compared with the size of the input for storage.

Figure 9 shows the graphical representation between the proposed DHRF algorithm and existing DSRF algorithm, which clearly shows the number of users attempting the process and the time (waiting time) taken for the process to complete. From the graph we can clearly understand the proposed method is far better than the existing algorithm. The line for proposed DHRF algorithm falls below the line of DSRF algorithm in the Figure 10 shows the reduction in waiting time which is the main objective in the proposed work.

The Figure 10 for harris versus fast method.

The Figure 10 for harris versus fast method.
is made to show the number of attempts repeated to match the Corners of the frame.

The Figure 11 shows the graphical representation between the percentage repeatability and the Noise standard deviation between the existing harris corner detection method and proposed faster corner edge detection method. Since, the deviations in the Graphs positively shows that, the proposed method is far better and improved when compared with the existing work. As defined the input images are compressed and scaled. The Figure 12 shows the graphical representation of SAD difference existing SAD with proposed SAD. This shows the proposed SAD matching is proved to be better than existing system.

![Figure 11. Noise level observed from harris versus fast method.](image1.png)

![Figure 12. SAD difference between existing versus proposed method.](image2.png)

All the four graphs, shows the newly implemented algorithm and the enhanced techniques are better when compared with the existing technique. The minute variations in the graph matters and proved to be much better when compared with existing. The servers and the clients are shown in the graph by incorporating the readings according to the process, techniques and algorithm respectively. The proposed harris corner method and the SAD matching play a major role for the enhancement of the output image in this work. The graphs are valued in percentage, so that the results are obtained much accurately.

8. Conclusions

This work proves the images of various formats can be taken as input. The quality of the image is fine tuned with the proposed algorithm which has produced better result in the jpeg format. This result shows that, whatever may be the format of the input, the result can be obtained in jpeg format to give better improved quality of output with less waiting time and error percentage. In this work, the present algorithm has been implemented for the optimizing the result in the reduce function. In future, it is planned to incorporate some more modification on the map function, so that the results can be more accurate. This work implements four image processing techniques, where as in the future work, the comparison testing can be done by using less number of image processing techniques.

References

Mehraj Ali is a Full-Time PhD Research Scholar at Anna University, India. He has completed his MSc degree at Anna University, India. His Research areas includes cloud computing, big data, image processing etc., he has published articles in various National/International conferences in his domain. He has also, published articles in peer reviewed journals.

John Kumar has obtained his PhD degree in Computer Applications from Anna University, India in 2010. He has started his teaching profession in the year 2003 to serve his parent Institution Thiagarajar College of Engineering, Madurai, where he obtained his Master Degree in Computer Applications. He has published several research papers in International and National Journals as well as conferences. His field of interest includes spatial data mining, cloud computing and image processing.