Computer Vision - Lecture 18

Motion and Optical Flow

22.01.2009

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia

leibe@umic.rwth-aachen.de

Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik
Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
- Motion and Tracking
 - Motion and Optical Flow
 - Tracking with Linear Dynamic Models
 - Articulated Tracking
- Repetition
Recap: Structure from Motion

• Given: m images of n fixed 3D points

$$x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n$$

• Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}
Recap: Structure from Motion Ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same.

- More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change.

\[
x = PX = (PQ^{-1})(QX)
\]

Slide credit: Svetlana Lazebnik
Recap: Hierarchy of 3D Transformations

- **Projective**
 - 15dof
 - Formula: $\begin{bmatrix} A & t \\ v^T & v \end{bmatrix}$
 - Preserves intersection and tangency

- **Affine**
 - 12dof
 - Formula: $\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$
 - Preserves parallellism, volume ratios

- **Similarity**
 - 7dof
 - Formula: $\begin{bmatrix} sR & t \\ 0^T & 1 \end{bmatrix}$
 - Preserves angles, ratios of length

- **Euclidean**
 - 6dof
 - Formula: $\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$
 - Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a *projective* reconstruction.
- Need additional information to *upgrade* the reconstruction to affine, similarity, or Euclidean.

Slide credit: Svetlana Lazebnik
Recap: Affine Structure from Motion

- Let’s create a $2m \times n$ data (measurement) matrix:

$$
D = \begin{bmatrix}
\hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\
\hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\
\vdots & \vdots & & \vdots \\
\hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
$$

Points ($3 \times n$)

Cameras ($2m \times 3$)

- The measurement matrix $D = MS$ must have rank 3!

Slide credit: Svetlana Lazebnik
Recap: Affine Factorization

- Obtaining a factorization from SVD:

\[D = U_3 \times W_3 \times V_3^T \]

Possible decomposition:

\[M = U_3 W_3^{1/2} \quad S = W_3^{1/2} V_3^T \]

This decomposition minimizes \(|D-MS|^2 \)
Recap: Projective Factorization

\[
D = \begin{bmatrix}
 z_{11}x_{11} & z_{12}x_{12} & \cdots & z_{1n}x_{1n} \\
 z_{21}x_{21} & z_{22}x_{22} & \cdots & z_{2n}x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{m1}x_{m1} & z_{m2}x_{m2} & \cdots & z_{mn}x_{mn}
\end{bmatrix} = \begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_m
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
\]

Points (4 × n)

Cameras (3m × 4)

\[D = MS\text{ has rank 4}\]

- If we knew the depths \(z \), we could factorize \(D \) to estimate \(M \) and \(S \).
- If we knew \(M \) and \(S \), we could solve for \(z \).
- Solution: iterative approach (alternate between above two steps).

Slide credit: Svetlana Lazebnik
Recap: Sequential Projective SfM

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - *calibration*
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - *triangulation*
- Refine structure and motion: *bundle adjustment*

Slide credit: Svetlana Lazebnik
Recap: Bundle Adjustment

- Non-linear method for refining structure and motion
- Minimizing mean-square reprojection error

\[E(P, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, P_j X_j)^2 \]
Topics of This Lecture

- **Introduction to Motion**
 - Applications, uses

- **Motion Field**
 - Derivation

- **Optical Flow**
 - Brightness constancy constraint
 - Aperture problem
 - Lucas-Kanade flow
 - Iterative refinement
 - Global parametric motion
 - Coarse-to-fine estimation
 - Motion segmentation

- **KLT Feature Tracking**
Video

- A video is a sequence of frames captured over time
- Now our image data is a function of space \((x, y)\) and time \((t)\)
Applications of Segmentation to Video

- **Background subtraction**
 - A static camera is observing a scene.
 - Goal: separate the static *background* from the moving *foreground*.

How to come up with background frame estimate without access to “empty” scene?
Applications of Segmentation to Video

- Background subtraction
- Shot boundary detection
 - Commercial video is usually composed of *shots* or sequences showing the same objects or scene.
 - Goal: segment video into shots for summarization and browsing (each shot can be represented by a single keyframe in a user interface).
 - Difference from background subtraction: the camera is not necessarily stationary.
Applications of Segmentation to Video

- Background subtraction
- Shot boundary detection
 - For each frame, compute the distance between the current frame and the previous one:
 - Pixel-by-pixel differences
 - Differences of color histograms
 - Block comparison
 - If the distance is greater than some threshold, classify the frame as a shot boundary.

Slide credit: Svetlana Lazebnik
Applications of Segmentation to Video

- Background subtraction
- Shot boundary detection
- Motion segmentation
 - Segment the video into multiple *coherently* moving objects
Motion and Perceptual Organization

- Sometimes, motion is the only cue

Slide credit: Svetlana Lazebnik
Motion and Perceptual Organization

- Sometimes, motion is foremost cue
Motion and Perceptual Organization

- Even “impoverished” motion data can evoke a strong percept
Motion and Perceptual Organization

- Even “impoverished” motion data can evoke a strong percept
Uses of Motion

- Estimating 3D structure
 - Directly from optic flow
 - Indirectly to create correspondences for SfM
- Segmenting objects based on motion cues
- Learning dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)
Motion Estimation Techniques

- **Direct methods**
 - Directly recover image motion at each pixel from spatio-temporal image brightness variations
 - Dense motion fields, but sensitive to appearance variations
 - Suitable for video and when image motion is small

- **Feature-based methods**
 - Extract visual features (corners, textured areas) and track them over multiple frames
 - Sparse motion fields, but more robust tracking
 - Suitable when image motion is large (10s of pixels)
Topics of This Lecture

• Introduction to Motion
 ➢ Applications, uses

• Motion Field
 ➢ Derivation

• Optical Flow
 ➢ Brightness constancy constraint
 ➢ Aperture problem
 ➢ Lucas-Kanade flow
 ➢ Iterative refinement
 ➢ Global parametric motion
 ➢ Coarse-to-fine estimation
 ➢ Motion segmentation

• KLT Feature Tracking

B. Leibe
Motion Field

- The motion field is the projection of the 3D scene motion into the image
Motion Field and Parallax

- \(P(t) \) is a moving 3D point
- Velocity of scene point:
 \[V = \frac{dP}{dt} \]
- \(p(t) = (x(t), y(t)) \) is the projection of \(P \) in the image.
- Apparent velocity \(\mathbf{v} \) in the image: given by components
 \[v_x = \frac{dx}{dt} \text{ and } v_y = \frac{dy}{dt} \]
- These components are known as the motion field of the image.

Slide credit: Svetlana Lazebnik
Motion Field and Parallax

\[V = (V_x, V_y, V_Z) \quad p = f \frac{P}{Z} \]

To find image velocity \(v \), differentiate \(p \) with respect to \(t \) (using quotient rule):

\[
v = f \frac{ZV - V_z P}{Z^2}
\]

\[
v_x = \frac{fV_x - V_z x}{Z} \quad v_y = \frac{fV_y - V_z y}{Z}
\]

- Image motion is a function of both the 3D motion \((V) \) and the depth of the 3D point \((Z) \).
Motion Field and Parallax

- Pure translation: V is constant everywhere

$$
V_x = \frac{fV_x - V_z x}{Z} \quad v = \frac{1}{Z}(v_0 - V_z p),
$$

$$
V_y = \frac{fV_y - V_z y}{Z} \quad v_0 = (fV_x, fV_y)
$$
Motion Field and Parallax

- Pure translation: \(\mathbf{V} \) is constant everywhere

\[
\mathbf{v} = \frac{1}{Z} (\mathbf{v}_0 - V_z \mathbf{p}),
\]

\[
\mathbf{v}_0 = (fV_x, fV_y)
\]

- \(V_z \) is nonzero:
 - Every motion vector points toward (or away from) \(\mathbf{v}_0 \), the vanishing point of the translation direction.
Motion Field and Parallax

• Pure translation: V is constant everywhere

\[v = \frac{1}{Z} (v_0 - V_z p), \]
\[v_0 = (fV_x, fV_y) \]

• V_z is nonzero:
 - Every motion vector points toward (or away from) v_0, the vanishing point of the translation direction.

• V_z is zero:
 - Motion is parallel to the image plane, all the motion vectors are parallel.

• The length of the motion vectors is inversely proportional to the depth Z.

Slide credit: Svetlana Lazebnik
Topics of This Lecture

- Introduction to Motion
 - Applications, uses
- Motion Field
 - Derivation

- Optical Flow
 - Brightness constancy constraint
 - Aperture problem
 - Lucas-Kanade flow
 - Iterative refinement
 - Global parametric motion
 - Coarse-to-fine estimation
 - Motion segmentation

- KLT Feature Tracking

B. Leibe
Optical Flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image.
- Ideally, optical flow would be the same as the motion field.
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion.
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination.
Apparent Motion ≠ Motion Field

Figure 12-2. The optical flow is not always equal to the motion field. In (a) a smooth sphere is rotating under constant illumination—the image does not change, yet the motion field is nonzero. In (b) a fixed sphere is illuminated by a moving source—the shading in the image changes, yet the motion field is zero.
Estimating Optical Flow

Given two subsequent frames, estimate the apparent motion field \(u(x, y) \) and \(v(x, y) \) between them.

Key assumptions
- **Brightness constancy**: projection of the same point looks the same in every frame.
- **Small motion**: points do not move very far.
- **Spatial coherence**: points move like their neighbors.
The Brightness Constancy Constraint

- Brightness Constancy Equation:
 \[I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t) \]

- Linearizing the right hand side using Taylor expansion:
 \[I(x, y, t-1) \approx I(x, y, t) + I_x \cdot u(x, y) + I_y \cdot v(x, y) \]

- Hence,
 \[I_x \cdot u + I_y \cdot v + I_t \approx 0 \]
The Brightness Constancy Constraint

\[I_x \cdot u + I_y \cdot v + I_t = 0 \]

- How many equations and unknowns per pixel?
 - One equation, two unknowns

- Intuitively, what does this constraint mean?
 \[\nabla I \cdot (u, v) + I_t = 0 \]

- The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

If \((u, v)\) satisfies the equation, so does \((u+u', v+v')\) if \(\nabla I \cdot (u', v') = 0\)
The Aperture Problem

Perceived motion
The Aperture Problem

Actual motion
The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Slide credit: Svetlana Lazebnik
The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Slide credit: Svetlana Lazebnik
Solving the Aperture Problem

• How to get more equations for a pixel?
• **Spatial coherence constraint:** pretend the pixel’s neighbors have the same \((u,v)\)
 - If we use a 5x5 window, that gives us 25 equations per pixel
 \[
 0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v]
 \]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

Solving the Aperture Problem

- **Least squares problem:**

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

\[
A \cdot d = b
\]

25x2 2x1 25x1

- **Minimum least squares solution given by solution of**

\[
(A^T A) \cdot d = A^T b
\]

2x2 2x1 2x1

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[
A^T A
\]

\[
A^T b
\]

(The summations are over all pixels in the K x K window)
Conditions for Solvability

• Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[A^T A \quad A^T b\]

• When is this solvable?
 - \(A^T A\) should be invertible.
 - \(A^T A\) entries should not be too small (noise).
 - \(A^T A\) should be well-conditioned.
Eigenvectors of $A^T A$

$$A^T A = \left[\frac{\sum I_x I_x}{\sum I_x I_y} \frac{\sum I_x I_y}{\sum I_y I_y} \right] = \sum \left[\begin{array}{c} I_x \\ I_y \end{array} \right] [I_x \ I_y] = \sum \nabla I (\nabla I)^T$$

- Haven’t we seen an equation like this before?
- Recall the Harris corner detector: $M = A^T A$ is the second moment matrix.
- The eigenvectors and eigenvalues of M relate to edge direction and magnitude.
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change.
 - The other eigenvector is orthogonal to it.
Interpreting the Eigenvalues

- Classification of image points using eigenvalues of the second moment matrix:

- “Corner”
 - \(\lambda_1 \) and \(\lambda_2 \) are large, \(\lambda_1 \sim \lambda_2 \)

- “Edge”
 - \(\lambda_2 \gg \lambda_1 \)
 - \(\lambda_1 \) and \(\lambda_2 \) are small

- “Flat” region
 - \(\lambda_1 \) and \(\lambda_2 \) are small

Slide credit: Kristen Grauman
Edge

\[\sum \nabla I (\nabla I)^T \]

- Gradients very large or very small
- Large \(\lambda_1 \), small \(\lambda_2 \)

Slide credit: Svetlana Lazebnik
Low-Texture Region

\[\sum \nabla I (\nabla I)^T \]
- Gradients have small magnitude
- Small \(\lambda_1 \), small \(\lambda_2 \)

Slide credit: Svetlana Lazebnik
High-Texture Region

\[\sum \nabla I(\nabla I)^T \]

- Gradients are different, large magnitude
- Large \(\lambda_1 \), large \(\lambda_2 \)

Slide credit: Svetlana Lazebnik
Per-Pixel Estimation Procedure

- Let \(M = \sum (\nabla I)(\nabla I)^T \) and \(b = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix} \)

- Algorithm: At each pixel compute \(U \) by solving \(MU = b \)

- \(M \) is singular if all gradient vectors point in the same direction
 - E.g., along an edge
 - Trivially singular if the summation is over a single pixel or if there is no texture
 - I.e., only normal flow is available (aperture problem)

- Corners and textured areas are OK
Iterative Refinement

- Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation.
- Warp one image toward the other using the estimated flow field.
 - *(Easier said than done)*
- Refine estimate by repeating the process.
Optical Flow: Iterative Refinement

Initial guess: $d_0 = 0$

Estimate: $d_1 = d_0 + \hat{d}$

(Using d for displacement here instead of u)
Optical Flow: Iterative Refinement

Initial guess: \(d_1 \)
Estimate: \(d_2 = d_1 + \hat{d} \)

(Using \(d \) for displacement here instead of \(u \))
Optical Flow: Iterative Refinement

\[f_1(x - d_2) \]
\[f_2(x) \]

Initial guess: \(d_2 \)
Estimate: \(d_3 = d_2 + \hat{d} \)

(Using \(d \) for displacement here instead of \(u \))
Optical Flow: Iterative Refinement

\[f_1(x - d_3) \approx f_2(x) \]

(using \(d \) for displacement here instead of \(u \))

Slide credit: Steve Seitz
Optic Flow: Iterative Refinement

- Some Implementation Issues:
 - Warping is not easy (ensure that errors in warping are smaller than the estimate refinement).
 - Warp one image, take derivatives of the other so you don’t need to re-compute the gradient after each iteration.
 - Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity).
Global Parametric Motion Models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns

Slide credit: Steve Seitz

B. Leibe
Affine Motion

\[u(x, y) = a_1 + a_2 x + a_3 y \]
\[v(x, y) = a_4 + a_5 x + a_6 y \]

- Substituting into the brightness constancy equation:

\[I_x \cdot u + I_y \cdot v + I_t \approx 0 \]
Affine Motion

\[u(x, y) = a_1 + a_2 x + a_3 y \]

\[v(x, y) = a_4 + a_5 x + a_6 y \]

- Substituting into the brightness constancy equation:

\[I_x (a_1 + a_2 x + a_3 y) + I_y (a_4 + a_5 x + a_6 y) + I_t \approx 0 \]

- Each pixel provides 1 linear constraint in 6 unknowns.

- Least squares minimization:

\[\text{Err}(\tilde{\alpha}) = \sum \left[I_x (a_1 + a_2 x + a_3 y) + I_y (a_4 + a_5 x + a_6 y) + I_t \right]^2 \]
Problem Cases in Lucas-Kanade

- The motion is large (larger than a pixel)
 - Iterative refinement, coarse-to-fine estimation
- A point does not move like its neighbors
 - Motion segmentation
- Brightness constancy does not hold
 - Do exhaustive neighborhood search with normalized correlation.
Dealing with Large Motions
Temporal Aliasing

- Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.
- I.e., how do we know which ‘correspondence’ is correct?

- To overcome aliasing: coarse-to-fine estimation.

Slide credit: Steve Seitz
Idea: Reduce the Resolution!

Slide credit: Svetlana Lazebnik

B. Leibe
Coarse-to-fine Optical Flow Estimation

Image 1

Gaussian pyramid of image 1

u=5 pixels

u=2.5 pixels

u=10 pixels

Image 2

Gaussian pyramid of image 2

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Slide credit: Steve Seitz

B. Leibe
Coarse-to-fine Optical Flow Estimation

1. Gaussian pyramid of image 1
2. Gaussian pyramid of image 2
3. Run iterative L-K
4. Warp & upsample
5. Run iterative L-K
Motion Segmentation

- How do we represent the motion in this scene?

Layered Motion

- Break image sequence into “layers” each of which has a coherent motion

J. Wang and E. Adelson. **Layered Representation for Motion Analysis.** *CVPR 1993.*
What Are Layers?

- Each layer is defined by an alpha mask and an affine motion model

Slide credit: Svetlana Lazebnik
Motion Segmentation with an Affine Model

\[
\begin{align*}
 u(x, y) &= a_1 + a_2 x + a_3 y \\
 v(x, y) &= a_4 + a_5 x + a_6 y
\end{align*}
\]

Local flow estimates

Motion Segmentation with an Affine Model

\[u(x, y) = a_1 + a_2 x + a_3 y \]

\[v(x, y) = a_4 + a_5 x + a_6 y \]

Equation of a plane (parameters a_1, a_2, a_3 can be found by least squares)

Motion Segmentation with an Affine Model

Equation of a plane (parameters a_1, a_2, a_3 can be found by least squares)

$$u(x, y) = a_1 + a_2 x + a_3 y$$

$$v(x, y) = a_4 + a_5 x + a_6 y$$

1D example

True flow

Segmented estimate

Local flow estimate

“Foreground”

“Background”

Occlusion

Slide credit: Svetlana Lazebnik
How Do We Estimate the Layers?

- Compute local flow in a coarse-to-fine fashion.
- Obtain a set of initial affine motion hypotheses.
 - Divide the image into blocks and estimate affine motion parameters in each block by least squares.
 - Eliminate hypotheses with high residual error
 - Perform k-means clustering on affine motion parameters.
 - Merge clusters that are close and retain the largest clusters to obtain a smaller set of hypotheses to describe all the motions in the scene.
- Iterate until convergence:
 - Assign each pixel to best hypothesis.
 - Pixels with high residual error remain unassigned.
 - Perform region filtering to enforce spatial constraints.
 - Re-estimate affine motions in each region.

Example Result

Slide credit: Svetlana Lazebnik

B. Leibe
Topics of This Lecture

- Introduction to Motion
 - Applications, uses
- Motion Field
 - Derivation
- Optical Flow
 - Brightness constancy constraint
 - Aperture problem
 - Lucas-Kanade flow
 - Iterative refinement
 - Global parametric motion
 - Coarse-to-fine estimation
 - Motion segmentation
- KLT Feature Tracking

B. Leibe
Feature Tracking

• So far, we have only considered optical flow estimation in a pair of images.
• If we have more than two images, we can compute the optical flow from each frame to the next.
• Given a point in the first image, we can in principle reconstruct its path by simply “following the arrows”.
Tracking Challenges

- Ambiguity of optical flow
 - Find good features to track
- Large motions
 - Discrete search instead of Lucas-Kanade
- Changes in shape, orientation, color
 - Allow some matching flexibility
- Occlusions, disocclusions
 - Need mechanism for deleting, adding new features
- Drift - errors may accumulate over time
 - Need to know when to terminate a track
Handling Large Displacements

- Define a small area around a pixel as the template.
- Match the template against each pixel within a search area in next image - just like stereo matching!
- Use a match measure such as SSD or correlation.
- After finding the best discrete location, can use Lucas-Kanade to get sub-pixel estimate.
Tracking Over Many Frames

- Select features in first frame
- For each frame:
 - Update positions of tracked features
 - Discrete search or Lucas-Kanade
 - Terminate inconsistent tracks
 - Compute similarity with corresponding feature in the previous frame or in the first frame where it’s visible
 - Start new tracks if needed
 - Typically every ~10 frames, new features are added to “refill the ranks”.

Slide credit: Svetlana Lazebnik
Shi-Tomasi Feature Tracker

- Find good features using eigenvalues of second-moment matrix
 - Key idea: “good” features to track are the ones that can be tracked reliably.
- From frame to frame, track with Lucas-Kanade and a pure *translation* model.
 - More robust for small displacements, can be estimated from smaller neighborhoods.
- Check consistency of tracks by *affine* registration to the first observed instance of the feature.
 - Affine model is more accurate for larger displacements.
 - Comparing to the first frame helps to minimize drift.

Slide credit: Svetlana Lazebnik
Tracking Example

Figure 1: Three frame details from Woody Allen’s *Manhattan*. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

Figure 2: The traffic sign windows from frames 1, 6, 11, 16, 21 as tracked (top), and warped by the computed deformation matrices (bottom).

J. Shi and C. Tomasi. [Good Features to Track](https://doi.org/10.1109/38.294680). CVPR 1994.
Real-Time GPU Implementations

- This basic feature tracking framework (Lucas-Kanade + Shi-Tomasi) is commonly referred to as “KLT tracking”.
 - Used as preprocessing step for many applications (recall the boujou demo yesterday)
 - Lends itself to easy parallelization

- Very fast GPU implementations available
 - 216 fps with automatic gain adaptation
 - 260 fps without gain adaptation

http://www.cs.unc.edu/~ssinha/Research/GPU_KLT/
http://cs.unc.edu/~cmzach/opensource.html
Example Use of Optical Flow: Motion Paint

- Use optical flow to track brush strokes, in order to animate them to follow underlying scene motion.

What Dreams May Come

http://www.fxguide.com/article333.html

Slide credit: Kristen Grauman

B. Leibe
Motion vs. Stereo: Similarities

- Both involve solving
 - Correspondence: disparities, motion vectors
 - Reconstruction
Motion vs. Stereo: Differences

• **Motion:**
 - Uses velocity: consecutive frames must be close to get good approximate time derivative.
 - 3D movement between camera and scene not necessarily single 3D rigid transformation.

• **Whereas with stereo:**
 - Could have any disparity value.
 - View pair separated by a single 3d transformation.
Summary

- **Motion field**: 3D motions projected to 2D images; dependency on depth.
- **Solving for motion with**
 - Sparse feature matches
 - Dense optical flow
- **Optical flow**
 - Brightness constancy assumption
 - Aperture problem
 - Solution with spatial coherence assumption
 - Extensions to segmentation into motion layers
References and Further Reading

• Here is the original paper by Lucas & Kanade

• And the original paper by Shi & Tomasi

• Read the story how optical flow was used for special effects in a number of recent movies
 ➢ http://www.fxguide.com/article333.html