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Abstract: Understanding the response to viral infection in the context of respiratory diseases is of
significant importance. Recently, there has been more focus on the role of the nasal epithelium
in disease modeling. Here, we provide an overview of different submerged, organotypic 3D and
spheroid cell culture models of nasal epithelial cells, which were used to study asthma and allergy
with a special focus on virus infection. In detail, this review summarizes the importance, benefits, and
disadvantages of patient-derived cell culture models of nasal- and bronchial epithelial cells, including
a comparison of these cell culture models and a discussion on why investigators should consider
using nasal epithelial cells in their research. Exposure experiments, simple virus transduction
analyses as well as genetic studies can be performed in these models, which may provide first
insights into the complexity of molecular signatures and may open new doors for drug discovery
and biomarker research.

Keywords: epithelial cells; nasal epithelial cells; bronchial epithelial cells; submerged; 3D cell culture;
spheroids; air–liquid-interface; virus; asthma; culture techniques

1. Introduction

Asthma remains of the most important airway diseases worldwide, being associated
with a significant number of people suffering from this illness [1–3]. The immunology
of asthma is composed of distinct molecular pathways involving cytokines, chemokines,

Viruses 2021, 13, 387. https://doi.org/10.3390/v13030387 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-0527-0953
https://orcid.org/0000-0002-9335-1808
https://doi.org/10.3390/v13030387
https://doi.org/10.3390/v13030387
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13030387
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/13/3/387?type=check_update&version=2


Viruses 2021, 13, 387 2 of 14

and transcription factors that orchestrate the signaling between innate and adaptive im-
munity [2,4,5]. Distinct allergy/asthma cohorts (including cohorts from birth on) have
been previously established and studies in these cohorts performed with the common
aim of understanding the clinical and molecular determinants of childhood asthma and
allergies [6–10].

Viral infections can contribute to asthma development and allergic sensitization [11,12].
Previous studies on respiratory syncytial virus (RSV) have shown that children with prior
RSV bronchiolitis who presented with chronic persistent symptoms had an increased risk
for allergic sensitization and asthma [13,14]. Patients with underlying diseases, i.e., children
with chronic bronchitis or bronchial asthma, are additionally more susceptible to severe
symptoms due to viral infection [15,16]. In particular, RSV, rhinovirus, influenza virus,
bocavirus, but also adenoviruses and coronavirus may play a role not only in exacerbation
but also in disease modeling in asthmatics [17–22]. To understand the pathogenesis of
respiratory illness due to viruses, to analyze the actual diagnostic standards, or to develop
novel treatment options for patients suffering from asthma, it is essential to study the
molecular effects of such viruses in more detail.

Cell culture models are indispensable in precisely answering these questions [23,24].
In particular, primary human nasal epithelial and bronchial epithelial cells enable the study
of important molecular characteristics of viral infection and have been extensively used to
reveal defining features of numerous viruses, including the recently emergent coronavirus,
SARS-CoV-2 [25–28]. For the implementation of such experiments, observations from cell
cultures (e.g., submerged, organotypic, spheroids, chip-based methods, organoids, etc.)
derived from normal and diseased patients may be important to study the molecular role
of viruses and to define potential “viral biomarkers” for clinical routine. Considering the
importance of and the lack of data regarding nasal epithelial cells, with this review, we
aim to discuss the necessity of cell culture models of nasal epithelial cells in respiratory
research with a special focus on viral infection in asthma, presenting our experiences and
summarizing the advantages and pitfalls when working with this cell group.

2. A General Overview on Cell Culture Techniques in Respiratory Medicine

Since the beginnings of scientific research, significant effort has been dedicated to-
wards keeping cells alive ex vivo [29]. The first immortal human cell line, originating from
the cervical carcinoma of Henrietta Lacks (HeLa cells, albeit without the direct consent of
Miss Lacks) was an enormous breakthrough and success for experimental medicine [30,31].
Increasingly, many immortal cell lines as well as primary mammalian cells find an im-
portant place in the laboratory. Submerged cell cultures of primary bronchial epithelial
cells are often used to perform in vitro experiments related to the respiratory system,
e.g., testing the effects of monoclonal antibodies, but also of air pollution, diesel, and
allergens [22,32,33]. The main disadvantage of this submerged culture model is that the
cells lose their ciliated phenotype and do not replicate human respiratory physiology, in
fact [34–37]. Since the early 1970s, studies utilizing bronchial epithelial cell cultivation
techniques have been of great significance for researchers [38–40]. Moreover, researchers
have now developed new culturing methods that more closely mimics the human physi-
ology [41]. The air–liquid interface (ALI) culture model is one of the first important cell
culture technique in respiratory research, where mucociliary differentiation and mucus
production in vitro can be achieved [41–44]. In brief, cells are grown on semipermeable,
transwell filters (=cell culture inserts) which are solely exposed to the culture medium
from the basolateral surface and the apical surface of the cells are exposed to the air, which
enables cells to develop a “pseudostratified morphology” [22,45–47]. This work builds
on the historically significant groundwork established by Whitcutt and colleagues, who
developed the “Whitcutt chamber” for the cultivation of respiratory epithelial cells in 1987.
Here, a chamber with a special membrane and a c-like ring were used to similar effect as
the current ALI model [48].
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Efforts are currently aimed at achieving maximal physiological conditions that accu-
rately recapitulate molecular responses in vivo. Certainly, so-called 3D cultures represent
an important milestone in experimental research [49,50]. Animal experiments can provide
important molecular answers to some clinical translational questions [51,52]. However,
due to the fact that human airway physiology and lung diseases such as asthma cannot be
perfectly imitated in animal models, e.g., in mice [53], 3D models represent an important
methodology in respiratory research to pursue potential translational hypotheses and
drug response studies [54,55]. Moreover, classical cell cultures are typically established
from one cell line or cell population although the infectious process involves many cell
subsets in vivo [56]. Here, tissue engineering/3D models may overcome this limitation [56].
Hence, the common goal of 3D-cultures is that cell aggregates embedded in a tight space,
e.g., in matrices or “scaffold” materials (e.g., the growth on agar, gelatin, collagen, etc.),
develop so-called collective integrity, in which cells communicate closely with each other
beyond external (constant change of cell culture media) or internal (material of cell culture
flasks) confounding factors [37,49,57–59]. Furthermore, spheroid cultures represent an
additional method for the rapid application of 3D-cultures and may also be prepared from
nasal epithelial cells [60]. While bronchial- and nasal epithelial cells may dedifferentiate
when seeded as a monolayer in flasks, 3D-spheroids seeded in suspension medium do
not actually suffer from this limitation [61–65]. In addition to ALI [41,45,66,67], bronchial-
and nasal epithelial spheroid cultures [62,68,69], further 3D-models [54], precision cut
lung slices [70,71], bronchial rings [72,73], and scaffold-based models [49,74–76] as well as
organoids [77,78] etc. have been already established from lung and nasal epithelium to this
end. Interestingly, organ-like tissue structures can be also developed from pluripotent stem
cells, which are currently referred to as mini-organs or organoids. These are self-organizing
3D-models for extended period culturing, enabling the study of disease modeling in dishes
through their similar in vivo morphology and physiology [79–82].

In summary, in review of the literature, bronchial epithelial but also increasingly nasal
epithelial cell culture models are essential for respiratory research [78,83–85]. The work
with spheroids and organoids, particularly after infection, could provide a closer look into
the molecular response, which has not yet to be fully explored.

3. Bronchial Epithelial versus Nasal Epithelial Cell Culture: Benefits and Drawbacks

Although culturing primary mammalian cells derived from patients is established in
the platforms mentioned above, the collection of bronchial epithelial cells is more difficult
to implement in practice compared to nasal epithelial cells [86,87]. Generally, healthy
children and adolescents do not routinely undergo invasive bronchoscopic interventions.
Particularly in young children, these examinations are reserved, for example, for foreign
body aspiration, or to clarify chronic cough due to lung pathology, hemoptysis, or suspected
neoplasia [88–90]. Indeed, based on our experiences, patients requiring bronchoscopic
examinations are mostly elderly patients with a longstanding medical history. Thus,
compared to healthy cells, these cells may have a different morphology that can significantly
influence the experimental outcomes. For example, a 60-year-old patient with a chronic
nicotine abuse or a chronic lung disease will certainly show a different cell morphology
than that of a healthy 2-year-old child with a no complex medical history.

Although a few authors have previously described the possibility of performing
bronchial brushing in patients [91,92], there must nevertheless be an important indication
to perform invasive examinations including bronchoscopy. Additionally these tests are
associated with great medical effort as well as significant risk of complications during
the procedure [93]. Moreover, the sampling from patients with, e.g., severe asthma, is
extremely difficult to implement through bronchoscopy [93]. It is generally known that
it is difficult to recruit a homogenous patient group to exclude inter- and intraindividual
differences between subjects. To exclude potential bias, an appropriate study design should
be prepared accordingly [54]. Commercially purchased cells from deceased individuals
are an alternative possibility; but death itself may be associated with different molecular
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mechanisms resulting again in decreased similarity to the in vivo reality. In addition, in the
immortal cell lines that can be commercially purchased [87], the question arises whether
these cells present an in vivo like response similar to that of pediatric patients with viral
infection and exacerbated asthma.

As a potential alternative to bronchial epithelial cells, nasal epithelial cells can be
obtained from children and adolescents with exacerbated asthma or chronic bronchitis as
well as from healthy children and adults through nasal brushing procedure without signifi-
cant medical interventional effort or invasiveness [22,86,94]. Nasal brushing also offers the
additional benefit of longitudinal collection of epithelial cells over different time points [93].
Furthermore, nasal epithelial cells do not mostly need to undergo any enzymatic digestion
prior culturing [93]. Thus, cells can be directly seeded for experimental analyses, e.g., in
submerged cultures/monolayers in flasks [93]. The downside to this, however, is that the
cell pellets may also include other cell types (e.g., fibroblasts, erythrocytes, etc.). Thus, a
flow cytometric characterization of the cells, for example, should be performed to deter-
mine the purity of the cultures. Based on previous flow cytometry protocols characterizing
bronchial epithelial cells, antibodies targeting CD45, CD326 and Pan-Cytokeratin can be
used to determine the purity of the nasal epithelial cells [22,95]. If the culture consists of
multiple cell types, the nasal epithelial cells can be also sorted with a fluorescence-activated
cell sorter, and a few days thereafter, basic exposure-to-effect analyses or co-culture experi-
ments can be easily performed. For example, to study the permissiveness of nasal epithelial
cells for virus transduction, Figure 1 exemplifies a submerged culture of primary nasal
epithelial cells infected with a reporter gene-expressing adenovirus.

Air–liquid interface and spheroid cell cultures can be also prepared from nasal ep-
ithelial cells and provide the possibility of analyzing the effects of external stimuli on
cell–cell integrity and/or on cell–matrix interaction [80,98]. An overview of the workflow
for obtaining, culturing, and analyzing nasal epithelial cells is provided in Figure 2, while
Figure 3 shows different types of cultures derived from nasal epithelial cells.

The derivation of these differentiated models with nasal epithelial cultures share
many of the same downsides as bronchial epithelial cultures including similar cul-
ture conditions [66,94,99–101], for example, growth arrest [45,101,102], sensitivity to
trypsin [41,100,101,103,104], risk of contamination [41,66,100,101,104,105] and a multi-week
differentiation process [42,66,101], as well as high cost. Recently, Broadbent and colleagues
tested different cell culture media using Promocell and PneumaCult media and analyzed
the effects of RSV in primary nasal epithelial cells [106]. They showed that there were no
significant differences in the viral response in vitro using both cell culture media. When
using PneumaCult, the number of the pseudostratified cells was higher than using Pro-
mocell [106]. Furthermore, Luengen et al. (2020) [107] compared different cell culture
media to study the mucociliary differentiation of respiratory epithelial cells in their entire
cohort. They included cells from subjects in the age range of 10 to 40 years (excluding
one subjects being between 50 and 60 years of age) and tested four different cell culture
media including (1) mAir, which is a modified version of AECBM (purchased from Pro-
moCell), DMEM and different supplements, (2) PneumaCult-ALI from STEMCELLTM

Technologies, furthermore, (3) Epi was prepared using MucilAir culture medium (pur-
chased from Epithelix) with tranexamic acid and (4) EMM was prepared using MucilAir
Culture medium, EGM2 an tranexamic acid. For the detailed media prescription, we kindly
refer to [107]. They interestingly concluded that the mAir media from PromoCell provided
better ciliary differentiation than other three cell culture media. The authors also discuss
a significant subject-variability in their study protocol, and a potential age- and clinical
history-dependency [107]. Generally speaking, nasal and bronchial epithelial cells present
very similar morphology and histology, among other similarities [68,94].
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Figure 1. The submerged culture of nasal epithelial cells transduced with adenovirus. The 
cultivation of nasal epithelial cells derived from a healthy subject from our pediatric exacerbation 
study cohort [96]. Nasal epithelial cells were seeded in an amount of 20,000 cells per well and 
resuspended in BEGMTM medium (Lonza, Basel, Switzerland) in collagen-coated 24-well culture 
plates prior to virus transduction. The next day, previously established recombinant adenovirus 
type 5 encoding green fluorescent protein [97] was added in different virus particle concentrations 
(vpc) (e.g., 1 × 108 vpc), incubated for one day upon viral transduction, and the transduction 
efficiency was analyzed through immunofluorescence microscopy. The subfigures (a) (b)  
represent virus transduction efficiencies in nasal epithelial cells directly correlating with virus 
transduction rates. The picture (c) shows the nasal epithelial cells without viral transduction 
(untreated, wildtype cells). This experiment was separately performed for this manuscript, 
correlates thematically with [22], and was not previously published elsewhere. 

Figure 1. The submerged culture of nasal epithelial cells transduced with adenovirus. The cultivation
of nasal epithelial cells derived from a healthy subject from our pediatric exacerbation study co-
hort [96]. Nasal epithelial cells were seeded in an amount of 20,000 cells per well and resuspended in
BEGMTM medium (Lonza, Basel, Switzerland) in collagen-coated 24-well culture plates prior to virus
transduction. The next day, previously established recombinant adenovirus type 5 encoding green
fluorescent protein [97] was added in different virus particle concentrations (vpc) (e.g., 1 × 108 vpc),
incubated for one day upon viral transduction, and the transduction efficiency was analyzed through
immunofluorescence microscopy. The subfigures (a,b) represent virus transduction efficiencies in
nasal epithelial cells directly correlating with virus transduction rates. The picture (c) shows the
nasal epithelial cells without viral transduction (untreated, wildtype cells). This experiment was
separately performed for this manuscript, correlates thematically with [22], and was not previously
published elsewhere.
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inserts = transwells), or directly seeded in submerged cultures. For certain questions, nasal epithelial 
cells can be also seeded for spheroid cultures (circa 1000 cells per U-bottom well). (c)  Different 
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histology and electron microscopy [22]. By means of transepithelial electrical resistance 
measurement, the integrity of the cell–cell interaction can be measured, or the permissiveness can be 
investigated through immunofluorescence microscopic analysis. This content of this figure correlates 
thematically with [22] and was not previously published elsewhere. This figure was created with 
www.biorender.com. 

Figure 2. An overview of the workflow for analyzing primary human nasal epithelial cells. (a) After careful collection of
the nasal epithelial cells from the nasal cavity using a cytology or interdental brush, cells are transferred to a 15 mL tube
and shaken several times. The brush is then removed, and the cells are centrifuged. The cells are checked for viability
using a Neubauer counting chamber using trypan blue or Türk’s solution (purchased from Sigma Aldrich). If necessary,
erythrocytolysis can be also performed separately. (b) The cells are then seeded into collagen-coated T25/T75 flasks in,
for example, BEGMTM medium. After two passages, flow cytometric characterization of the cells can be performed if
needed. If the cultures lack purity, separation by Magnetic-activated cell sorting (MACS) or Fluorescence-activated cell
sorting (FACS) can be also performed (usually these steps are not necessary). Afterwards the nasal epithelial cells are
either transferred into air–liquid interface cultures (ALI) (approximately 9–11 × 104 cells per 1.12 cm2 or 2–3 × 104 cells per
0.33 cm2 cell culture inserts = transwells), or directly seeded in submerged cultures. For certain questions, nasal epithelial
cells can be also seeded for spheroid cultures (circa 1000 cells per U-bottom well). (c) Different provocation experiments
or co-cultures can be performed with the cultures (here schematic presentation for ALI cultures) and subsequently, the
morphology of the cells can be studied through histology and electron microscopy [22]. By means of transepithelial electrical
resistance measurement, the integrity of the cell–cell interaction can be measured, or the permissiveness can be investigated
through immunofluorescence microscopic analysis. This content of this figure correlates thematically with [22] and was not
previously published elsewhere. This figure was created with www.biorender.com (accessed on 27 February 2021).

As early as 1990, Devalia et al. [94] compared bronchial- and nasal epithelial cells.
They were able to show that nasal epithelial cells have the same morphology and similar
in vitro cell culture growth and ciliary activity as bronchial epithelial cells, and that both
cell populations are suitable for airway tract studies [94]. In their study, Roberts and
colleagues [108] analyzed the molecular effects of human rhinovirus as well in-vitro-IL-13
treatment in nasal and bronchial epithelial cells in submerged and ALI cultures. Based on
their results, the two cell populations presented an almost identical response, so that the
authors concluded that nasal epithelial cells may be a potential laboratory surrogate for
bronchial epithelial cells. Thus, due to a few significant benefits of nasal epithelial cells
over bronchial epithelial cells, nasal epithelial cells will increasingly play a large role in
research laboratories.

www.biorender.com
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in different sizes). These images show the morphology of the nasal epithelial cell culture with cilia, the integrity of the 
cell–cell-interaction, and the glycocalyx structure. The samples were prepared for imaging with Zeiss Sigma VP SEM 
(Zeiss, Oberkochen, Germany) scanning electron microscope at 2 kV acceleration voltage using the in-lens and SE detec-
tors. (b) Nasal epithelial cells were seeded for the submerged spheroid culture technique. Cells derived from a healthy 
subject were seeded in a 96-well plate at circa 1000 cells per well in U-Bottom plate (x10 magnification, size 200 µm) 
receiving PneumaCultTM ALI medium (STEMCELLTM Technologies, Vancouver, Canada). After reaching a determined 
cell size, the spheroid culture can be used for distinct experimental questions. This experiment was separately performed 
and correlates thematically with [22]. (c) ALI culture derived from a healthy subject. After passaging nasal epithelial cells 
from the 2D submerged into the organotypic 3D ALI culture model, samples were prepared for histological analyses. This 
figure presents the cilia morphology of the cultures and the cell–cell integrity in PAS reaction. The ciliary epithelium is 
precisely imaged (×10 magnification, size 50 µm). (d) Transmission electron microscopic (TEM) analysis of nasal epithelial 
ALI cultures (×20,000 magnification, size 2.500 µm). The aim of this additional method and figure is to present the cell–
cell–contacts (tight junctions), cilia and organelles through TEM to study the effectiveness of the cell culture model. These 
methods/pictures were separately performed, correlate thematically with [22] and were not previously published else-
where. 
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Figure 3. The morphology of nasal epithelial cells. (a) Scanning electron microscopic imaging of organotypic 3D nasal
epithelial cell cultures derived from young children with asthma or healthy subjects (left top: ×4.00 K; left bottom: ×9.45K,
in different sizes). These images show the morphology of the nasal epithelial cell culture with cilia, the integrity of the
cell–cell-interaction, and the glycocalyx structure. The samples were prepared for imaging with Zeiss Sigma VP SEM
(Zeiss, Oberkochen, Germany) scanning electron microscope at 2 kV acceleration voltage using the in-lens and SE detectors.
(b) Nasal epithelial cells were seeded for the submerged spheroid culture technique. Cells derived from a healthy subject
were seeded in a 96-well plate at circa 1000 cells per well in U-Bottom plate (×10 magnification, size 200 µm) receiving
PneumaCultTM ALI medium (STEMCELLTM Technologies, Vancouver, Canada). After reaching a determined cell size, the
spheroid culture can be used for distinct experimental questions. This experiment was separately performed and correlates
thematically with [22]. (c) ALI culture derived from a healthy subject. After passaging nasal epithelial cells from the 2D
submerged into the organotypic 3D ALI culture model, samples were prepared for histological analyses. This figure presents
the cilia morphology of the cultures and the cell–cell integrity in PAS reaction. The ciliary epithelium is precisely imaged
(×10 magnification, size 50 µm). (d) Transmission electron microscopic (TEM) analysis of nasal epithelial ALI cultures
(×20,000 magnification, size 2.500 µm). The aim of this additional method and figure is to present the cell–cell–contacts (tight
junctions), cilia and organelles through TEM to study the effectiveness of the cell culture model. These methods/pictures
were separately performed, correlate thematically with [22] and were not previously published elsewhere.

4. The Application of Nasal Epithelial Cell Culture Models in Asthma and
Virus Research

The nasal cavity has long been classified as a physical barrier organ and was assumed
to be merely responsible for filtering and cleaning processes [109,110]. When the integrity of
this barrier is impaired, the risk for chronic rhinosinusitis is increased [111]. For some years
now, however, researchers have been increasingly focused on this organ and analyzed its role
in the pathogenesis of allergic rhinoconjunctivitis, asthma and virus infection [28,112–114].
Several, previously published studies showed that nasal epithelial cells of patients with
chronic rhinitis have connections to disease development on distinct intracellular levels
(e.g., posttranscriptional, and posttranslational modifications). In order to work in systems
most closely resembling in vivo conditions, patient-derived samples are an invaluable
material for answering diverse research questions [115,116].

Jackson et al. [117] investigated the impact of rhinoviruses on type 2 inflammation
and found that in vivo provocation with rhinovirus-16 can lead to an increase of IL-33
and type 2 cytokine concentrations, particularly in asthmatics. In addition, the authors
observed that an in vitro stimulation of bronchial epithelial cells by rhinovirus-16 resulted
in a significant increase of IL-33 [117]. The work of Pech and colleagues [118] analyzed the
role of rhinovirus infection in a submerged culture model of nasal epithelial cells (derived
from a multicenter pediatric asthma cohort) and observed important methylation patterns
in their study. Furthermore, Vanders et al. [114] demonstrated the role of rhinovirus-43 and
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influenza virus (H3N2) in nasal epithelial cells of pregnant asthmatics. This study revealed
diverse increases in cytokine and chemokine profiles and explained that nasal epithelial
cells can also serve as an important method for the analyses of immune responses in
pregnant asthmatics in vitro [114]. Yamaya and colleagues [119] studied the in vitro effects
of clarithromycin and rhinovirus-13 infection on the nasal epithelial cells of asthmatics.
Among other findings, they observed that prior in vitro antibiotic therapy is associated
with a reduction of viral titers and cytokine concentrations. While this study struggled
with certain limitations, these pilot results provide important first connections between
infection and cell culture models in asthma research [119]. Table 1 summarizes the research
article which include the search items nasal epithelial cell cultures, asthma, and virus.

Table 1. Overview of published research articles associated with nasal epithelial cell culture models, asthma, and virus infections.

Research Article Virus Disease Type of Nasal Epithelial Cell Culture

Pech and colleagues (2018) [118]
Rhinovirus infections change DNA

methylation and mRNA expression in
children with asthma

RV 1 16 Asthma submerged

Yamaya and colleagues (2020) [119]
Clarithromycin decreases rhinovirus

replication and cytokine production in nasal
epithelial cells from subjects with bronchial

asthma: effects on IL-6, IL-8 and IL-33

RV 14 Asthma submerged

Lopez-Souza and colleagues (2009) [120]
In vitro susceptibility to rhinovirus infection
is greater for bronchial than for nasal airway

epithelial cells in human subjects

RV 16 Asthma ALI 2

Spann and colleagues (2014) [121]
Viral and host factors determine innate

immune responses in airway epithelial cells
from children with wheeze and atopy

RSV 3 & HMPV 4 Wheeze/Atopy submerged

McErlean and colleagues (2014) [122]
Human rhinovirus infection causes different
DNA methylation changes in nasal epithelial

cells from healthy and asthmatic subjects

RV Asthma submerged

Baturcam and colleagues (2017) [112]
Human Metapneumovirus Impairs

Apoptosis of Nasal Epithelial Cells in
Asthma via HSP70

RSV & HMPV Asthma submerged

Vanders and colleagues (2019) [114]
Nasal epithelial cells to assess in vitro
immune responses to respiratory virus

infection in pregnant women with asthma

RV 43 & H3N2 5 Asthma submerged and ALI

Aydin and colleagues (2020) [22]
House Dust Mite Exposure Causes Increased

Susceptibility of Nasal Epithelial Cells to
Adenovirus Infection.

AdV 6 Asthma submerged and ALI

Yamaya and colleagues (2020) [123]
Inhibitory effects of glycopyrronium,

formoterol, and budesonide on coronavirus
HCoV-229E replication and cytokine

production by primary cultures of human
nasal and tracheal epithelial cells

HCoV-229E 7 among others
Asthma ALI

1 RV = (human)rhinovirus; 2 ALI = air–liquid interface; 3 RSV = Respiratory syncytial virus; 4 HMPV = (human)Metapneumovirus;
5 H3N2 = Influenza A virus subtype H3N2; 6 AdV = Adeno-virus; 7 HCoV-229E = Coronavirus 229E.
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Taken together, bronchial epithelial but also increasingly nasal epithelial cell culture
models are of increasing importance for respiratory research. Based on the literature,
submerged and ALI cultures are already firmly established, and differentially evaluated
models are in constant use. Work regarding spheroids and organoids in asthma and
infection models can provide a closer look at in vitro responses to viral infection. The
work with ALI and spheroid cultures, as well as precision cut lung slices, and organoid
models in respiratory research [70,71,78,83,84] may enable to perform virus transduction
experiments which would provide a closer look into the still largely unexplored molecular
virus responses ex vivo.

5. Outlook

The cell culture methodology of bronchial epithelial and nasal epithelial cells has
undergone a rapid development. Experiments that utilize these cells add an important
contribution to research platform. Efforts are therefore being made to perform nearly
in vivo-like experiments under similar physiological conditions. Nasal epithelial cells
currently represent a potential alternative to bronchial epithelial cells in respiratory research.
Despite the establishment of numerous cell culture technologies, it is of great importance to
apply the results derived from these complex cell culture models and to translate them into
the clinics. It will be exciting to observe whether nasal organoids will be effective research
tools and in which ways they will molecularly react to allergens, noxious agents such as
diesel gases or microbial endotoxins.
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