An Enhanced Slew Rate Output Capacitor-free Low Dropout Regulator Based on Differential Transconductance Amplifier

Chee Cheow Lim, Nai Shyan Lai, Gim Heng Tan
School of Engineering, Asia Pacific University of Technology & Innovation
c_square_1991@hotmail.com

ABSTRACT

A highly current-efficient and fast transient response capacitor-free low-dropout regulator (LDO) for System-on-Chip (SoC) applications is presented in this paper. The proposed architecture is implemented using 0.35 µm CMOS technology. The proposed circuit is based on differential transconductance and push-pull amplifier. Common mode feedback (CMFB) resistors and direct voltage spike detection using RC high pass filter are used to enhance the slew rate at the gate of the output transistor. Loop bandwidth is extended by adaptive biasing. This greatly improves the LDO transient response while preserving high current-efficiency. The output is regulated at 1.2 V with dropout voltage of 200 mV and a maximum load of 125 mA. Simulation results showed that the lowest consumed quiescent current is approximately 8 µA with a voltage spike and recovery time of less than 260 mV and 0.5 µs.

KEYWORDS

Low Dropout Regulator (LDO), Common-mode feedback (CMFB), Adaptive Biasing (ADB), High Pass Filter (HPF), Slew Rate

1 INTRODUCTION

Power management ICs (PMICs) for powering up different sub-circuit blocks integrated in SoC is a very promising approach in producing a more powerful and lighter advanced portable electronic gadgets [1]. Low dropout voltage regulators (LDOs) is one of the critical PMICs module in providing supply voltage to noise sensitive blocks such as digital, analog and RF blocks with high speed and precision [2], [3] as shown in Figure 1.

Conventional LDO requires external off-chip capacitor to overcome stability issue with high production cost [4]. However, SoC implementation is violated because it occupies large PCB area increasing the distance for power routing [2], [5].

For portable applications, current efficiency is a critical factor in prolonging the battery life of the devices by lowering down quiescent current I_Q and dropout voltage V_{DO} [3], [6]. However, there is a trade-off between efficiency and transient response. Recently, several techniques were proposed to improve the transient response of the LDO without degrading its current efficiency. In [6], class AB transconductance amplifier is used to improve the slew rate but it suffers from limited input common mode range and reduced GBW due to low and fixed I_Q. In [7], adaptive biasing (ADB) technique was adopted by increasing I_Q proportionally to I_{out} but it does not improve slew rate during voltage undershoot. Simpler method of detecting voltage transient by using RC high pass filter (HPF) was proposed by [8]. However, the LDO topology used is based on flipped voltage follower [9] which is known to have low loop gain, thus affecting the LDO regulating accuracy. In [10], slew rate is improved by a pair of common mode feedback (CMFB) resistors employed in transconductance amplifier adopted by [10]. Nevertheless, high loop gain is achieved by sacrificing stability due to increase in on-chip capacitance.

Here, a fast transient response yet current efficient LDO is presented in this paper.
2 PROPOSED ARCHITECTURE

The transient response of the LDO is determined by both loop bandwidth as well as slew rate at the gate of the output power transistors [3], [8], [10]. Therefore, by combining all the techniques discussed, the complete schematic of the proposed LDO architecture is shown in Figure 2. The reference voltage is set such that $V_{\text{ref}} = V_{\text{out}} = 1.2\,V$. The buffer serves as a driving circuit and to transfer the V_{ref} the input of G_m pair, $\sim V_{\text{ref}}$. The G_m pair is made up by M_L, M_8, M_{10} and M_H, M_9, M_{11}. Their function is to sense a differential voltage, $\Delta V = |\sim V_{\text{REF}} - V_{\text{out}}|$ to generate a differential output current as they work in complementary action.

If V_{out} undershoots, G_{mL} outputs a large amount of current momentarily while current is reduced at the output of G_{mH}. A pathway is created such that the gate capacitor of M_{pass} can be quickly discharged via M_{14} in the form of sinking current. Gate voltage of M_{pass} is reduced and finally V_{out} increases back to regulated value. Conversely, V_{out} overshoots, G_{mH} will output a large amount of current while current is reduced at the output of G_{mL}. Drain current in M_{16} is momentarily increased by mirroring action by M_{15} and M_{17}, providing a path to quickly charge up the gate capacitor of M_{pass} in the form of sourcing current so that V_{out} drops to regulated value.

When the LDO draws a large amount of I_{load}, limited quiescent current I_Q causes the transient response to suffer. This is because the GBW is low. Thus, ADB circuit based on current mirror $M_{ab1}, M_{ab2}, M_{ab3}$ and M_{ab4}, the I_Q is made directly proportional to the I_{load} without degrading current efficiency improving transient response. The relationship between GBW and current is defined by

$$\text{GBW} = \frac{2G_m R_{FB} g_{m14,16}}{C_C} \propto \sqrt{I_Q + I_{AB}} \quad (1)$$

where $g_{m14,16}$ is the transconductance of transistors M_{14} and M_{16} respectively. Mathematically, G_m can be represented by

$$G_{mH} = \beta_H \left(\Delta V + \frac{g_{m9}}{\beta_9} \right) \quad (2)$$

and

$$G_{mL} = \beta_L \left(-\Delta V + \frac{g_{m8}}{\beta_8} \right) \quad (3)$$

where β corresponds to the transistor sizing in which

$$\beta = \mu C_{ox} \frac{W}{L} \quad (4)$$
2.1 Small Signal Analysis

The small signal model of the LDO is illustrated in Figure 3. C_1 and C_2 are lumped parasitic capacitance at node V_L and V_H contributed by R_{FB}, drain of $M_L, M_{12}, M_{H}, M_{13}$. The small signal transfer function, $A_v(s)$ is derived shown in (5) by assuming load capacitance $C_L > C_g, C_g, C_1, C_2$. R_{out} is expected to be very small such that

$$R_{out} = R_{load}∥ R_{pass}∥ \frac{1}{g_m}∥ \frac{1}{g_{mp}}$$ \hspace{1cm} (6)

Then, R_g is defined by:

$$R_g = R_{14}∥ R_{16}$$ \hspace{1cm} (7)

Dominant pole p_{-3dB} and non-dominant poles p_2 and p_3 are defined respectively by

$$p_{-3dB} = -\frac{1}{R_g(C_g + g_{mp}R_{out}C_C)}$$ \hspace{1cm} (8)

$$p_2 = -\frac{1}{R_{FB}C_1} \frac{g_{mp}C_C}{(C_C+C_g)(C_L+C_C)}$$ \hspace{1cm} (9)

$$p_3 = -\frac{1}{R_{FB}C_1} \frac{g_{mp}C_C}{(C_C+C_g)(C_L+C_C)}$$ \hspace{1cm} (10)

A high DC gain can be achieved as defined by:

$$A_{dc} = 2G_m R_{FB} g_{m14,16} R_g g_{mp} R_{out}$$ \hspace{1cm} (11)

Since the phase margin is not constant and changes with load current, a minimum C_C is required by setting minimum phase margin to 45°. This can be achieved by letting p_2 to be greater than GBW as shown:

$$p_2 > GBW$$ \hspace{1cm} (11)

Hence,

$$C_{C(min)} > 2C_1 R_{FB}^2 g_m g_{m14,16}$$ \hspace{1cm} (12)

2.2 Analysis of HPF RC components

According to [3], HPF network does not affect the DC biasing at steady state but it helps in injecting more transient current, ΔI_{M15} to improve the slew rate at the gate of M_{pass}. Figure 2 shows that coupling effect of C_p causes the gate voltage of M_{15} to increase momentarily when the output voltage overshoots. The increase in current can be found from [8]:

$$I_{M15} + \Delta I_{M15} = \beta M_{15}(V_{GS15} + \Delta V - V_{TH})^2 = \beta M_{15}[(V_{GS15} - V_{TH})^2 + \Delta V^2 + 2\Delta V(V_{GS15} - V_{TH})$$ \hspace{1cm} (13)

where

$$\Delta I_{M15} = \beta_1 \Delta V (\Delta V + V_{GS15} - V_{TH})$$ \hspace{1cm} (14)

From (11), in order to increase more transient current, the aspect ratio of M_{15}, M_{16} and M_{17} should be increased.

2.3 Analysis of CMFB Resistors

According to [10], slew rate can be enhanced if the slewing current $I_S = I_{M16} - I_{M14}$ is directly proportional to the nth order of differential voltage, ΔV^n at the input of G_m pair. Circuit reported in [3] and [6] has only $n = 1$, but the proposed circuit has $n = 2$. By taking ADB into consideration,

$$I_S = 2\beta_{14,16} \beta_{H,L}^2 R_{FB} \Delta V \sqrt{\frac{2(l_{10,11} + I_{AB})}{\beta_{12,13} \beta_{R9}}} \frac{\Delta V + \sqrt{\frac{2(l_{10,11} + I_{AB})}{\beta_{R9}}}}{\sqrt{\frac{2(l_{10,11} + I_{AB})}{\beta_{R9}}}}$$ \hspace{1cm} (15)

where I_{AB} is the adaptively biased current flowing through M_{ab3} and M_{ab4}.
3 SIMULATION RESULTS & DISCUSSIONS

The proposed LDO is simulated to obtain its performance parameter. Simulation result shows that the total I_Q is only 8.1 μA. Load transient is also done as shown in Figure 4 with the worst output capacitor of 100 pF realized by on-chip metal power lines and capacitive loads. LDO is able to settle in less than 460 μs from undershoot and 6 μs from overshoot with no more than 260 mV. However, settling time for V_{out} undershoot and overshoot is different. This is because of the RC time constant for M_{14} and M_{16} is different. M_{14} is responsible in sinking the current in which its time constant is shorter than M_{16}, which sources the current to charge up the gate of M_{pass}. This is due to larger parasitic capacitance contributed by M_{16} as its size is relatively larger than M_{14}. Open loop response of the LDO is also simulated as shown in Figure 5. GBW of the LDO is extended when I_Q increases proportionally to I_{out}, thus a faster transient response is achieved.

Performance comparison between the proposed LDO architecture and previous works is also done as shown in Table 1. A figure of merit ($FOM = \frac{t_s}{I_Q/I_{Load(max)}}$) proposed by [11] is adopted to measure the performance of the LDO in terms of transient response and current efficiency. A lower FOM indicates a better slewing performance.

<table>
<thead>
<tr>
<th>Work</th>
<th>Year</th>
<th>Tech. (µm)</th>
<th>V_{out} (V)</th>
<th>I_{out} (mA)</th>
<th>V_{DO} (mV)</th>
<th>I_Q (µA)</th>
<th>ΔV_{out} (mV)</th>
<th>t_s (µs)</th>
<th>FOM (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>2007</td>
<td>0.35</td>
<td>0.9</td>
<td>50</td>
<td>100</td>
<td>1.2</td>
<td>500</td>
<td>2.8</td>
<td>0.067</td>
</tr>
<tr>
<td>[8]</td>
<td>2010</td>
<td>0.35</td>
<td>0.8</td>
<td>66.7</td>
<td>200</td>
<td>19</td>
<td>70</td>
<td>3</td>
<td>0.855</td>
</tr>
<tr>
<td>[5]</td>
<td>2010</td>
<td>0.35</td>
<td>2.2</td>
<td>100</td>
<td>200</td>
<td>31</td>
<td>90</td>
<td>9</td>
<td>2.79</td>
</tr>
<tr>
<td>[10]</td>
<td>2013</td>
<td>0.18</td>
<td>1.0</td>
<td>100</td>
<td>200</td>
<td>3.7</td>
<td>277</td>
<td>6</td>
<td>0.22</td>
</tr>
<tr>
<td>This Work</td>
<td>2014</td>
<td>0.35</td>
<td>1.2</td>
<td>125</td>
<td>200</td>
<td>8.1</td>
<td>206</td>
<td>0.46</td>
<td>0.03</td>
</tr>
</tbody>
</table>

4 CONCLUSION

The proposed LDO based on G_M pair with HPF, adaptive biasing and CMFB resistors has been introduced. Based on the simulation results, the proposed LDO proves to be current efficient yet achieving fast transient response according to the figure of merit. Nevertheless, the proposed LDO still has to be laid-out in the future. If the post-layout simulation meets the requirements, the LDO will be fabricated for further testing.
5 REFERENCES

