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This paper presents a Hopfield neural network (HNN) optimized fuzzy logic controller (FLC) for maximum power point tracking
in photovoltaic (PV) systems. In the proposed method, HNN is utilized to automatically tune the FLC membership functions
instead of adopting the trial-and-error approach. As in any fuzzy system, initial tuning parameters are extracted from expert
knowledge using an improved model of a PV module under varying solar radiation, temperature, and load conditions. The
linguistic variables for FLC are derived from, traditional perturbation and observation method. Simulation results showed that the
proposed optimized FLC provides fast and accurate tracking of the PV maximum power point under varying operating conditions
compared to that of the manually tuned FLC using trial and error.

1. Introduction

Because of the demand for electric energy and environmental
issues such as pollution and the effects of global warming,
renewable energy sources are considered as an option for
generating clean energy technologies [1]. Among them, the
photovoltaic (PV) energy from solar radiation has received
great attention, as it appears to be one of the most promising
renewable energy sources in the world [2]. PV systems have
been developed to supply clean energy for fulfilling the
energy demand required by the modern society. However, the
widespread use of PV systems poses several challenges such
as increasing the efficiency of energy conversion, ensuring
the reliability of power electronic converters, and meeting
the requirements for grid connection [3]. One step to
overcome the problem of low energy conversion efficiency
of PV modules and to get the maximum possible power
is to extract maximum power from the PV system at
every instant of time. To achieve this, it is mandatory to
operate the PV systems close to its maximum power point
(MPP). Maximum power point tracking (MPPT) system is
an electronic system that plays a vital role in operating the
PV modules in a manner that it produces it is maximum
power according to the situation [4]. Many MPPT control
strategies have been elaborated in the literature, starting with

simple techniques such as voltage and current feedback-
based MPPT to more improved power-based MPPT such as
the perturbation and observation (P&O) technique and the
incremental conductance technique [5].

Recently, fuzzy logic has been applied for tracking the
MPP of PV systems in [6–9] because it has the advantages
of being robust, design simplicity, and minimal requirement
for accurate mathematical model. It is found that fuzzy logic-
based P&O and hill climbing MPPT methods perform batter
due to optimized perturbation. However, the fuzzy methods
depend on careful selection of parameter, definition of mem-
bership function, and the fuzzy rules table. Developing fuzzy
method also involves expert knowledge and experimentation
in selecting parameters and membership functions. For this
reason, adaptive fuzzy logic control [10] and parameter
optimization techniques such as genetic algorithm [11] and
particle swam optimization [12, 13] have been introduced to
overcome the problem in MPPT algorithms.

A number of studies on MPPT have concentrated on
the application of artificial neural network (ANN) [14, 15].
In most of these ANN-based methods, large number of
field data considering atmospheric conditions are required
to train the ANN. Moreover, the main problem of ANN-
based methods are that it is system dependent and cannot be
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Figure 1: V-I Characteristic of a typical PV module.

PV array
DC-DC

converter

Load or
other

devices

MPPT
controller
algorithm

P
W

M

Vpv

Ipv

Figure 2: MPPT controller in a PV system.

Fuzzy rules

InferenceFuzzification
ΔDk

Defu zificationz
ΔPk

pv ΔDk+1
ref

Figure 3: Components of a fuzzy logic controller.

implemented for PV arrays with different characteristics. In
a related work, a voltage-based MPPT using ANN has been
developed in which an optimal instantaneous voltage factor
was determined from a trained ANN [16]. The inputs of the
ANN consist of temperature module and solar irradiation.

The combined use of fuzzy logic and ANN to track
maximum power point in PV systems can be found in
[17, 18]. In this method, ANN is trained offline using
experimental data to define a reference voltage, which is the
voltage at the maximum power point according to the PV
array characteristic. The reference voltage is then compared
to the instantaneous array voltage to generate a signal error.
The signal error and change of the error are considered as
the FLC inputs. The FLC generates a duty cycle value for the
pulse width modulation (PWM) generator. The PWM is then
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Figure 4: Discrete Hopfield neural network.

applied to the switching of the boost converter connected to
a PV array. A drawback of this method is that it needs much
data for offline training.

In this paper, a new variant of intelligent technique is
proposed and used together with fuzzy logic-based MPPT
controller in a PV system. Here, the fuzzy logic MPPT
controller is integrated with the Hopfield neural network
(HNN) to optimize the membership function of the fuzzy
system. The HNN has been applied to various fields since
Hopfield proposed the model [19, 20]. In optimization
problems, the HNN has a well-demonstrated capability of
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finding solutions to complex tasks. HNN has been applied
to solve optimization problems based on convergence of the
energy function and coefficients weighting [21–23].

2. Maximum Power Point Tracking and
Fuzzy Logic

PV is not a constant DC energy source but has variation of
output power, which depends strongly on the current drawn
by the load. Besides, PV characteristic also changes with
temperature and irradiation variation [4]. Thus, the output
voltage (V) of PV varies with the current (I). Figure 1 shows
the characteristic of a 200 W Sanyo PV module [24]. The
module can be used as a single system or it can be connected
to other similar modules to increase the voltage and current.
In multimodule systems, PV modules are wired in series and
parallel to form a PV array. From Figure 1, it can be seen
that the PV module voltage varies from 0 V until the open
circuit voltage (Voc) of the module. Similarly, the current
varies from 0 A until the short circuit current (Isc) of the
module. The Voc and Isc of a PV module also depend on
temperature and solar irradiation.

For any PV system, the output power is increased by
tracking the maximum power point (MPP) of the system.
To achieve this, an MPPT controller is required to track the
optimum power of the PV system and it is usually connected
to a boost converter located between the PV panel and load as
shown in Figure 2 [6–8]. Many different control techniques
such as the P&O and fuzzy logic are used in the MPPT
controller.

The main components of a fuzzy logic controller (FLC)
are fuzzification, fuzzy rules inference, and defuzzification as
shown in Figure 3. The input variables to the FLC are the
change in power of PV (ΔPk

pv) array and direction of change
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Figure 7: Membership functions coding for ΔDk
ref.

in duty cycle (ΔDk) of boost converter whereas the output of
the FLC is the change of the duty cycle that must be applied to
control boost converter (ΔDk+1

ref ). The formulation for ΔPk
pv

and ΔDk can be expressed as follows:

Pk
pv = Vk

pv · Ikpv,

ΔPk
pv = Pk

pv − Pk−1
pv ,

ΔDk = Dk −Dk−1,

(1)

where, Pk
pv: PV array output power at kth iteration, Vk

pv: PV
array output voltage at kth iteration, Ikpv: PV array output
current at kth iteration, Dk: measured duty cycle to control
switch of DC-DC converter at kth iteration, Dk+1

ref : duty cycle
that must be applied to control switch of DC-DC converter
at (k + 1)th iteration, Δ: a small change.

The universe of discourse for the first input variable
(ΔPk

pv) is assigned in terms of its linguistic variable by using
seven fuzzy subsets which are denoted by negative large
(NL), negative medium (NM), negative small (NS), zero (Z),
positive small (PS), positive medium (PM), and positive large
(PL). The universe of discourse for the second input variable
(ΔDk) defines the changes in direction of duty cycle which
is classified into three fuzzy sets, namely, negative (N), zero
(Z), and positive (P). The output variable (ΔDk

ref) is assigned
in terms of its linguistic variable by using nine fuzzy subsets
which are denoted by negative double large (NLL), negative
large (NL), negative medium (NM), negative small (NS),
zero (Z), positive small (PS), positive medium (PM), positive
large (PL), and positive double large (PLL). Then, the fuzzy
rules are generated as shown in Table 1 with ΔPk

pv and ΔDk

as inputs while ΔDk
ref as the output. This table is also known

as fuzzy associative matrix (FAM). The fuzzy inference of the
FLC is based on Mamdani’s method, which is associated with
the max-min composition. The defuzzification technique is
based on the centroid method, which is used to compute the
crisp output, ΔDk

ref.

3. Design of Optimized FLC with HNN

The proposed design is to develop optimal membership
function of the FLC especially for MPPT in PV systems
application. The HNN representation and the integration of
HNN and FLC is described in the following subsections.
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Table 1: Fuzzy rules for the proposed FLC.

Input-1 (ΔPk
pv)

NL NM NS ZE PS PM PL

Input-2 (ΔDk)

N PLL PL PM PS NM NL NLL

ZE NL NM NS ZE PS PM PL

P NLL NL NM NS PM PL PLL
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3.1. Hopfield Neural Network Representation. The HNN
network is useful for associative memory and optimization
in a symmetrical structure. The basic structure of the HNN
is shown in Figure 4 [25].

The HNN uses a two-state threshold “neuron” that fol-
lows a stochastic algorithm where each neuron, or processing
element, Ni has two states with values either 0 or 1. The
inputs of each neuron come from two sources; external
inputs, Ii, and inputs from other neurons, Nj . The total input
to neuron Ni is given by

in−Ni =
∑
i /= j

Ii + o−Njwji, (2)

0 50 100 150 200
0

200

400

600

800

1000

1200

MPP by HFLC
Theoretical MPP

PV array voltage (V)

P
V

ar
ra

y
po

w
er

(W
) G = 1000 W/m2

G = 800 W/m2

G = 600 W/m2

G = 400 W/m2

G = 200 W/m2

Figure 12: Performance of the HFLC-based MPPT under various
irradiation at constant temperature T = 25◦C.
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Figure 13: Performance of the HFLC based MPPT under various
temperatures at constant irradiation G = 1000 W/m2.

where in−Ni: total input to neuron i, wji: synaptic intercon-
nection strength from neuron Ni to neuron Nj , Ii: external
input to neuron Ni, o−Nj : output of neuron Nj .

Each neuron samples its input at random times. It
changes the value of its output or leaves it fixed according
to a threshold rule with thresholds θi:

o−Ni =
⎧⎨
⎩

1, if in−Ni ≥ θi,

0, if in−Ni < θi.
(3)



6 International Journal of Photoenergy

0.95 1 1.05 1.1 1.15 1.2 1.25
800

850

900

950

1000

1050

Time (s)

So
la

r
ir

ra
di

at
io

n
(W

/m
2
)

Solar irradiation

Figure 14: Slow change of irradiation from 1000 W/m2 to
900 W/m2.

0.95 1 1.05 1.1 1.15 1.2 1.25
1060

1080

1100

1120

1140

1160

1180

1200

Time (s)

P
V

ar
ra

y
po

w
er

(W
)

MPPT by HFLC

MPPT by FLC

MPPT by P and O

Figure 15: PV output power under slow irradiation change from
1000 W/m2 to 900 W/m2.

Then the energy function of the HNN is defined as

E = −1
2

∑
i /= j

∑
j

o−Ni · o−Nj ·wij −
∑
i

Ii · o−Ni +
∑
i

θi · o−Ni.

(4)

The change in E due to the changing state of neuron Ni by
Δo−Ni is given by

ΔE = −
⎡
⎣∑

j

o−Nj ·wij + Ii − θi

⎤
⎦Δo−Ni, (5)

where Δo−Ni is the change in the output of neuron Ni.
The continuous and deterministic model of the HNN is

based on continuous variables and responses but retains all
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Figure 16: Drastic change in irradiation from 1000 W/m2 to
950 W/m2.
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Figure 17: PV output power under drastic irradiation change from
1000 W/m2 to 950 W/m2.

of the significant behaviors of the original model described
above. The output variable o−Ni for neuron Ni has values in
the range of 0 ≤ o Ni ≤ 1 and the input-output function is
a continuous and monotonically increasing function of the
input in−Ni to neuron Ni.

The dynamics of the neurons is defined as [18]

dui
dt

= −ui
τ

+
∑
j

wi j · o−Nj + Ii, (6)

where τ: a constant, ui: input of HNN.
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25◦C to 50◦C.

A typical output of neuron Ni is a sigmoid function as
shown in Figure 5. Mathematically it is given by

o−Ni = g(λui) = 1
1 + e−λui

, (7)

where λ is the gain that determines the shape of the sigmoid
function.

The energy function of the continuous HNN is similarly
defined as [19]

E = −
⎡
⎣1

2

n∑
i=1

n∑
j=1

wijo−Ni · o−Nj +
n∑
i=1

Iio−Ni

⎤
⎦, (8)
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and it is change in energy is given by

ΔE = −
⎡
⎣∑

j

o−Nj ·wij + Ii

⎤
⎦Δo−Ni. (9)

dE/dt is always less than zero because g is a monotonically
increasing function. Therefore, the network solution moves
in the same direction as the decrease in energy. The solution
seeks out a minimum of E and comes to a stop at stability
point.
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Figure 23: PV output power under partial shading with of solar
irradiation change 1000 W/m2 to 950 W/m2.

3.2. Integrating HNN and FLC. Despite using expert knowl-
edge in the formulation of the inference rules and the
membership functions of FLC, there are still some defects
such as center of fuzzification and range of the fuzzification.
To improve these defects, the proposed FLC uses HNN to
find the optimal membership functions which is achieved by
considering the following steps.

(1) Defining neuron for the HNN. In the design of the
proposed optimal FLC, two inputs, ΔPk

pv and direction ΔDk,

and one output, ΔDk
ref, are used as described before. For
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Figure 24: Partial change of solar irradiation 400 W/m2to
1000 W/m2.
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Figure 25: PV output power under partial change of irradiation
400 W/m2 to 1000 W/m2.

simplicity, the design is only based on membership functions
of ΔPk

pv and ΔDk
ref. ΔP

k
pv is described with seven membership

functions, as illustrated in Figure 6, and ΔDk
ref is described

with nine membership functions, as illustrated in Figure 7.
In Figure 6, the centers of ΔPk

pv membership function are
x1, x2, x3, x4, x5, x6, and x7 while in Figure 7, the centers of
ΔDk

ref membership function are z1, z2, z3, z4, z5, z6, z7, z8, and
z9. Based on the number of centers of ΔPk

pv and ΔDk
ref, the

proposed HNN consists of 16 neurons with variables given
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as x1 = −SP1; x2 = −SP2; x3 = −SP3; x4 = SP4; x5 = SP5; x6 =
SP6; x7 = SP7; z1 = −SD1; z2 = −SD2; z3 = −SD3; z4 = −SD4;
z5 = SD5; z6 = SD6; z7 = SD7; z8 = SD8; z9 = SD9. SP1–SP7 are
output value of neurons N1–N7(o N1–o N7) while SD1–SD9

are output values of neurons N8–N16(o N8–o N16).
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Figure 28: MPP under partial shading 600 W/m2 and 1000 W/m2.

When comparing the values of neurons in Figures 6 and
7, the following constraints should be satisfied.

SP4 = 0,

SP1 = SPmax left ,

SP7 = SPmax right,

0 ≤ SP3 ≤ SP2 ≤ SP1,

0 ≤ SP6 ≤ SP5 ≤ SP7,

SD5 = 0,

SD1 = SDmax left,

SD9 = SDmax right,

0 ≤ SD4 ≤ SD3 ≤ SD2 ≤ SD1,

0 ≤ SD6 ≤ SD7 ≤ SD8 ≤ SD9.

(10)

(2) Defining objective function for the optimization problem.
The goal of MPPT is to achieve ΔPk

pv = 0 and ΔDk
ref = 0.

Therefore, the quadratic criterion to be minimized is

E = E1 + E2 = 1
2
A
(
ΔPk

pv

)2
+

1
2
B
(
ΔDk

ref

)2
, (11)

where, E: energy function to be minimized, A,B: constants.
From (11), the first part of E, which is E1 =

(1/2)A(ΔPk
pv)2 only depends on the universe of ΔPk

pv which
is in the first input of FLC. The ΔPk

pv is defined by
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Figure 29: MPP under partial shading 800 W/m2 and 1000 W/m2.

defuzzification of the universe of ΔPk
pv using a centroid

function as:

ΔPk
pv =

∑7
i=1 μ

(
ΔPk

pv

)
i
xi

∑7
i=1 μ

(
ΔPk

pv

)
i

, (12)

where μ(ΔPk
pv)

i
is a membership value of xi.

E1 depends only on neurons Ni (i = 1, 2, 3, 4, 5, 6, 7).
Knowing that the left side of ΔPk

pv in the membership
function of the first input is μ(ΔPk

pv)
i /= 0 for x1, x2, x3, then,

ΔPk
pv can be rewritten as

ΔPk
pv =

∑3
i=1 μ

(
ΔPk

pv

)
i
xi
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(
ΔPk

pv

)
i

. (13)

Then, the first half of energy function E1 can be rewritten as
E1a:

E1a = 1
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(14)

Considering that the right side and center of ΔPk
pv in the

membership function of the first input of FLC is μ(ΔPk
pv)

i
=

0 for x1, x2, x3, hence ΔPk
pv can be rewritten as:

ΔPk
pv =
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i=4 μ

(
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pv
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i
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(
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i

. (15)

Similarly, the second half of energy function E1 is rewritten
as E1b:

E1b= 1
2

⎡
⎢⎣

7∑
i=5

7∑
j=5

⎡
⎢⎣

Aμ
(
ΔPk

pv

)
i
μ
(
ΔPk

pv

)
j∑7

i=1

∑7
j=1 μ

(
ΔPk

pv

)
i
μ
(
ΔPk

pv

)
j

⎤
⎥⎦o−Ni · o−Nj

⎤
⎥⎦.

(16)

Since the first part of E1 is the summation of left side (E1a)
and right side (E1b) of the ΔPk

pv membership function, E1 can
be expressed as:

E1 = 1
2
A
(
ΔPk

pv

)2 = E1a + E1b,

E1= 1
2
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(17)

where o N = 0 for i = 4, j = 4.
The second part, E2 = (1/2)B(ΔDk

ref)
2 is related to

the output of FLC and depends only on neurons Ni (i =
8, 9, 10, 11, 12, 13, 14, 15, 16). The ΔDk

ref can be defined by
defuzzification by using the centroid method and is written
as:

ΔDk
ref =

∑9
k=1 μ

(
ΔDk
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m
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(
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ref

)
m

. (18)

Similar to the equations shown in obtaining E1,E2 can be
expressed as

E2 = 1
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(19)

where N = 0 for i = 12, j = 12 and μ(ΔDk
ref) is the

membership value of zn.
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Finally, the total energy function E is expressed as

E = E1 + E2,
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(20)

where N = 0 for i = 4, 12; j = 4, 12.
By comparing (8) with (20), the weight matrix of neurons

Ni to Nj in the HNN is derived and given as:

wij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11 w12 w13 . . . 0
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...
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, (21)

where,
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for i and j = 1, 2, 3, 4, 5, 6, 7,
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for i, j = 8, 9, 10, 11, 12, 13, 14, 15, 16,

wij = 0, for other.

(22)

(3) Design for Physical Implementation. The physical imple-
mentation of MPPT for PV systems using Hopfield opti-
mized FLC (HFLC) is described in terms of a block diagram
as shown in Figure 8.

As shown in Figure 8, the system consists of PV array,
DC-DC converter, load, and control system. The control
system consist of voltage and current measurement system,
controlled pulse with modulation (PWM) generator with
HFLC, and a switching driver circuit to gain the PWM. At
the initial step (k = 0), the control system generates square
wave signals with a small duty cycle (D), of value 10%. In
the next step (k = 1), the value of D is increased by ΔDk

ref
that is defined by HFLC as discussed in the previous section.
The value of D is always updated by the increment ΔDk

ref. The
value of ΔDk

ref tends to change in either positive or negative
direction as |ΔDk

ref| decline towards zero.

4. Simulation Results

The performance of the proposed HFLC under differ-
ent operating conditions is validated using the MAT-
LAB/Simulink software. In the PV model shown in Figure 9,
there are two groups of PV arrays connected in parallel.
Every group consists of 3 PV modules connected in series.
The PV module parameters are obtained from the Sanyo
HIP-200BA3 PV technical datasheet [24]. In the simulations,
first the characteristics of the PV module are validated and
then the performance of the HFLC under various conditions
is evaluated to investigate the effectiveness of the HFLC
method.

4.1. Validation of PV Module Simulation. Figures 10 and 11
show the results of the I-V characteristics of the simulated
PV module as a function of irradiation and temperature,
respectively. It can be observed from the above figures that
the I-V curves of the simulated PV module are quite similar
to the I-V curves of the Sanyo HIP-200BA3 PV module
provided by the Sanyo manufacturer in Figure 1. Therefore, it
is quite reasonable to use the PV module model to verify the
performance of the proposed HFLC-based MPPT controller
under simulation environment.

4.2. Performance of MPPT by Using HFLC. Figures 12 and 13
show the performance of the HFLC in finding the maximum
power point (MPP) of the PV system shown in Figure 9
under varying irradiations and temperatures, respectively.
From the figures, the MPP obtained from HFLC is compared
with the theoretical MPP. The results of the MPP clearly show
that both MPPs are very close to each other.

To further demonstrate the performance of the HFLC
MPPT controller, simulations were performed under the
following test conditions.

(i) Constant temperature at 25◦C and changing the solar
radiation slowly and drastically.

(ii) Constant solar radiation at 1000 W/m2 and changing
the temperature slowly and drastically.

(iii) Constant temperature at 25◦C and considering par-
tial shading and change in solar radiation.

The MPPT controller was also tested using the conven-
tional FLC and the P&O MPPT methods.

4.2.1. Effect of Changing the Solar Radiation. To analyze the
effect of solar radiation, simulations were carried out under
various solar irradiations but at constant temperature of
25◦C. Figure 14 shows the change in solar irradiation from
1000 W/m2 to 900 W/m2. Figure 15 shows the PV output
power when subjected to the changing solar irradiations.
From Figure 15, it can be seen that the HFLC, and FLC-based
MPPT gives greater PV output powers than the P&O-based
MPPT.

Figure 16 shows the sudden change in solar irradiation
from 1000 W/m2 to 950 W/m2 while Figure 17 shows the
response of the MPPT controller in terms of PV output
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Table 2: Various partial shaded solar irradiation.

No.
Solar irradiation (W/m2)

Part I Part II

(1) 1000 200

(2) 1000 400

(3) 1000 600

(4) 1000 800

power when subjected to a sudden change in solar irradia-
tion. From the figures, it is noted that the PV output power is
greatest for MPPT controlled by HFLC compared to that of
FLC and P&O methods. Furthermore, MPPT controlled by
HFLC gives a fast response to reach the new MPP after solar
irradiation changes.

4.2.2. Effect of Change in Temperature. This simulation is
carried out to illustrate the performance of the MPPT
methods under constant solar irradiation of 1000 W/m2 and
changes in temperature. Figures 18 and 20 depict the slow
and sudden changes in temperature, respectively. Figures
19 and 21 show the corresponding PV output powers
during slow and sudden changes in temperature, respectively.
From Figure 19, it can be noted that for slow temperature
changes, the MPPT controlled by HFLC and FLC gives
higher PV output power than the P&O method especially
at the transient state. While in the case of drastic change
in temperature, the MPPT controlled by HFLC achieve
the highest PV output at the transient state as shown in
Figure 21.

4.2.3. Effect of Partial Shaded Solar Irradiation. Simulation is
also performed to illustrate the effectiveness of the MPPT of
PV systems under some partial shading case. In this case,
it is assumed that a half of the PV array receives constant
solar irradiation of 1000 W/m2 and the other half with
shading solar irradiation which changes from 1000 W/m2

to 950 W/m2. This condition is depicted in Figure 22. The
power harvested from the PV array for this case is shown in
Figure 23. From Figure 23, it can be seen that performance
of MPPT controlled by HFLC is the best among the other
compared methods.

Another case describes a situation of solar irradiation
changing from 400 W/m2 to 1000 W/m2, to a half of the PV
array while the other half receiving constant 400 W/m2 under
shading as shown in Figure 24. The PV output power for this
case is shown in Figure 25. From the figure, it can be noted
that the FLC and P&O failed to track the MPP correctly.
However, the proposed HFLC MPPT method successfully
finds the MPP around 590 W as shown in Figure 25.

Figures 26, 27, 28, and 29 show the characteristic curves
of voltage versus power (V-P) of the modeled PV array under
various partial shading conditions described in Table 2.

From Figures 26 and 27, it can be seen that the HFLC
method is accurate in finding the MPP (590 W) while
the conventional FLC and P&O methods failed to do so.
Generally, the conventional FLC and P&O methods just find

local maximum power point. However, for case as depicted in
Figures 28 and 29, all of the MPPT methods correctly tracked
the MPP.

5. Conclusion

A new Hopfield optimized FLC for MPPT of PV system
is proposed in which improvement is made by applying
HNN to find the optimal width of each fuzzification
input and output of the FLC. A complete PV system with
HFLC MPPT controller was modeled and implemented
in Matlab/Simulink to simulate various irradiation and
temperature conditions so as to verify the performance of
the proposed MPPT method. Simulation results show that
the proposed HFLC MPPT method is robust and accurate
compared to the other conventional MPPT methods. The
HFLC MPPT method successfully tracks the global max-
imum power point of a PV module even under partial
shading.
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[22] J. Mańdziuk, “Optimization with the Hopfield network based
on correlated noises: experimental approach,” Neurocomput-
ing, vol. 30, no. 1–4, pp. 301–321, 2000.

[23] G. Joya, M. A. Atencia, and F. Sandoval, “Hopfield neural
networks for optimization: study of the different dynamics,”
Neurocomputing, vol. 43, pp. 219–237, 2002.

[24] HIP-200BA3 Sanyo, technical sheet, 2006, http://www.fsuwise
.org/renewable/Images/WISE Demo Syatem Files/Sanyo
200W.pdf.

[25] S. Haykin, Neural Networks A Comprehensive Foundation,
Pearson Education, Delhi, India, 9th edition, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Inorganic Chemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Carbohydrate 
Chemistry

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com

 Analytical Methods 
in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry 
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Spectroscopy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Medicinal Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Chromatography  
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Applied Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Theoretical Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Spectroscopy

Analytical Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Quantum Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Organic Chemistry 
International

Electrochemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Catalysts
Journal of


