A Digitally Controlled Linear Voltage Regulator in a 65nm CMOS Process

Thomas Jackum¹, Roman Riederer², Gerhard Maderbacher¹, Wolfgang Pribyl¹

¹ Graz University of Technology - Institute of Electronics
² Infineon Technologies Austria

This work is part of project PUMA which was partially funded by the Austrian government FIT-IT program
Agenda

- Motivation
- Circuit Description
 - System Overview
 - Current Sensing
 - ADC
 - DAC
 - Digital Controller
- Stability Analysis
- Measurement Results
- Conclusion
Motivation

- Why Digital Control in an LDO?
 - Programmable Compensator Coefficients
 → Reuse of Design
 - Easy Portability of Design
 - Robustness of Digital Compensator
 → Process and Temperature Variation
 - Performance of Standard Analog LDOs Achievable
System Overview

- Control Loop
 - Pass Device - PMOS
 - Current Sensor
 - ADC
 - DAC
 - Digital Controller

- Protection
 - Over-Current Protection
 - Gate Over-Voltage Protection
Current Sensing

- 5 Current Comparators for Load Current Sensing
 - 4 Levels for Adjusting the Loopgain
 - 1 Level for Over Current Protection

- Adjusting the Controller Gain
 → Try to Compensate Load Dependency of Unity Gain Frequency
ADC

- Capacitive Flash Topology
 - Implicit Sample and Hold
 - Capacitive Voltage Divider
 - Interpolation
 - Window
 - 8MHz Sample Rate
 - 4 Bit

- 0.5 LSB Offset

- Nonlinear Transfer Curve
 - Fine Resolution Near Set Point
 - Coarse Resolution at Deviation from Set Point
DAC

- Charge Pump DAC
 - Current Output
 - Integrating Behavior for V_{GS} of Pass Device
- 9 Bit Resolution + Sign Bit
- Digitally Programmable Gain (I_{BIAS})
Digital Controller

- Digital PD Error Amplifier
- Clock: 8MHz
- Sync Clock: 8MHz with 9.6ns Time Advance
- “ADC Sample to DAC Out”-Delay: 28.8ns (3x 104MHz Clock Cycles)
- Protection Features: Over Current- and Gate Over Voltage Signal Will Decrease the V_{GS} of the Pass Device
- Correction of Nonlinear ADC Transfer Curve (4 Bit \rightarrow 7 Bit)

$$G_{PD}(z) = \frac{(k_p + k_D)}{z} \cdot z - k_D$$
Stability Analysis

- Model in MATLAB
- 5 Operating Ranges → 5 Sets of Controller Coefficients
- Unity Gain Frequency Almost Constant (~ 700kHz)
- Phase Margin > 55°
Measurement Results

- Transient Test Conditions:
 - Supply Voltage: 4V
 - Output Capacitor: 470nF
 - Load Current Step: 1mA ... 150mA / 1us

Static Performance:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>3 V ... 5 V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>2.874 V</td>
</tr>
<tr>
<td>$I_{OUT-MAX}$</td>
<td>150 mA</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>470 nF</td>
</tr>
<tr>
<td>Quiescent Current ($I_{OUT} = 0$ mA)</td>
<td>188 uA</td>
</tr>
<tr>
<td>Static Load Regulation ($I_{OUT} = 150$ mA)</td>
<td>9 mV</td>
</tr>
<tr>
<td>Drop-Out Voltage</td>
<td>78 mV</td>
</tr>
<tr>
<td>LDO Active Area</td>
<td>0.152 mm²</td>
</tr>
</tbody>
</table>

Measurement Screenshot:
Conclusion

- Fully Digitally Controlled LDO
 - Advantages of Digital Implementation
 - Competitive Performance to Analog Solutions

- Fast Transient Response

- Over-Current Protection

- Testchip in 65nm CMOS