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Abstract: Image quality is a key issue affecting the performance of biometric systems. Ensuring the
quality of iris images acquired in unconstrained imaging conditions in visible light poses many challenges
to iris recognition systems. Poor-quality iris images increase the false rejection rate and decrease the
performance of the systems by quality filtering. Methods that can accurately predict iris image quality
can improve the efficiency of quality-control protocols in iris recognition systems. We propose a fast
blind/no-reference metric for predicting iris image quality. The proposed metric is based on statistical
features of the sign and the magnitude of local image intensities. The experiments, conducted with a
reference iris recognition system and three datasets of iris images acquired in visible light, showed that
the quality of iris images strongly affects the recognition performance and is highly correlated with the
iris matching scores. Rejecting poor-quality iris images improved the performance of the iris recognition
system. In addition, we analyzed the effect of iris image quality on the accuracy of the iris segmentation
module in the iris recognition system.

Keywords: biometric recognition; visible light iris images; image quality assessment; image covariates;
quality filtering

1. Introduction

The stability of iris patterns over the human lifespan and their uniqueness was first noticed in 1987 [1].
Since then, biometric iris recognition has been extensively investigated for accurate and automatic personal
identification and authentication [2]. Most commercial iris recognition systems use near-infrared (NIR)
images. However, due to the popularity of smartphones and similar handheld devices with digital cameras,
iris recognition systems using images taken in visible light have recently been developed [3–5].

Image quality is a key factor affecting the performance of iris recognition systems [6–8]. In the
biometric recognition literature, a biometric quality measure is a covariate that is measurable, influences
performance, and is actionable [9–11]. Quality measurement can include subject and image covariates.
Subject covariates are attributes of a person, which may be properties of subjects such as eyelid occlusion,
glare, iris deformation, or wearing of glasses. Image covariates depend on sensor and acquisition
conditions, such as focus, noise, resolution, compression artifacts, and illumination effects. In this work,
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we develop a real-time quality measure for image covariates as an actionable quality score, e.g., to decide
whether an input iris image sample should be enrolled into a dataset or rejected and a new sample should
be captured.

The performance of an iris recognition system in visible light suffers from all of the image quality
factors mentioned above. To overcome this problem, some researchers have considered image quality in
different ways for iris recognition systems [12–17]. However, these systems fall short in two ways:

• The considered image covariates and distortions are limited. Only distortions are taken into account
that are often seen, such as Gaussian blur, noise, motion blur, and defocus. However, authentic iris
images, especially those taken by handheld devices, may additionally suffer from other types of
distortion.

• Typically, quality assessment is applied to accurately segmented iris images. However, image
distortion also affects the performance of the segmentation module of iris recognition systems. Thus,
poor image quality can lead to poorly segmented irises and increase in the false rejection rate.

In this paper, we propose a general-purpose and fast image quality method that aims to assess
the distortion of iris images acquired in unconstrained environments. This method can be used for
real-time quality prediction of iris images to rapidly filter image samples with poor quality. Iris images
with insufficient quality could lead to high dissimilarity scores for matching pairs and increase the false
rejection rate of an iris recognition system. We investigate the effect of iris image quality on the recognition
performance of a reference iris recognition system for three challenging iris image datasets acquired in
visible light.

This paper is an extended version of our conference paper [18] and mostly a part of the Ph.D. thesis
of the first author [19]. The remainder of the paper is organized as follows: Section 2 surveys the literature
on iris image quality assessment and iris recognition systems. Section 3 presents the proposed metric for
iris image quality assessment. In Section 4, experiments are conducted to study the effect of image quality
on the accuracy of iris segmentation. In Section 5, the improvements achieved by filtering poor-quality
iris images are discussed using three performance measures on three large iris image datasets acquired in
visible light. The paper concludes with suggestions for future research in Section 6.

2. Related Work

In this section, we review the literature on iris image quality assessment, followed by a brief overview
of some state-of-the-art iris recognition systems.

Recently, research has been reported to improve the performance of iris recognition systems by
considering image quality, but with certain limitations. In some studies, image quality has been
examined by considering only certain quality factors, such as sharpness [20], out-of-focus [21], and
JPEG compression [22]. These metrics alone cannot be expected to produce reliable quality assessments of
authentic in-the-wild iris images.

In some other work, iris image quality metrics are applied after segmentation of the iris. In [23], the
result of the iris segmentation module is used to form a quality score. Happold et al. [24] proposed a
method for predicting the iris matching scores of an iris image pair based on their quality features. They
calculated these features for precisely segmented iris images. They labeled a dataset of iris image pairs
with the corresponding matching scores. They trained their method for predicting the matching score of
an image pair based on their quality features. Therefore, these methods cannot be used to measure iris
image quality in the iris recognition system pipeline before segmentation.

Several metrics for iris image quality were developed based on a fusion of several quality measures
of image and subject covariates. The authors of [25,26] combined quality measures relating to motion blur,
angular deviation, occlusion, and defocus into an overall quality value of an input iris image. These quality
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metrics were developed for NIR-based images and compared to traditional NIR-controlled iris image
acquisition settings. However, images in visible light and under uncontrolled lighting conditions result in
notorious differences in the appearance of the acquired images [3]. Therefore, this method may not be
used directly to evaluate the quality of iris images in visible light. Li et al. [27] proposed a method for
predicting an iris matching score based on iris quality factors such as motion blur, illumination, off-angle,
occlusions, and dilation. This method requires segmented irises to compute some of these quality factors
(dilation and occlusions).

The authors of [10] used combined subject and image covariates, such as the degree of defocusing,
occlusion, reflection, and illumination, to form an overall quality score. They focused on the evaluation of
iris images after iris segmentation, which allows the systems to process images of poor and good quality
in the acquisition phase. They considered only a few image covariates for quality estimation.

Proença [3] proposed a metric for the quality assessment of iris images taken in visible light. This
metric measures six image quality attributes such as focus score, off-angle score, motion score, occlusion
score, iris pigmentation level, and pupil dilation. Then, the impact of image quality on feature matching
was analyzed. The results showed a significant performance improvement of the iris recognition system
by avoiding low-quality images. However, this method requires precisely segmented iris images, and only
the motion-blur score is combined with some quality factors related to the subject’s covariates.

The authors in [12] proposed an approach that automatically selects the regions of an iris image with
the most distinguishably changing patterns between the reference iris image and the distorted version to
compute the feature. The measured occlusion and dilation are combined to form a total image quality
score to study the correlation between iris image quality and iris recognition accuracy.

In the approach of [28], the image quality is assessed locally, based on a fusion schema at the pixel
level using a Gaussian mixture model, which gives a probabilistic measure of the quality of local regions
of the iris image. The local quality measure is used to detect the poorly segmented pixels and remove
them from the fusion process of a sequence of iris images.

Recently, many image quality methods have been proposed for perceptual quality assessment of
natural images [29–35]. Some of these models use statistics of completed local binary patterns (CLBP) as
a part of their feature vectors. In [33], joint statistics of local binary patterns (LBP) and CLBP patterns
produced quality-aware features, and a regression function was trained to map the feature space to the
perceived quality scores. In [32], features based on several local image descriptors such as CLBP, local
configuration patterns (LCP), and local phase quantization (LPQ) were extracted, and then a support
vector regressor was used to predict the quality scores. These models are trained to predict the perceptual
quality of natural images. Liu et al. [36,37] studied some of these methods for filtering low-quality iris
images. This study showed inconsistencies for the predicted quality, e.g., removing more low-quality
images did not always increase the performance of the iris recognition system. In addition, they removed
the low-quality images for each subject separately. Therefore, the filtered images do not have the same
range of quality, and there is no global quality-filtering threshold.

In summary, some of the methods for iris quality assessment, such as [25,26], are proposed for NIR
images, and only a few types of distortion are considered. Some other quality metrics, like those in [3,23,24],
require a segmented iris image to calculate their quality features. They also take limited distortion types
into account and are not expected to work well for quality assessment of authentic iris images taken in
visible light in arbitrary environmental conditions. Iris recognition systems based on authentic images will
broaden the scope of iris recognition systems, and require more research to develop robust metrics for
quality assessment of authentically distorted iris images.

Since we used an iris recognition system as a reference system in this paper, in the following, we
briefly review some state-of-the-art iris recognition systems.
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The fast iris recognition (FIRE) system for images acquired by mobile phones in visible light was
proposed by Galdi et al. [38]. It is based on the combination of three classifiers by exploiting iris color
and texture information. Raja et al. [39] proposed a recognition system for iris images captured in visible
light. This method extracts deep sparse features from image blocks and the whole iris image in different
color channels to form the feature vector for an input iris image. Minaee et al. [40] proposed an iris feature
extraction method based on textural and scattering transform features. The principal component analysis
(PCA) technique is used to reduce the extracted feature dimension.

Recently, OSIRIS version 4.1, an open-source iris detection system, was proposed by Othman et
al. [41]. This system follows the classic Daugman method [42] with some improvements in segmentation,
normalization, coding, and matching modules. For iris and pupil segmentation, the Viterbi algorithm
is used for optimal contour detection. For normalization, a non-circular iris normalization is performed
using the coarse contours detected by the Viterbi algorithm. The coding module is based on 2-D Gabor
filters, which are calculated in different scales and resolutions. Finally, the matching module calculates the
global dissimilarity score between two iris codes using the Hamming distance. We used this system as a
reference iris recognition system.

3. Proposed Method

In this section, we present our fast and general-purpose method for assessing the quality of iris images
acquired in visible light.

Earlier works on iris recognition [42,43] employed block-based operations to obtain iris features.
Therefore, we can infer that the most distinctive information in the iris pattern comes from the local patterns
of an iris image rather than from global features. Local binary patterns (LBP) and their derivatives have
been successfully used in many pattern recognition applications, including texture classification [44–46],
image retrieval [47,48], object recognition [49,50], action recognition [51,52], and biometric recognition [53–
56].

Most of the LBP-based biometric recognition methods use statistical analysis of local patterns for
their feature extraction. Wu et al. [29] showed that image distortions could change the statistics of LBPs.
They then examined the statistics of the LBPs to suggest an index for evaluating natural image quality.
However, this index does not accurately predict image quality for some common image distortions, such
as Gaussian blur and impulse noise.

In the proposed differential sign–magnitude statistics index (DSMI), sign and magnitude patterns
are first derived. Then, the statistical characteristics of these patterns are analyzed for their sensitivity to
iris image distortion. Statistical features of specific coincidence patterns with high sensitivity to image
distortion are identified. A weighted nonlinear mapping is applied to the features to form the iris image
quality score. This metric takes advantage of the observation that low-quality iris images have fewer of
these patterns compared with those in high-quality iris images.

3.1. Proposed Quality Metric

Our iris image quality metric uses statistical features extracted from patterns of signs and magnitudes
of local intensity differences. Then, certain locally weighted statistics of specific sign–magnitude
coincidence patterns are used to define the quality score. Guo et al. [46] suggested a completed local binary
pattern (CLBP) to represent the local difference information that is missed in the LBP representation of an
image [57]. We investigate how common distortions in iris images could alter the statistics of the CLBP.
Then, a quality metric based on a specific coincidence of sign and magnitude patterns of the CLBP is
proposed.
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In CLBP, a local grayscale image patch is represented by its central pixel, and the local differences
are given by dp = xp − xc, where xc = I(c) is the gray value of the central pixel of the given patch and
xp is the gray value of a pixel in the neighborhood. A local difference dp can be decomposed into two
components, its sign and its magnitude. These signs and magnitudes of local differences are combined
into corresponding patterns, CLBP-S and CLBP-M, as follows.

Let C = {(i, j)|i = 0, · · · , M − 1, j = 0, · · · , N − 1} be the set of pixels of a normalized grayscale
image I of N pixels width by M pixels height. For a given pixel c ∈ C, let xc and xp, p = 0, · · · , P− 1,
denote the gray values of the center pixel c and the P points on a circle of radius R about xc. For example,
suppose the coordinates of xc are (0,0); then, the coordinates of xp are (R cos(2πp/P), R sin(2πp/P)). The
grayscale value xp is estimated by interpolation if its coordinates do not coincide with the center of a pixel.
Then, the CLBP-S patterns are defined by

CLBP-SP,R(c) =
P−1

∑
p=0

bp · 2p, bp =

{
1 xp ≥ xc

0 otherwise
. (1)

The CLBP-S operator generates the same code as that of the original LBP operator. The CLBP
magnitude patterns are defined similarly by

CLBP-MP,R(c) =
P−1

∑
p=0

bp · 2p, bp =

{
1 mp ≥ z

0 otherwise,
(2)

where mp = |xp − xc| is the magnitude of the local difference dp. Furthermore, the threshold value z is the
average local difference in the P-neighborhoods of all center pixels together, i.e.,

z =
1
|C|P ∑

c∈C

P−1

∑
p=0
|xp − xc|. (3)

For each pixel c ∈ C, we consider the P-bit binary representation of the sums in Equations (1) and
(2) as binary codes of CLBP-SP,R and CLBP-MP,R. Using these binary representations, we define rotation
invariant indices or patterns for CLBP-S and CLBP-M in a manner similar to that proposed by Ojala et
al. [57] for LBP codes. Equation (4) gives the rotation invariant indices of CLBP-S,

CLBP-Sriu2
P,R (c) = G(CLBP-SP,R(c)) = G

(
P−1

∑
p=0

bp2p

)
=

{
∑P−1

p=0 bp U(∑P−1
p=0 bp2p) ≤ 2

P + 1 otherwise
. (4)

Here, U gives the number of bit changes (0 to 1 or 1 to 0) of the P-bit binary representation of a
number (including circular shift),

U

(
P−1

∑
p=0

bp2p

)
=

P−1

∑
p=0
|bp − b mod (p+1,P)|.

Similarly, Equation (5) gives the uniform rotation invariant patterns of CLBP-M.

CLBP-Mriu2
P,R (c) = G(CLBP-MP,R(c))). (5)

Note that these indices, CLBP-Sriu2
P,R and CLBP-Mriu2

P,R , range over the set {0, ..., P + 1}. The first indices
from 0 up to P correspond to local sign and magnitude patterns with only, at most, two bit changes and,
thus, denote uniform local patterns. All non-uniform patterns are assigned to the remaining index P + 1.
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CLBP-Sriu2
P,R generates fewer codes than the basic CLBP-S. It carries less textural information by

simplifying the local structure. CLBP-Mriu2
P,R provides a compact representation of textural information

derived from local magnitude patterns.
For an illustration for the case of P = 4 neighbors at distance R = 1 from the central pixel of a patch,

we provide Figure 1. We obtain six indices k and l for sign and magnitude patterns, corresponding to five
rotation invariant uniform patterns (k, l = 0, ..., 4) and one index (k, l = 5) that represents all non-uniform
patterns.

 (a) 𝒌= 0  (b) 𝒌 = 1   (c) 𝒌 = 2  (d) 𝒌 = 3   (e) 𝒌 = 4  (f) 𝒌 = 5

xc xc xc xc xc xc

 (g) = 0     (h) 𝒍 = 1   (i) 𝒍 = 2  (j) 𝒍 = 3 (m) = 4    (n) = 5

xc xc xc xc xc xc

x p≥xc

x p<x c

CLBP - S4,1
riu 2

|x p−x c|< z

CLBP -M 4,1
riu 2

|x p−x c|≥z

Figure 1. The patterns in the upper row correspond to CLBP-Sriu2
4,1 , which compares the gray value of the

central pixel of a patch (xc) with the gray values of its four neighbors (xp). The black and white disks denote
smaller and greater values than those of the central pixel value, respectively. In the lower row, CLBP-Mriu2

4,1
compares the absolute values of the differences of the gray values of the central pixel and its neighbors
(|xc − xp|) with the threshold z from Equation (3). The hatched and white disks denote smaller and greater
absolute values than those of the threshold, respectively. Note that the patterns are rotation invariant. Thus,
in the case of P = 4 shown here, the patterns for k, l = 1, 2, 3, 5 may be rotated by multiples of 90 degrees
without changing the values of CLBP-Sriu2

4,1 and CLBP-Mriu2
4,1 .

Finally, the local indices for sign and magnitude have to be combined to give a quality indicator for
an iris image as a whole. We first join the two types of indices into a set of bitmaps Vk,l(c), indexed by k, l,

Vk,l(c) =

{
1 CLBP-Sriu2

P,R (c) = k and CLBP-Mriu2
P,R (c) = l

0 otherwise
. (6)

For each pair k, l of indices, we form a weighted sum of Vk,l(c) over all pixels c, which is nonlinearly
scaled to the unit interval by r(x) = 1− e−ax as follows:

Qk,l = r

(
1
|C| ∑

c∈C

Vk,l(c)
σ̂2(c) + δ2

)
. (7)

Here, σ̂2(c) is the local variance of the P-neighboring pixels of the center pixel c, and δ2 is a small
constant value to prevent division by zero. The parameters δ2 and a are empirically set to 0.00025 and 0.01,
respectively.

In Equation (7), the normalization by the local variance emphasizes local minima and maxima, and
normalizing the scores to the range [0, 1) is only for ease of interpretation of the quality scores. The value
of Qk,l is considered as an image quality score derived from the sign pattern k and the magnitude pattern l.
In our experiments, we used four neighbors (P = 4) with unit distance (R = 1) from the central pixel c of a
local patch.
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Our experiments showed that Qk,l with the specific coincidence of the sign pattern k = 0 and
magnitude pattern l = 0 has a high correlation with iris image quality. Therefore, we used Q0,0 as our
proposed DSMI quality score. We had summarized the proposed DSMI metric in our conference paper [18],
considering, however, only the selected coincidence sign–magnitude patterns.

3.2. Empirical Justification

Inspired by Wu et al. [29], we examine the distinctiveness of each pattern of CLBP-Sriu2
4,1 , which

coincides with patterns of CLBP-Mriu2
4,1 for separating high-quality iris images from distorted versions. To

that end, we generated an artificially distorted iris image dataset from 600 pristine high-quality references
taken from the Warsaw-BioBase-Smartphone-Iris v1.0 [4], UTIRIS [58], and GC2 multi-modal [36] datasets.
A total of 3 to 12 samples per eye from 75 individuals were selected. This dataset was used only to justify
our choice of specific sign–magnitude patterns and also to investigate how filtering out the low-quality iris
images using the DSMI metric could affect the performance of the segmentation module of the reference
iris recognition system. The reference iris images have no content-dependent deformations such as eyelid
occlusion, and were selected from individuals with high, medium, and low degrees of iris pigmentation.
The irises of all of these reference iris images were segmented accurately by the reference iris recognition
system.

Five common image distortions with different levels and multiple distortions were used to distort
the reference iris images. These distortions are Gaussian blur (GB), motion blur (MB), white Gaussian
noise (WGN), salt and pepper noise (IN), and overexposure (OE). The parameters of each function and the
number of the distorted versions of each reference image are listed in Table 1. In addition to the individual
types of distortions, we generated multiple distorted iris images (GB+WGN). First, we distorted the images
with GB and then with WGN. Since GB tends to occur during the acquisition phase due to the different
working conditions of the image sensors, we applied it first. WGN is a noise model that can be used to
mimic the effects of random processes, such as sensor noise due to poor illumination and thermal noise in
the imaging device. For simplicity, the recommendation of [59] was followed, and WGN was introduced
in the end.

Table 1. Summary of the artificially distorted iris image dataset.

Reference iris images
Degree of Iris
Pigmentation

Number of
Individuals

Number of All Iris
Images

High 25 200
Medium 25 200

Low 25 200
Distorted iris images

Distortion Type MATLAB Function Parameters Interval Distorted Versions All Distorted Iris
Images

GB imgaussfilt(I, sigma) 0.5–5 10 6000
IN imnoise(I,’salt &pepper’,density) 0.05-0.6 12 7200
OE I+t 10–100 10 6000
MB H=fspecial(’motion’,len, theta);

imfilter(I,H,’replicate’)
10–60;10–60 36 21600

WGN imnoise(I,’gaussian’,0,V) 0.002–0.02 10 6000
GB+WGN imgaussfilt(I, sigma);

imnoise(I,’gaussian’,0,V)
0.5–5;0.002–0.02 100 60000

To analyze the discrimination power of the scores Qk,l for separating the high-quality reference images
from their distorted versions, we show the distributions of the corresponding scores Qk,l for some selected
combinations of k and l in Figure 2. Visual inspection clearly shows that the coincidence of sign–magnitude
patterns with k = 0 and l = 0 gives the greatest discrimination power. The predicted quality scores for the
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reference iris images are mostly between 0.8 and 1, and the scores for the distorted versions are mostly less
than 0.8. Therefore, we chose this coincidence pattern to form our DSMI quality metric (DSMI = Q0,0).
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(a) Qk,l , k = 0, l = 0
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Figure 2. The solid red lines show the distributions of the quality scores of the high-quality iris images,
and the dotted blue lines show the distributions for the distorted versions with different distortion types,
which are shown on the right side of each row. The quality scores Qk,l are formed based on four different
coincidences of sign (k) and magnitude (l) patterns, shown at the bottom of each column. The first column
shows the histograms of the quality score Q0,0, and the second, third, and fourth columns show the
histograms of the coincidence patterns Q0,l with l 6= 0, l = all, and l = 4.
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4. Iris Segmentation Accuracy

The performance of iris segmentation in a classical iris recognition system has a significant impact on
the overall performance. In this section, we analyze how image distortions affect the performance of the
segmentation module and how quality filtering could improve the segmentation.

Most of the state-of-the-art iris recognition systems for iris imaging acquired in visible light, such as
FIRE [38], Raja et al. [39], and OSIRIS, version 4.1 [41], can be used as reference iris recognition systems. We
have chosen OSIRIS version 4.1 because (1) OSIRIS is an open-source iris recognition system that facilitates
reproducible experiments, (2) it shows high recognition performance [41], and (3) it was used as the
reference iris recognition system in some recent biometric recognition studies [4,60–64]. The segmentation
module of OSIRIS version 4.1 uses the Viterbi algorithm to detect the iris and pupil contours [65]. The
outputs are contours of the iris, which represent the inner boundary between the pupil and iris and the
outer boundary between the iris and sclera, resulting in a binary mask for the iris.

For our experiments, we used the artificially distorted dataset from the previous section, which is
summarized in Table 1. We segmented all iris images using the OSIRIS segmentation module. The mask
of the segmented iris of each reference image was taken as the ground truth for comparison with the
segmentation results for the distorted versions. The iris segmentation error is computed by the fraction of
mislabeled pixels,

e =
1
|C| ∑

c∈C
T(c)⊕M(c),

where |C| is the cardinality of the pixel set C of an iris image, and T and M represent the ground truth and
the generated iris masks, respectively. The symbol ⊕ represents the exclusive OR operation to identify the
segmentation error. If the error e was below the threshold 0.05, the iris segmentation was assumed to be
correct. The threshold value was set manually by the authors.

In Figure 3, we show the fractions of incorrectly segmented irises for the different types of distortion
and for low, medium, and high degrees of iris pigmentation. The fractions are given as functions of the
percentage of low-quality images that were filtered out using the proposed DSMI quality metric.

The results shown indicate a clear correlation between the DSMI quality of iris images and
segmentation accuracy. Therefore, filtering out poor-quality images before segmentation will improve the
performance by reducing the number of incorrectly segmented images, as indicated by the negative slopes
of the plots.

In summary, the experiments performed in this section show that the accuracy of the segmentation
module varies for iris images with different pigmentations and different distortions. Highly pigmented
iris images present a greater challenge for the reference iris recognition system, while the system is more
robust for the segmentation of low-pigmented iris images. However, filtering out poor-quality iris images
using the proposed DSMI metric increases the accuracy of iris segmentation.

5. Experimental Results

In this section, we investigate to what extent filtering out poor-quality iris images with the proposed
quality metric improves the performance of the reference iris recognition system. We also compare our
DSMI quality metric with the BRISQUE [66] and WAV1 [67] image quality metrics. BRISQUE uses statistical
features extracted from pixel intensities to train a support vector machine for predicting image quality.
Pertuz et al. [67] compared 15 metrics to estimate the blur of an image. In their study, WAV1 performed
better than the others. WAV1 uses statistical properties of the discrete wavelet transform coefficients.
Since blur is a common distortion of iris images taken by handheld imaging devices such as smartphones,
we also compare our method with the WAV1 metric. Our experiments were conducted on three large
authentic iris image datasets acquired in visible light.
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Figure 3. The segmentation performance of the reference iris recognition system is shown for segmenting
iris images with high, medium, and low pigmentation, and distorted in different ways. The fraction of
incorrectly segmented images is plotted versus the percentage of filtered low-quality images, based on the
differential sign–magnitude statistics index (DSMI) metric.

5.1. Iris Image Datasets

There are many iris image datasets recorded with near-infrared cameras such as CASIA V4 [68],
CASIA-Iris-Mobile-V1 [69], IIT Delhi [70], and ND CrossSensor Iris 2013 [71]. However, there are just a few
iris image datasets acquired in visible light. Four are widely used in iris recognition research: UTIRIS [58],
UBIRIS [72], MICHE [73], and VISOB [74].

An optometric framework in a controlled environment was used for capturing the irises of the UTIRIS
dataset, resulting in high-quality iris images. UBIRIS iris images were taken from moving subjects and
at different distances, resulting in more heterogeneous images compared to UTIRIS. Nevertheless, the
pictures have good quality, better than the expected quality of iris images captured by handheld devices.
The MICHE and VISOB datasets are challenging datasets for iris recognition systems, including images
with varying degrees of iris pigmentation and eye make-up. In addition, the quality of the images is
impaired by lack of focus, gaze deviations, specular reflections, eye occlusion, different lighting conditions,
and motion blur.

Instead, we chose three datasets of the GC2 multi-modal biometric dataset [36] because they contain
authentically distorted iris images typically seen when capturing iris images with handheld devices such
as smartphones. In addition, the iris images were taken from many subjects with different handheld
cameras in uncontrolled environments at different distances. Iris pigmentation varied, from European
subjects with bright iris textures to Asian subjects with very dark iris textures. In addition to the various
authentic distortions corresponding to the image covariates, the iris images are subject to a variety of
quality losses related to the subject’s covariates, such as gaze deviation, off-angle, reflections, eye closure,
and make-up. Also, the datasets contain 12–15 iris images of varying quality per eye and person, which is
useful for studying the effect of quality filtering. The iris images have more than 30 different resolutions.
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• The first dataset of GC2, REFLEX, was taken with a Canon D700 camera using a Canon EF 100 mm
f/2.8 L macro lens (18 megapixels). It contains 1422 irises of 48 subjects. A total of 12 to 15 samples
were taken per eye (left and right).

• The second dataset, LFC, contains iris images taken by a light field camera. The LFC dataset contains
1454 iris images from the right and left eyes of 49 subjects. For each eye, 13 to 15 samples were taken.

• The third dataset, PHONE, was taken by a smartphone (Google Nexus 5, 8 megapixel camera). It
contains 1379 iris images from the right and left eyes of 50 subjects, and 12 to 15 samples were taken
per eye.

We compare an iris image with all iris images from the same dataset. Table 2 summarizes these
datasets and shows the number of matching and non-matching iris pairs. Figure 4 shows some samples
from these datasets, and Figure 5 shows the histograms of the quality scores of the datasets, estimated by
the proposed DSMI metric.

Table 2. Summary of the GC2 dataset

Datasets REFLEX LFC PHONE
Number of subjects 48 49 50
Total images 1422 1454 1379
Samples per eye 12-15 13-15 12-15
Matching pairs 9457 10,045 9092
Non-matching pairs 975,450 1,056,485 941,039
Camera Canon D700 Light field camera Phone Nexus
Lowest resolution 1085× 724 327× 218 450× 300
Highest resolution 2813× 1876 1080× 1080 1811× 1208

Figure 4. Some iris image samples with high, medium, and low pigmentation from the multi-modal
biometric dataset GC2 [36]. The first, second, and third rows show some images from the REFLEX, LFC,
and PHONE datasets, respectively.

5.2. Iris Recognition Performance Analysis

To evaluate the performance improvement of iris recognition achieved by quality filtering using an
image quality metric, we used three performance methods, namely the Daugman’s decidability index [75],
the area under the receiver operating characteristic curves (AUC), and the equal error rates (EER). We
compared the performance of three image quality metrics when used for quality filtering. Given a threshold
for a metric, we rejected those images that exhibited a quality lower than the threshold. The thresholds
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Figure 5. Normalized histograms of the quality scores according to the DSMI metric on three test iris
datasets.

for each of the three metrics were chosen such that 1/4, 1/2, and 3/4 of the images were rejected. In our
experiments, OSIRIS version 4.1 was used as a reference iris recognition system.

5.2.1. Daugman’s Decidability Index

Daugman’s decidability index [75] is a widely used method for assessing the performance of iris
recognition systems [3,36,75]. In an iris recognition system like OSIRIS, a binary phase code is derived
for each presented iris image. Then, the fractional Hamming distance to the phase code of a reference
iris image is computed. The distributions of these Hamming distances are compared between a set of
matching and a set of non-matching iris image pairs from a test dataset. The larger the overlap between the
distributions, the more likely recognition errors become. The Daugman index (d′) measures the separation
of these distributions by

d′ =
|µE − µI |√
1
2 (σ

2
E + σ2

I )
,

where µE and µI are the means and σE and σI are the standard deviations of the distributions. Larger
values correspond to better discrimination. We follow this procedure using the GC2 multi-modal biometric
dataset and plot the histograms of the Hamming distances for the matching and the non-matching iris
pairs in Figure 6. For visualization, normal distributions were fitted to the histograms.
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Figure 6. Normal distributions fitted to the normalized histograms of Hamming distances of matching
(solid lines) and non-matching (dash lines) iris pairs are shown for three test image datasets.
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We can now study the effect of quality filtering on the performance of the iris recognition system. In
Figure 7, we show Daugman’s decidability index as a function of the fraction of removed poor-quality
images. DSMI, BRISQUE, and WAV1 image quality metrics were used for quality filtering. Filtering
out low-quality iris images using the DSMI metric leads to the largest performance improvement in the
REFLEX dataset, while quality filtering in the PHONE dataset leads only to small improvements. This
could be due to the DSMI metric performing better in quality assessment on iris images in the REFLEX
dataset or to the PHONE dataset posing a greater challenge to the reference iris recognition system. The
Daugman index for the PHONE dataset is only 1.36, compared to 2.02 and 1.90 for REFLEX and LFC,
respectively (see Figure 6).
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Figure 7. Daugman’s decidability index for all iris images, after filtering different parts of the iris images
with the poorest quality using three image quality metrics on three test datasets.

From the Daugman’s decidability index values in the three test datasets, as shown in Figure 7, we
can conclude that filtering out the iris images with the poorest quality using the proposed DSMI metric
improves the recognition accuracy of the reference iris recognition system. The BRISQUE metric also
performs well in the REFLEX dataset, but it is not consistent for quality filtering in the LFC and PHONE
datasets. WAV1 is not consistent with quality filtering on all three test datasets.

5.2.2. Receiver Operating Characteristic Curve

The area under the curve (AUC) of the receiver operating characteristic (ROC) is a widely used
performance metric for comparing the accuracy of iris recognition systems. The iris recognition system
with the larger AUC is considered to be a more accurate system.

To visualize and measure the improvements of the performance of the reference iris recognition
system by filtering out the poor quality iris images, the ROC curves were generated for each dataset by
plotting the true positive rate against the false positive rate at various fractional Hamming distances (see
Figure 8).

Figure 8 shows the ROC curves for the three test datasets with different quality filtering thresholds
using our DSMI metric, BRISQUE, and WAV1 metrics. The solid red lines in Figure 8 show the
performance of the reference iris recognition system without quality filtering. Without quality filtering, the
corresponding AUC value for the REFLEX dataset is 0.9065, for the LFC dataset it is 0.8861, and for the
PHONE dataset it is 0.8226. The AUC values show again that the PHONE dataset is the most challenging
one for the reference iris recognition system.

We also computed the AUC values after removing 1/4, 1/2, and 3/4 of the iris images with the
poorest quality from each test dataset. The AUC values are listed in the figure legends for all of the test
datasets. Using the proposed DSMI metric for quality filtering increased the AUC value in all test datasets.
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Figure 8. The receiver operating characteristic (ROC) curves for the three test datasets (REFLEX, LFC, and
PHONE) with different quality filtering thresholds using our DSMI metric, BRISQUE, and WAV1. The solid
red, dashed blue, dot-dashed green, and dotted black lines were plotted without quality filtering, after
filtering out one-quarter, half, and three-quarters of the poorest-quality images, respectively.

In the REFLEX dataset, filtering out a quarter of the iris images with the poorest quality using the
DSMI metric greatly improves the performance of the reference iris recognition system in terms of AUC
by 0.0406 (4.5%). However, filtering out the second quarter only increases AUC by 0.0062 (0.65%). This
indicates that the middle two quarters of the iris images have a small quality deviation, and filtering a part
of these images does not result in a considerable improvement in the performance of the iris recognition
system. However, filtering the third quarter of the iris images with the poorest quality improves the AUC
significantly by 0.0336 (3.5%).

The performance improvements for the LFC dataset after filtering out the first, second, and third
quarters of the iris images with the poorest quality using the DSMI metric are 0.0278 (3.1%), 0.0124 (1.4%),
and 0.0104 (1.1%), respectively. The values for performance improvement on the PHONE dataset are 0.0049
(0.6%), 0.0127 (1.5%), and 0.0413 (4.9%). Filtering out the first quarter of the iris images with the poorest
quality using the DSMI metric only slightly improves the AUC value, but filtering out three quarters of the
iris images with the poorest quality improves the performance significantly by 7.2%. We visualized these
performance improvements in Figure 9.

The analysis of the AUC values shows that the performance of the reference iris recognition system
has improved by quality filtering in all test datasets when using the DSMI metric for quality assessment.
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Figure 9. Area under the curve (AUC) values for all iris images after removing different parts of the iris
images with the poorest quality.

In contrast, BRISQUE is consistent for quality filtering for the REFLEX dataset, but not for the other two
test datasets. WAV1 shows inconsistent performance in all test datasets.

The reason for this could be that the DSMI metric is optimized for assessing the image quality of
iris images and BRISQUE for the perceptual quality of natural images. Both, however, can assess image
quality for different image distortions. The WAV1 metric is optimized for blur assessment. Since blur
is common in iris images taken with handheld devices, we compare our method with the WAV1 metric.
However, the iris images in test datasets have more complicated authentic in-the-wild image distortions,
and these distortions degrade the performance of WAV1 in all test datasets.

5.2.3. Equal Error Rate

The equal error rate (EER) is the rate at which both accept and reject errors are equal. The EER is used
for comparing the accuracy of classification systems with different receiver operating characteristic (ROC)
curves. With the EER approach, the system with the lowest EER is considered the most accurate.

In Table 3, we calculated the EER values when three image quality metrics were used to filter out
the poor-quality iris images from the test datasets. The greatest performance improvement is achieved by
filtering out poor-quality iris images using the DSMI metric on the REFLEX dataset. The PHONE dataset
is the more challenging dataset for the reference iris recognition system, resulting in higher EER values.

The results confirm that rejecting poor-quality images using the proposed DSMI metric improves the
iris recognition performance consistently, while this observation does not hold for BRISQUE and WAV1
metrics.

Table 3. The equal error rate (EER) values are calculated after filtering different parts of the iris images
with the poorest quality from each test dataset. This table shows the EER values when all iris images are
passed to the iris recognition system and after filtering out one quarter, half, and three quarters of the iris
images with the poorest quality from the REFLEX, LFC, and PHONE datasets using the DSMI, BRISQUE,
and WAV1 quality metrics.

REFLEX LFC PHONE

Removed Part DSMI BRISQUE WAV1 DSMI BRISQUE WAV1 DSMI BRISQUE WAV1

0% 0.1469 0.1469 0.1469 0.1770 0.1770 0.1770 0.2466 0.2466 0.2466
25% 0.0987 0.1202 0.1714 0.1500 0.1604 0.1562 0.2418 0.2374 0.2594
50% 0.0878 0.978 0.1963 0.1376 0.1528 0.1692 0.2293 0.2276 0.2595
75% 0.0382 0.0520 0.2443 0.1287 0.1724 0.1955 0.1845 0.2412 0.2434

In summary, for all of the test iris image datasets (REFLEX, LFC, PHONE) and all of the performance
evaluation methods (Daugman’s decidability index, AUC, EER), the performance of the reference iris
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recognition system (OSIRIS, Version 4.1) increased consistently by filtering out iris images with the poor
quality using the proposed DSMI quality metric. In contrast, for the other two image quality metrics
(BRISQUE, WAV1), the experiments showed inconsistencies, i.e., removing more low-quality images did
not always increase the performance of the reference iris recognition system.

Figure 10 shows some iris samples from the test datasets with poor quality scores predicted by the
proposed DSMI metric. These samples will be filtered out when we remove a quarter of the iris images
with the poorest quality from each test dataset. If we pass these samples to the reference iris detection
system for iris recognition, all of them will be falsely rejected. Thus, the proposed DSMI metric can be
used to decide whether an input iris sample should be enrolled in a dataset or rejected, and a new sample
should be captured based on the quality score. Although our method is designed to consider only image
covariates, some subject covariates, such as eyelid occlusion due to blinking, may also result in motion
blur or other image quality distortions that can be measured by our proposed quality metric, as shown in
Figure 10c. All iris samples shown in Figure 10 suffer from authentic image distortion and other quality
degradation due to subject covariates.

(a) 0.35 (b) 0.27 (c) 0.09 (d) 0.33 (e) 0.39 (f) 0.35

Figure 10. The first row shows some iris samples from the multi-modal biometric dataset GC2 [36], which
are classified as low-quality samples by our DSMI metric. All of these samples would be falsely rejected
with high dissimilarity scores (>0.47) by the reference iris detection system. However, if we filter out a
quarter of the iris images with the poorest quality from each test dataset, these samples will be removed
and not passed to the iris recognition system. The second row shows the segmentation result of the
segmentation module of the reference iris recognition system. The DSMI scores are listed below the iris
samples.

Figure 11 shows some iris samples with DSMI scores that are higher than the threshold for filtering out
one quarter of the iris samples with the poorest quality from each test dataset. Our proposed framework
passes these images for iris segmentation and identification when only a quarter of the iris images with
the poorest quality are filtered out from the test datasets. However, all of these samples will be falsely
rejected by the reference iris recognition system. Some of these images have quality degradation related to
subject covariates, such as eyelashes obscuring the iris or closed eyes.
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(a) 0.53 (b) 0.54 (c) 0.57 (d) 0.59 (e) 0.43 (f) 0.55

Figure 11. The first row shows some iris samples from the multi-modal biometric dataset GC2 [36], which
are classified by our DSMI metric as iris samples of sufficient quality if only one quarter of the iris images
with the poorest quality are filtered out. Therefore, these images are passed to the iris recognition pipeline
for further processing. However, all of these samples would be falsely rejected by the reference iris
recognition system with high dissimilarity values (>0.47). The second row shows the segmentation result
of the segmentation module of the reference iris recognition system. The DSMI scores are listed below the
iris samples.

The iris samples that are shown in Figure 11 have fewer image distortions compared to the sample
shown in Figure 10. Therefore, our quality metric predicts higher quality scores for these iris images. Some
of these images have quality degradations related to subject covariates, such as eyelashes obscuring the
iris or closed eyes. If we filter out half of the iris samples with the poorest quality, these samples will
be filtered. However, by setting a higher quality filtering threshold, some iris samples may be rejected
unnecessarily.

5.3. Computational Complexity

It is straightforward to assess the computational complexity of the DSMI quality metric by checking
the algorithmic steps, outlined in Section 3.1, one by one. The result is a time complexity, linear in the size
of the input image. More precisely, it is O(N ×M× P), where N ×M is the image size in pixels, and P
is the number of points checked in the neighborhood of each pixel for deriving the sign and magnitude
patterns.

We also recorded the actual speed of the quality metric using our implementation, running on an
MSI GP60 laptop with an Intel Core i7 processor and 16GB RAM with MATLAB version 2018b in Ubuntu
18.04.3 LTS. We computed the DSMI quality scores on four parts of the test datasets, each containing iris
images of the same size in pixels, ranging from 596× 397 up to 2036× 1358 (see Table 4). The table confirms
the linear time complexity, amounting to roughly 0.06× 10−6 seconds per pixel. At that processing speed,
a throughput of 66 frames per second (FPS) can be achieved at resolution 596× 397. For the higher
resolutions, 625× 537, 1233× 810, and 2036× 1358, the speed is 40, 16, and 6 FPS, respectively. Therefore,
the proposed method can be used to assess the quality of iris images in interactive applications, such as
iris recognition systems based on handheld imaging devices.

Table 4. Comparison of the average running time (seconds) on four sets of iris images with different
resolutions.

Image Resolutions 596× 397 625× 537 1233× 810 2036× 1358
Average running time per image (seconds) 0.015 0.026 0.061 0.181
Average running time per pixel (microseconds) 0.065 0.062 0.062 0.064
Frames per second (FPS) 66 40 16 6
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6. Conclusions and Future Work

In this paper, we presented a fast image quality metric, based on statistical features of the
sign–magnitude transform to estimate the quality of iris images acquired by handheld devices in visible
light. We suggest that this method can be used to decide whether an input iris sample should be enrolled
in a dataset or rejected, and a new sample should be captured based on the quality score to improve the
speed and the recognition rate of the reference iris recognition system.

We conducted extensive experiments to demonstrate these improvements using three performance
methods for measuring the iris recognition accuracy on three large datasets acquired in unconstrained
environments in visible light. The experiments showed that the proposed approach improved the accuracy
of the reference iris recognition system.

However, we would like to point out that the inclusion of quality filtering in an iris recognition system
can increase the computational costs of iris image recognition, and some iris images may be rejected
unnecessarily. This could be caused by an error in the quality metric, by too conservative of a setting of
the quality threshold, or by quality factors related to the subject covariates. In our future work, we will
propose a metric for iris image quality assessment that takes into account all of these factors. Furthermore,
another future work is to develop an algorithm to monitor criteria, such as recognition performance, time
and number of photos required per person, and customer satisfaction, in order to dynamically adapt the
threshold for quality filtering to achieve optimal performance.

It may also be promising to examine the use of the proposed quality metric to assess the quality of
other biometric images, such as facial image, and NIR biometric images.
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