Public Internet Access for Young Children in the Inner City: Evidence to Inform Access Subsidy and Content Regulation

Christian Sandvig

Department of Speech Communication, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Significant U.S. policy initiatives in the late 1990s were intended to control Internet access, privacy, and indecency—specifically among children. This study reflects on these using quantitative data from a computer center in a children’s library in the inner city. Researchers gathered 16 weeks of page requests \(n = 203,647\) using “click stream” and behavioral data, and analyzed these using nonparametric tests. Findings show that users are highly influenced by each other and browse only a small universe of sites. Game playing and communicating with individuals (via e-mail and chat) were the most popular uses. Children were uninterested in pornography and sites directed toward children. Advertising was extremely common. Children were most likely to engage in sharing when using games and chat. For this population, access, privacy and indecency initiatives to control Internet use fails to achieve its stated goals, but activities that encourage sharing in public places hold some promise for building computer knowledge.

Keywords community technology centers, computer literacy, digital divide, sharing, universal service

In the last 8 years, major policies to promote access to new communication technologies have been enacted and debated. In the United States, the debate has often been framed by the unfortunate term “digital divide,” a term that suggests access to technology is the most worrisome problem, that this paucity of access is somehow isolated from other social problems and socioeconomic factors, and that access can be described using a binary distinction between “have” and “have not.” Policy mechanisms meant to address the digital divide (such as the Federal Communications Commission E-Rate in the United States) have focused on children as a key population—subsidizing access in schools and libraries. This study empirically considers the product of this policy trend of the late 1990s, an inner-city computer center for young children. The center is considered as the nexus of three forms of public policy about the Internet: the regulation of (1) access, (2) privacy, and (3) indecency. This study considers the implications of and for these policy initiatives through analysis of in-depth quantitative data about how children use the Internet.

Over the last century, communication technologies have transformed childhood. Both the form and offerings of communication media have proliferated, and overall use of communication technology among children has steadily increased. The complexity, fidelity, and in some cases interactivity of communication technology have also increased (Roberts et al., 1999). Mediated communication has become one of the primary socializing agents for children. At the same time, communication technology has come to occupy an increasingly important role in other aspects of everyday life—particularly in the economic. Society is increasingly dependent on skilled labor (Bell, 1999), and access to and familiarity with computers are now seen as essential for participation in economic and social life. Policies focusing on children are important in understanding communication policy generally. Laws that benefit children may be enacted before similar policies that would apply to adults because children as a group...
are seen as unable to demand benefits or protection for
goals, children may require benefits and protection
that adults may not (the younger the children, the greater
the concern), or for no other reason than that appeals on
behalf of children are rhetorically powerful.

Digital divide policy mechanisms intended to benefit
children occupy an uneasy space between conflicting im-
pulses: While they appear to be about simply access, they
represent a desire both to empower children and to restrict
them. A Children’s Partnership report expresses this ten-
sion well when it unself-consciously explains, “because
some young people are drawn to online activities that are
not always healthy, it is essential that they receive guid-
ance and training to use the [Internet] productively” (Chil-
dren’s Partnership, 2000, p. 20). It is provocative to try
to imagine what a child “productively” using the Internet
would be doing. From earlier reports on the possible ben-
et of community technology centers we can gain some
cues: Skill acquisition, job training, and technological lit-
eracy are typically emphasized as positive outcomes by
proponents (Mark et al., 1997).

One might suspect that left to their own devices, chil-
dren would be unlikely to sit down in front of the computer
for an afternoon of job training. Subsidized access in li-
braries is a setting where children are often left to their
own devices; much of the access is unstructured, which
may not be the case at school. Indeed, Lentz et al. found
that children using the public access sites in Austin tended
to engage in “game playing and other entertainment ac-
tivities” (2000, p. 18). Two studies of Internet access in
public libraries in Canada found that Internet gaming and
chat were the most popular uses, particularly among chil-
dren (Gorgec et al., 1999; Balka & Peterson, 2000). As one
author commented, “Our data suggest that even if all . . .
citizens have access to the Internet, few of them will en-
ge in the sorts of activities that the access strategies
have been designed to support” (Balka & Peterson, 2000,
p. 101).

While previous research has examined use of public access centers (for a review, see O’Neil, 2002), this study
tries to more clearly confront policy initiatives with
empirical measures of use. It attempts to build on earlier
work by comparing the assumptions and goals of digital
divide policies to user behavior, in a sense attempting to
move beyond a surprise that children play games to better
understand public access sites as objects of public pol-
icy. In this, it considers three policy initiatives affecting
access centers, where each initiative envision children
as primary beneficiary. The first initiative deals with ac-
cess; the second and third deal with content regulation. Al-
though only the term “digital divide” labels the first in pub-
lic discourse, all initiatives together aim to shape the use
of communication technology, especially at public access
centers.

INITIATIVE 1: ENSURING ACCESS
FOR THE UNDERPRIVILEGED

Telecommunications are not used to link all places, but
to link “valuable places in a non-contiguous pattern,” al-
lowing the “reconfiguration of metropolitan areas around
selective connections of strategically located activities, by-
passing undesirable areas” (Castells, 1998, p. 144). It is
ture that technology can solve problems, but it may also
reinforce the problems of inner cities, depressed areas, and
the poor by excluding them. This potential exacerbation
of social inequality can produce what some have called the
“information poor” (Graham & Marvin, 1996, pp. 37,
190–206), “information inequality” (Schiller, 1996), or
the “digital divide” (National Telecommunications and
Information Administration, 1999).

In the late 1990s, a number of government programs
ought to combat this problem by introducing technology
centers in depressed areas and targeting children as pri-
mary beneficiaries. The predominant model for this type
of access is an institutional one. The Telecommunications
Act of 1996 is the most prominent recent policy initia-
tive to address the access issue. It explicitly expanded
the telecommunications concept of universal service to
include such new technologies as the Internet.1 Tradition-
ally, universal service has referred to programs designed to
ensure widespread use of telephony through subsidy.2 The
1996 act proposed an institutional model in which children
are key: Schools and libraries serve as the principal place
for otherwise disenfranchised users to use advanced com-
munication technology. These institutions receive substan-
tial public funding to provide this service through subsi-
dies to carriers. $1.4 billion in subsidies were disbursed to
U.S. schools and libraries under this program in 2001,
and about $14 billion in subsidies has been disbursed in all
forms in the 5 years since the program’s inception in 1997
(Universal Service Administrative Company, 2001, 2002).
This sort of initiative has lately changed its terminology to
universal access in many circles to better reflect the institu-
tional access model as opposed to the previous subsidy for
every home. Other federal programs have also endorsed
institutional models for access: e.g., Department of Edu-
cation grants to Community Technology Centers (CTCs; see U.S. Department of Education, 1999), Department of
Commerce grants to Community Access Centers (CACs)
from the Telecommunications and Information Infrastruc-
ture Assistance Program/Technology Opportunities Pro-
gram, and Institute of Museum and Library Services grants
to libraries.3 In addition, at least 14 charitable foundations
have funded similar centers.4

Universal service as a political idea originated in the
United States (Mueller, 1997). The rationale given for uni-
versal service in the United States is unlikely to be based
on equity or welfare (Rapp, 1996)—many rationales are
instead economic and focus instead on system benefits (Sawhney, 1994). In this manner, arguments for universal service are very comparable to those for universal education. In the United States, this represents not a belief that all should have access because equity is necessarily a noble goal, but rather an expectation that these technology centers will be used for educational (hence the emphasis on schools) and ultimately economically productive purposes.

INITIATIVE 2: PRIVACY AND PROTECTION FROM ADVERTISERS

A 1998 Federal Trade Commission survey found that 89% of web sites “directed to children” collect personal information, but that only 24% of these sites have a privacy policy available for viewing, and as few as 1% to 8% attempt to involve parents in their children’s online activities—e.g., through consent or notification (Federal Trade Commission, 1998, pp. 31, 35, 38). The FTC presented this as a case where technology had created new dangers: the harmful disclosure of personal information by children that could not be addressed by existing law (pp. 40–41). On the recommendation of the FTC, congress subsequently passed the Children’s Online Privacy Protection Act (COPPA) in 1998. The act regulates sites that are directed toward children or have “actual knowledge” that children under age 13 are users. It requires these sites to obtain “verifiable parental consent” in order to collect or disclose personal identifying information from children, to state what information is collected and how it will be used, and to protect the confidentiality and security of personal information collected. Further, sites may not collect more information than is “reasonably necessary” for a particular activity, and parents must be able to request the information that has been gathered and revoke permission to use it at any time (Federal Trade Commission, 1999).

During the policy debate leading up to the act’s passage, it was at times referred to as an effort to protect children from online marketers and the debate was often framed in terms of advertising (cf. American Advertising Federation, 1999). In fact, COPPA addresses all data collection from children and regulates any type of site (commercial or otherwise). While it is true that advertisers are a primary interest group in this area, the act does not address advertisements qua advertisements, but as anything directed at children.

INITIATIVE 3: PROTECTION FROM INDECENT MATERIAL

Concern about pornography on the Internet may have entered mainstream public debate in 1995 when Time Magazine published a cover story on the results of a (now discredited) study with the headline “CYBERPORN” (Elmer-DeWitt, 1995). The policy problem asserted has typically been that changes in technology provide easier access to indecent material, and that children must be prevented from obtaining such material. Numerous policy efforts have sought to restrict obscene or pornographic material on the Internet itself, the most prominent being the failed Communications Decency Act (CDA) and its successor, the Child Online Protection Act (COPA). Other efforts have focused on restricting institutional modes of access to the Internet (i.e., schools and libraries), where parents may not be able to supervise children. For instance, the Children’s Internet Protection Act (CIPA) and the Neighborhood Children’s Internet Protection Act (NCIPA) require schools and libraries that receive federal funding to enact Internet safety policies and use filtering technology. At the time of writing, court injunctions prevent the enforcement of COPA, CIPA, and NCIPA while they are reviewed for constitutionality. Regardless of the outcome, this is clearly a significant policy area. In the public debate of these topics, we note that the youngest children are often portrayed as the most “at risk”.

THE CASE OF THE SAN FRANCISCO ELECTRONIC DISCOVERY CENTER

Each of these debates assumes an answer to the question: How do children use public computers and Internet access? Initiative 1 assumes that an institutional access point is essentially the same as home access, and that what transpires there will be economically productive, broadly construed. Initiative 2 assumes that children disclose identifying information that may place them in danger, and that when they do they use services directed to children. Initiative 3 assumes that young children seek pornographic material, and laws requiring filtering make assumptions about where and how they seek it. It is the purpose of this article to assess whether or not these assumptions have any basis in human behavior. To do this, we conduct an empirical investigation of Internet use by children at a public library in an underprivileged area. Let us now turn from the policies about children to the children themselves.

Setting

This study considers a library program in San Francisco called the Electronic Discovery Center (EDC). An EDC is a cluster of computers in a library branch equipped with broadband Internet access and children’s software titles. These clusters are available to use for no charge, and are reserved exclusively to serve children under the age of 14 and the adults that accompany them. This study analyzes the EDC at the Main Library. The ultramodern architecture of what librarians call the “New Main”
is an impressive sight, but more impressive is the contrast between the pristine library building and the adjacent neighborhood of the Tenderloin, one of San Francisco’s poorest. Those living near the library have a median family income of $12,754, with 27.5% of the population in the library’s census tract in poverty by Census Bureau definitions (U.S. Census, 1991).17 The median family income is below $30,000 in 8 of the 9 adjacent census tracts (U.S. Census, 1999). In comparison, San Francisco as a whole averaged 12.3% of the population in poverty, and a median family income of $37,854 (U.S. Census, 1991, 1999).

Within the library, the Fisher Children’s Center is an airy, brightly colored series of rooms on the second floor providing comfortable furniture sized to the dimensions of small children, exhibition space for reading stories and meeting authors, large windows, and sunny spots to play and read. The center houses the New Main’s collections of books, periodicals, and videos for children in several languages. These surround a long, curving, wooden librarian’s desk, usually occupied by two children’s librarians. The EDC consists of three “islands” of computers in the Fisher Center. These islands are located on one side of the wide entryway and fenced by a wall to one side (containing the Fisher Center’s bulletin board), half-height book stacks to the front (picture books and videos) and rear (foreign language books), and the librarian’s station. Each square pedestal supports four computers arranged two per side, and each group of two computers has an attendant collection of three child-sized chairs.18 The library does not employ filtering software; instead, each computer is marked with a warning notice posted by the library cautioning that the library does not control the content of the Internet. Two round child-sized tables are nearby, as are two adult-sized well-cushioned chairs for larger visitors. The space of the EDC is not closed off on any side, and there is always a steady flow of people moving near and sometimes through the area. No partitions separate computers, and while the space of the EDC is loosely demarcated by half-height shelving, the EDC is very much a public part of the center.

Method

A previous study in the EDC presented the findings of 10 weeks of qualitative nonparticipant observation and open-ended interviews of children, parents, and librarians in early 1999 (Sandvig, 2000). This article instead presents quantitative data on Internet use in the EDC, but will draw upon data from the previous study for context.

Over a 16-week period (28 August to 17 December 1999), researchers unobtrusively monitored the library’s computer network for requests using the relevant Internet protocols19 originating from a computer in the EDC—similar monitoring is sometimes referred to as producing “click stream” data.20 As this was overwhelmingly web use, we restricted further analysis to web traffic. Typically, researchers analyzing network data about the web rely on logs kept by the web server—providing the ability to answer some research questions about requests to a particular site (McLaughlin et al., 1999). In contrast, this study gathers data at the gateway from the EDC to the Internet in order to answer questions about Internet use from the EDC.21 We installed a caching proxy22 and modified it to observe all transactions in detail.23

The caching proxy saved all web addresses and an assortment of information about each request. We then discarded requests that were not for web pages,24 and malformed requests,25 leaving 203,647 page requests.26 To bring the sample to a manageable size for coders, a sub-sample of 1000 page requests was randomly drawn from across all 16 weeks.

For the content analysis, it is impossible to for coders to revisit the web pages as users saw them. Many web pages change frequently, are personalized for a particular user, require a sign-in/password, or contain information that is confidential and would violate the anonymity of users (e.g., pages allowing access to web-based e-mail). While the sampling unit discussed so far was the page request, for the coding unit the addresses requested were truncated to the smallest number of workable significant characters, hereafter called the “site.”27 The “site” was defined as the address produced by concatenating the host name and domain: i.e., “fantasybasketball.yahoo.com” would be distinct from “chat.yahoo.com.”28 A computer script to truncate addresses reduced the subsample of 1000 to 235 distinct sites. After these stems were viewed by researchers from February to March 2000 a computer script applied the 235 codings back to the sample of 1000, eliminating problems of intracoder reliability—often referred to in this context as stability (Weber, 1990, p. 17). In other words, while the same site might appear multiple times in the sample, it was only coded once.

Participants

Approximately 110–200 children use the computers at the EDC each day (Sandvig, 2000, p. 11).29 This means that over the 16 weeks of data collection, a conservative estimate would be that over 12,000 EDC visits by library patrons were recorded and analyzed in this study (it is not known, how many of these visits represent repeat visits by regular patrons vs. one-time events). About 1 child in 10 also brings along an older sibling, parent, or other adult (p. 11). Users in the EDC are restricted to a half-hour time period because of the high demand for computer time. As spaces in the EDC are almost always full, more than one child usually uses each computer, allowing them to stay longer (p. 15). The clientele of the EDC contains a mixture of children from the surrounding (poorer) neighborhoods

17 The median family income is below $30,000 in 8 of the 9 adjacent census tracts (U.S. Census, 1999). In comparison, San Francisco as a whole averaged 12.3% of the population in poverty, and a median family income of $37,854 (U.S. Census, 1991, 1999).

18 The library does not employ filtering software; instead, each computer is marked with a warning notice posted by the library cautioning that the library does not control the content of the Internet.

19 The library does not employ filtering software; instead, each computer is marked with a warning notice posted by the library cautioning that the library does not control the content of the Internet.

20 As this was overwhelmingly web use, we restricted further analysis to web traffic. Typically, researchers analyzing network data about the web rely on logs kept by the web server—providing the ability to answer some research questions about requests to a particular site (McLaughlin et al., 1999). In contrast, this study gathers data at the gateway from the EDC to the Internet in order to answer questions about Internet use from the EDC.21 We installed a caching proxy22 and modified it to observe all transactions in detail.23

21 We installed a caching proxy22 and modified it to observe all transactions in detail.23

22 We installed a caching proxy and modified it to observe all transactions in detail.

23 We installed a caching proxy and modified it to observe all transactions in detail.

24 We installed a caching proxy and modified it to observe all transactions in detail.

25 We installed a caching proxy and modified it to observe all transactions in detail.

26 We installed a caching proxy and modified it to observe all transactions in detail.

27 We installed a caching proxy and modified it to observe all transactions in detail.

28 We installed a caching proxy and modified it to observe all transactions in detail.

29 We installed a caching proxy and modified it to observe all transactions in detail.
and children that come from the suburbs to visit the New Main (p. 18).

Data collection purposely began after school had started in the local school district, and ended before winter break; this study presents activity that occurred while school was in session. That is, patron visits to the EDC were heaviest after school on weekdays, and all day on weekends, and any use of the EDC for school projects or assignments would be expected to occur during this period (as opposed to the summer).

Measures

Measures fall into two groups. In the first group, researchers coded symbolic measures (judgments about the content). In the second, computer scripts computed behavioral measures (activity of the users) from values saved by the caching proxy software.31

Symbolic Measures. To address the question of how children use public computers and Internet access, the first symbolic measure is a functional assessment of the primary purpose of the site visited. The primary purpose indicated by the site itself was determined to be one of nine mutually exclusive and exhaustive categories. While most sites might allow several kinds of activity, coders were asked to select the “most prominent” or “most fundamental” category. Categories were derived from extensive pretesting and revision, but were also chosen to be roughly comparable to other recent studies of Web use by children (particularly Roberts et al., 1999, Appendix C, p. 31).

1. **Full-page advertising**: Separate pages exclusively containing promotion for a product or service, a way to purchase, provide information, or obtain more information (often called “pop-ups”).32
2. **Play games**: Typically, graphical Java applets are featured, but textual word games, quiz games, and puzzles would also apply. Games may be played alone, against the computer (e.g., the applet), or across the network.
3. **Communicate with individuals**: Real-time chat, instant messaging, asynchronous bulletin-board discussions, web-based greeting cards, invitations, home-page hosting services, and/or e-mail services. They may cater to a general audience or a more specific group.33
4. **Find other sites**: Either for a general audience or more specific group. This includes “portals,” and may provide keyword search, recommendations/reviews of other sites, and/or lists of links to other sites.
5. **Purchase or research purchases**: Product information and/or online purchases. Sites bear the name of a manufacturer or a retail store, or they may aggregate information from these sources.
6. **Learn about famous celebrities and the events where they appear**: Including film or television celebrities (or their characters and shows), famous animated characters, sports stars, and/or musical groups—or about shows, films, concerts, or sporting events that feature these celebrities. This category requires narrative mention of celebrity (e.g., not television schedules) and may emphasize “fan” information.
7. **Learn about a topic or subject**: Information, facts, listings, commentary, or a reference source on a topic that may be narrowly (fishing, employment) or broadly (current events, art, politics) defined—including online magazines.
8. **Unclassifiable.
9. **Unreachable.**34

After coding each site by functional category, coders answered a series of binary (does/does not) questions about site content; the positive conditions are described next.

Targets ethnic community: Contains the words “Asian,” “Latino/a,” “Vietnamese,” “Chinese,” “Black,” or similar words.

Targets children: “Children’s,” “teen’s,” “kid’s,” “for kids,” “for children,” or “for teens,” or the site contains a sub-section labeled this way.

Contains non-English content: A language other than English appears on the page, or another version of the page is offered in a language other than English.35

Contains advertising: Any explicit advertising (sometimes known as “banner ads”) that promotes something other than the site itself.36 The ad need not be contained in a graphic (but most ads found were). In many cases, these ads were marked by the words “ad,” “advertising,” or “sponsor” and were in a demarcated area of the page. Note that this variable measures explicit advertising within a page.37

Makes educational claims: Coders were not asked to judge whether or not content was in fact educational (by any definition), but rather to determine if the site promoted any of its own content as educational (e.g., “education,” “educational,” “reference,” “learn,” “learning”).38

Contains pornography: Has any content that is sexually explicit, sexually arousing, offensive to moral standards, or depicts sexual acts. This definition is a combination of the concepts of pornography, obscenity, and erotica as described by Linz and Malamuth (1990, p. 2). Nudity must occur in an arousing, sexual, or offensive context to be coded (e.g., anatomical diagrams in a biology site would not be included). It is worth
noting that content fitting any definition of pornography (or even nudity) was very rare in the data.39 Note also that pornography was not included as a category in the measure of the site’s primary purpose because these are conceptually distinct.40

\textbf{Behavioral Measures.}

\textit{Duration of page view:} Subtraction of two consecutive time stamps on a page request that originated from a particular computer (time stamp precision was one-tenth of a second).41

\textit{Frequency of viewing a type of site:} Previous research has measured frequency using the number of page requests (generally because it is easy to track). Instead, where discussions of frequency appear in this study an analysis unit was computed by multiplying the number of page views by the duration measure (described earlier) to provide a more valid measure of \textit{time spent} on one type of page vs. another. This measure might seem to be problematic because it confounds the time required to download the page with the time the user spends viewing it, but studying sites that use a caching proxy reduces this problem if the universe of content viewed is relatively homogeneous. In the 16-week sample, the latency of all requests was very low.42 The median latency was 0.05 seconds (mean = 0.22, SD = 0.85); 71.2\% of the content was retrieved over the Internet, and the rest was served from the cache on the library’s network.

\textit{Simultaneous viewing:} An estimate of the number of users in the EDC that are viewing the same site at the same time, in addition to the computer that requests the page. For each page request, a computer script compared the site requested with the last requests made by the other computers in the lab. The script then summed number of computers (beyond the requesting computer) that requested the same site. While it might seem difficult to defend two computers located at opposite sides of the room as being related in a meaningful way, patrons at the EDC were commonly observed walking around to look at other computers for ideas about where to go and what to do. This measure then provides a crude metric for this type of sharing. While there are 12 computers in the lab, this measure ranged from 0 to 8.43

\textit{Intercomputer sharing statistic:} A more defensible measure of sharing that likely did involve interpersonal contact; this measure adjusts simultaneous viewing to account for the distance between the computers viewing the same site. Observations in the EDC indicated that sharing computers while talking was quite common; the configuration of the room allowed each user to easily see their computer and the computer next to them on their “island.” They could also easily see the person using the computer opposite theirs by leaning slightly to the left or right to make eye contact.44 This measure accounts for the distance between the computers by arranging them on a coordinate grid and then computing Eq. (1):

\begin{equation}
\text{Intercomputer sharing statistic} = \sum_{c=1}^{n} \left(\frac{1}{d_c} \right) \quad [1]
\end{equation}

where \(n \) indicates, for each page request, the number of computers simultaneously viewing the same site. Instead of summing the number of computers, the distance \(d \) between each computer \(c \) and the computer making the request was calculated. This measure is then the sum of one over the distance between each computer and the requesting computer. It has no natural scale, and is generally suitable only for comparison, not direct interpretation.45 This measure ranged from 0 to 3.5, and the mean was 0.46(\text{SD = 0.69}).46

\textbf{Reliability.} As several of the measures in this study involve latent content as opposed to manifest content, a second coder analyzed 400 sites randomly selected from the 1000 site content analysis sample.47 Coders used a detailed, step-by-step protocol containing examples for each decision. Cohen’s \(\kappa \) for intercoder reliability was then computed (Cohen, 1960; cited in Riffee et al., 1999) and was significant (\(p < .01 \)) and above .70 for every measure except “makes educational claims” (\(\kappa = .42 \)). Cohen’s \(\kappa \) was not computed for the “contains pornography” measure because content in this category was so infrequent that the portion of the data that was coded by two coders produced zero instances of it.48

\section*{RESULTS AND ANALYSIS}

\subsection*{Overall Concentration}

Although the Internet is often presented as containing a vast amount of information, use of the Internet at the EDC was highly concentrated among just a few sites. While pages from hundreds of Internet domain names were accessed over the 16 weeks, the top 25 domains accounted for 77\% of the traffic. Domain names accounting for over 1\% of total traffic are presented in Table 1.

\subsection*{Time Spent}

As can be seen from Table 2, game-playing sites were the most popular use of Web in the EDC (37\% of time spent). Java-based game sites such as bonus.com, cyberjoueur.com, and javagameplay.com predominated in this category. \textit{Communicating with individuals} was also popular (26\%). Within this category chat sites predominated (such as chat.yahoo.com, and the chat service at alloy.com), but web-based e-mail services such as hotmail.passport.com were also significant, accounting for
over a quarter of interpersonal communication sites (about 6% of the total). Personal home-page hosting sites such as geocities.com (whose specific content would vary widely by page, and thus whose page-by-page content would not be shown by this measure) accounted for the remainder. When visiting a site to find out about a topic or subject (12%), the most likely topic of interest was cheat codes for games (e.g., bestcheats.com), and learning more about the Pokémon trading card game (pokemon.com, poketrad.com). Beyond this, topics were highly varied. While many online magazines targeted toward a child audience exist, and they would likely have been included in this category by coders,49 children at the EDC did not visit these sites (with one exception: teenmag.com was visited once). Full-page “pop-up” advertising was remarkably common (10%). Recall that this category indicates pages that contained only advertising, and does not indicate the prevalence of advertising (“banner” ads) on other kinds of pages. Because pop-up advertisements may appear on the screen with other pages, the time-spent measure is somewhat problematic for this category, as it cannot be determined what the user is actually looking at. As an alternative measure, the content percentages were recomputed using number of page requests, but this produced the same figure: 10% of the total. When searching for other sites (6%), yahoo.com was overwhelmingly the most popular. Yahoo’s alternative directory that is explicitly for children (yahooligans.com) was not popular (0.2%), despite being prominently linked from the library’s start page during the study. The celebrities and events (5%) of interest to children in the EDC were typically the television celebrities (e.g., the World Wrestling Federation at wwf.com), musical groups (e.g., the Back Street Boys at backstreetboys.com), and information about current movies (pokemonthemovie.com). Purchasing or researching purchases (2%) was uncommon. When it did occur, children were usually interested in purchasing game consoles or cartridges (nintendo.com), other toys (etoys.com, hasbro.com), and tennis shoes (footaction.com).

Content Features

Content features of the sites visited by children are summarized in Table 3. Advertising was present on 70% of all sites. Explicit advertising was least common on sites where children could make purchases—because the site is itself advertisement.50 We can then state that 10% of all web pages viewed were full-page advertisements (see Table 2), and of the remaining sites, 70% contained banner advertisements. Although the definition used for “targets children” was very broad (any mention of children would suffice), visits to sites that target children were rare or a minority in several categories of content. Although many sites exist on the Internet that allow chat specifically for children (often requiring parental consent), they were not visited by the children in the EDC, who preferred adult fora. Similarly, the definition of “makes educational claims” was very broad (any education-related word), yet sites explicitly containing educational content were extremely rare. Search sites commonly have a section labeled “education” (or if they target children they often use the word “learning”), and they account for most content that makes educational claims. The viewing of non-English content was generally not very common overall (7%), yet this may reflect a limit on the ease of finding non-English content on the Internet as a whole. Yet

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domains accounting for more than 1% of total page requests from the EDC over 16 weeks (fall 1999)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1. bonus.com</td>
</tr>
<tr>
<td>2. yahoo.com</td>
</tr>
<tr>
<td>3. sfpl.lib.ca.usa</td>
</tr>
<tr>
<td>4. doubleclick.net</td>
</tr>
<tr>
<td>5. cyberjouer.com</td>
</tr>
<tr>
<td>6. msn.com</td>
</tr>
<tr>
<td>7. geocities.com</td>
</tr>
<tr>
<td>8. passport.com</td>
</tr>
<tr>
<td>9. alloy.com</td>
</tr>
<tr>
<td>10. javagameplay.com</td>
</tr>
<tr>
<td>11. pokemom.com</td>
</tr>
<tr>
<td>12. communityconnect.com</td>
</tr>
</tbody>
</table>

Note. n = 203,647.

*The large amount of traffic to this domain is an artifact, as the EDC home page is in this domain.

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary purpose of sites used by children in the EDC</td>
</tr>
<tr>
<td>Primary purpose of site</td>
</tr>
<tr>
<td>Play games</td>
</tr>
<tr>
<td>Communicate with individuals</td>
</tr>
<tr>
<td>Find out about a topic/subject</td>
</tr>
<tr>
<td>Full-page advertising</td>
</tr>
<tr>
<td>Find other sites</td>
</tr>
<tr>
<td>Find out about celebrities/events</td>
</tr>
<tr>
<td>Purchase/research purchases</td>
</tr>
<tr>
<td>Unclassifiable/other</td>
</tr>
<tr>
<td>Unreachable</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Note. Cohen’s $\kappa = .82, p < .01.$

a-e Figures with different superscripts are statistically different, $p < .05.$
a surprisingly large number of sites whose purpose was communication with individuals did feature non-English content (18%). These were typically chat sites. Chat sites were also the most likely category of content to target ethnic communities within the category “communicate with individuals.” While overall content targeting ethnic communities was rare (3%), it is interesting to note that children seemed drawn to ethnic communities for purposes of chat (9%) more so than for any other type of site.

The relationship between the measures in Table 3 was analyzed using chi-square tests. The presence of advertising ($\chi^2[6, n = 813] = 118.0$) and content targeting children ($\chi^2[6, n = 813] = 443.4$) varied significantly by content category. Content targeting an ethnic community, presence of educational claims, and non-English content occurred too infrequently to analyze using a chi-square test.

The measure of pornographic content is not displayed in Table 3 because it accounts for less than one percent of the total. Coders classified eight sites as pornographic. An examination of the sites, however, reveals that one (peep.com) is a misspelling of the 25th most popular site (peeps.com, a music site). A second contains a misleading URL (cartoonheaven.com)—while many sites accessed at the library were about children’s cartoons, this one contains pornographic cartoons. In the remaining six sites, only the first page of the site was accessed. The first page in each case contained nudity, but the bulk of the page was a warning cautioning minors not to enter. In each case, it appears that no further pages were viewed after this point. We conclude that at most 0.6% of the visits were to sites containing pornographic content.

Sharing

Table 4 summarizes the two measures of sharing by purpose of site. The concentration of visits to a few sites is reflected here, as on average when a page was requested one additional user in the EDC was already viewing the same site at the same time. That is, the mean number of other computers viewing was 1: At any given time, on average two computers (the computer requesting it and one other computer) in the EDC would be looking at the same site (median = 0, SD = 1.4). Qualitative information suggests that the children in the EDC are highly influenced by the content viewed by other children, and this finding appears to support that conclusion. The intracomputer sharing statistic, while not directly interpretable, controls the simultaneous viewing measure for distance. This indicates that game playing (.78) was more commonly viewed

Table 4

Mean simultaneous viewing and sharing by primary purpose of site

<table>
<thead>
<tr>
<th>Primary purpose of site</th>
<th>Additional users viewing simultaneously</th>
<th>Intracomputer sharing statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play games</td>
<td>1.7</td>
<td>0.78</td>
</tr>
<tr>
<td>Communicate with individuals</td>
<td>0.6</td>
<td>0.27</td>
</tr>
<tr>
<td>Find out about a topic/subject</td>
<td>0.3</td>
<td>0.14</td>
</tr>
<tr>
<td>Find other sites</td>
<td>0.7</td>
<td>0.20</td>
</tr>
<tr>
<td>Find out about celebrities/events</td>
<td>0.2</td>
<td>0.16</td>
</tr>
<tr>
<td>Purchase/research purchases</td>
<td>0.2</td>
<td>0.13</td>
</tr>
<tr>
<td>Overall</td>
<td>1.0</td>
<td>0.46</td>
</tr>
</tbody>
</table>
on computers that were near each other than were other activities. Communicating with individuals (the second highest at .27) was also observed to be a collaborative activity in the EDC, with friends signing on to a chat channel at the same time from nearby computers, then coordinating chatting activities by speaking to each other while typing. While the sharing variables were interval measures, assumptions for parametric tests were not met and Kruskal–Wallace tests were performed to analyze the relationship between sharing and purpose of site. Simultaneous viewing ($\chi^2[6, n = 813] = 215.0$) and sharing ($\chi^2[6, n = 813] = 196.7$) differed significantly as a function of the primary purpose of the site ($p < .01$).

DISCUSSION

Revisiting Initiative 1: Success for an Active Medium of Play

While justifications for Internet access in inner cities often rest on claims of educational benefit, in the EDC, content that is explicitly educational was often avoided. In the EDC the Internet appears to be used most often as an active medium of play and leisure. This is consistent with qualitative observations at the same site, where children often explained their use of Internet access at the library as “fun” and rarely arrived at the EDC with a specific informational need in mind or a fact that needed to be looked up (Sandvig, 2000, p. 17). Children reported in interviews that one attraction of the EDC is the unrestricted nature of the time spent there: They can choose to look at whatever they want, and they do not tend to choose the explicitly educational.

In this, the EDC is very comparable to children’s use of computers in other contexts. For instance, the distribution of the type of sites visited in the EDC is comparable to other data on children’s web use in the home and at school, gathered at about the same time. In a nationally representative 1999 survey of 3155 children aged 2–18, the most frequently reported type of site visited was “gaming” by a large margin, then “sports,” and “entertainment” (Roberts et al., 1999, Appendix C, p. 31). In addition, 13% of children surveyed reported visiting chat rooms the previous day (p. 52). The EDC is then achieving the public policy goal of access to the Internet for the underprivileged in that the type of content accessed from the EDC is similar to that accessed in the home of those who own computers and Internet connections. If equality is a goal, then this is success by one measure for programs like the E-Rate, but it is a success that does not sit well with many.

Some librarians, volunteers, and parents are unsettled by the use of computers in the EDC for games and chat, and express emotions from disdain to outrage at this “misuse” of the computers. As one volunteer explained while referring to Internet games: “I try to stop them.” This is reflective of the place of the Internet in society and the predominance of metaphors such as the “information infrastructure,” “digital library,” and “electronic marketplace” (cf. Stefič, 1996). Agre calls part of this “the individualistic conception of computing” and points out that it is often not a valid one, yet this debate rests on it (Agre, 1997, p. 243). By and large, the children at the EDC show little interest in “information” as it is often conceived: They neither want to look things up nor transact purchases. Rather, they want to use the network to play and to communicate with others. Although this conflicts with some visions of the network, this is what children like to do. Despite the outrage of a few parents and the seeming shock of other studies of libraries, it should come as no surprise to us that children play. A more useful avenue to pursue would be to consider what might be achieved with access policies given that children play.

An insight of computer game manufacturers has been that the games most likely to be acceptable to parents (often the purchasers) and to children (the users) are those that take a playful approach to learning—combining arcade-style action with mathematics, for instance. For the Internet to be realized as a tool for education that is voluntarily used by children, this lesson remains to be transferred to Internet applications.

Sharing as Unanticipated Benefit

As evidenced by the sharing measures, children often share the computers at the center. Qualitative data indicate that they are always aware of other users and often watch them. In doing so, they learn about computers from strangers, yet this benefit is not part of the policy debate about public access centers. Observations of children in the EDC confirm that children often learn how to use the computer by watching others, or by asking them questions (Sandvig, 2000). It is then a key insight that it is games and chat that are more likely to be shared.

In the early days of the telephone, users would often first encounter the device in a public place such as at a demonstration at a church, or later installed in a business such as a drug store for the public’s use (Fischer, 1992). With the telephone, learning about a new communication technology occurred in public places; knowledge about computers can be similarly conceptualized. If a policy goal is the building of computer skills in a particular community, a public access center is a nexus around which the community property of knowledge about computers can be built through a mixing of the more and less skilled (Agre, 1997, pp. 244–245). Universal access policies that address the “digital divide,” on the other hand, rely on public places as
the primary point of access for the disadvantaged because subsidy to every home was thought to be too expensive for advanced information technology.

Revisiting Initiative 2: Will the Real Adults Please Stand Up

Children like to chat and exchange e-mail with friends. Many very young children observed in the EDC have (one or more) web-based e-mail accounts. Over a quarter of all time spent at the EDC was spent at a site that allowed communicating with other individuals (Table 2), yet only 1% of these sites were explicitly for children (Table 3). Protecting children from information disclosure via chat and e-mail is the focus of the recently enacted privacy law COPA, discussed earlier. While the data for this study were collected before recent restrictions went into effect, it is still clear by analyzing the law and the sites coded in this study that only the most obviously exploitative sites collecting personal information explicitly from very young children will be affected. While the policy initiative was based on research that conceived the target of policy to be sites directed to children, children do not prefer to visit these sites for e-mail and chat.

For instance, one of the most frequently visited places to chat found in this sample was alloy.com (a fashionable teen culture site of the time). Alloy.com does collect personal information, but the privacy policy points out that “Alloy.com is not directed to children under the age of 13” and “prohibits registration” by them, yet most users of the EDC were under 13, and alloy.com accounted for 1.4% of all page requests.

The privacy remedy advanced by regulation so far is chiefly parental consent. At the time of data collection for this study, many children’s sites on the Web required parental consent before participation. These sites do not appear in our sample, however, and we suspect that children in the EDC avoided them. Nine of the 10 top chat sites in this sample did post privacy policies, but from an examination of the data it does not appear that they were read. (Indeed, from a regulatory perspective privacy policies are certainly not meant to be read; they serve the function of creating liability for content providers and transparency for watchdog groups.) Over the 16 weeks, 9 requests for privacy policies of any kind were found in the 203,647 pages requested. Finally, observations of children in the EDC indicate that lying about name, age, and other personal information occurs in during the majority of data collection from young children in public places (Sandvig, 2000, pp. 14–15). In this manner, the law does not apply to most of the sites visited by children, and even the consent requirements that will exist under the law are easily circumvented. It is not known from these data if the problem of harmful information disclosure by minors exists, but if it does exist, the privacy initiative will not address it because the policy is not written to apply to actual use by children.

Revisiting Initiative 3: The Absence of Indecency

The viewing of pornographic material in the EDC was rare to nonexistent. This is substantiated by interviews conducted in the EDC: While all of the library volunteers interviewed had heard stories about pornographic material being viewed in the EDC, only one volunteer had personal experience, and this was on one occasion. Interestingly, it appears that the public nature of the EDC discourages such viewing, as computer screens are visible to passers-by. Several volunteers recounted the story that pornography was most likely to be viewed on the screen that was the most hidden from other patrons because of a pillar.

For the six instances found where only the first (warning) page of a pornographic site was visited, it is not that the warning notices are effective, but rather that the purpose of the visits was transgression. The visits were not attempts to actually view pornographic images but to demonstrate courage in violating a well-known social norm. This low (less than 1%) level of pornographic viewing in public libraries is comparable to other reports.

Here it appears that the overwhelming U.S. policy focus on restricting access to indecent material is erroneous. While the youngest children are portrayed in policy debates as the most in need of protection from pornography, they are also likely to be the least interested in it. While policy debate has focused on preventing access to indecent material from public places via filtering requirements, interviews indicate that the more public an area is, the less likely it is that indecent material will be accessed.

CONCLUSION

In the end, Internet policies to date in the three areas examined seem to have notable lacks. Content regulation, be it concerning decency or privacy, appears unlikely to resolve the problems it claims to address. Indeed, content regulation initiatives to date do not seem clearly tied to actual empirically observable problems. Access policy is achieving some desired results but also producing unexpected ones. On the whole, all of the policies considered here appear to be somewhat disconnected from the material conditions that they attempt to regulate. To express surprise at this result, as other studies in this area have done, is to employ a straw man. The explanation for this disconnection lies in an understanding of policy as a symbolic and political activity (Schneider & Ingram, 1993).

Concerns about content place government in an ideological dilemma between responsiveness to concerns of the public on one hand and a commitment to a free enterprise system of control on the other. Much like other political
debates about communication (Rowland, 1983, p. 297), the underlying pressure of a minimalist regulatory ideal and the actions of interest groups committed to the protection of corporate rights produce policies that are, on the whole, ineffectual. No politician is afraid of alienating the pedophile vote and the pro-pornography lobby, leaving a policy debate dominated by politically safe topics—and even privacy is politically safe compared to, say, restrictions on advertising. Internet content is then debated as though the chief dangers presented by the network were a shadow land of nasty, lurking strangers (or a child’s own dirty urges). Concerns about the digital divide are drawn from a policy vision containing unrealistic conceptions of children busily striving to become better educated workers suited for skilled jobs—all regardless of any grounding in fact—because such is a politically expedient effort that allows politicians to engage in symbolically rewarding efforts to (1) help children, (2) help the poor, and (3) appear familiar with high technology.

The broader implications from here are contradictory. In one sense, these results call for an improved effort to ground policy initiatives in a realistic understanding of lived existence, but at the same time they imply that the chances of this happening are low. Internet content and access policymaking for children is so far primarily responsive to entrenched interests, and debates center on topics that are largely free of pressure from them. The practical implications from here, however, are striking. Sharing computers between strangers is an avenue of interaction possible with public access centers in libraries that is impossible with other policy mechanisms, such as subsidy to the home. While play and chat are not socially legitimate needs that are seen to require public funding, it is precisely these activities that are the most likely to promote sharing—a promising avenue for learning about technology, and a promising mode of learning about content that is, as yet, underutilized. That is, the public access center creates a space for prosocial mixing between children with different levels of expertise, which builds the “community property” (Agre, 1997) of computing knowledge. This should be an important policy instrument, not an accident or a side effect of the thought that subsidy to the home is too expensive. In final analysis, the promise of digital divide policies for children is the promise that eventually we will not shun playful behavior, but accept it as human. This would be to harness play for instrumental purposes where it is appropriate to do so, without stigmatizing play as wasteful where it is not.

NOTES

1. The terminology public, universal, service and access is very confused in this debate: Public Internet access sites are supported by the public via universal service policies (also called universal access policies) in the U.S., and public service policies in European countries provide universal access. This article refers to the policy in question as “universal access” and the centers in question as providing “public access,” although other literature may refer to such differently.

2. The phrase “traditional” is somewhat problematic here, as this definition has gradually evolved from subsidy actions of the FCC, and before 1996 had not been codified in law. Some analysts argue that the definition here called “traditional” is invalid, as it is not supported by any initial legislative intent (Mueller, 1997). For a clear discussion of recent policy, see Aufderheide (1999).

4. See: http://www.digitaldividenetwork.org/content/webresources.

5. For an overview of competing policy visions for the Internet, see Stefk (1996).

6. Not to be confused with the Child Online Protection Act (COPA), discussed later as initiative three.

7. For example, the FTC initiative was a product of the Division of Advertising Practices, Bureau of Consumer Protection.

8. Unless data collection is involved.

9. Sections of the CDA enacted within §223 of the Telecommunications Act of 1996, were struck down by the U.S. Supreme Court as unconstitutional in 1997 (Aufderheide, 1999, pp. 183–185).

10. Not to be confused with the Children’s Online Privacy Protection Act (COPPDA) discussed previously as initiative one.

11. Except that the application of CIPA and NCIPA to schools has not been enjoined.

12. For instance, the Time cover pictured a very young child (Elmer-DeWitt, 1995).

13. For an overview of the Electronic Library Project, under which the EDC program was partially developed, see Murase et al. (1999).

14. EDC computers at the main library have Pentium 166 MHz processors, and are running Windows 95. Each computer is equipped with a Microsoft EasyBall mouse, a keyboard, headphones, and a 15-inch monitor. Computers are connected via an Ethernet LAN to a Windows NT Server that provides access to CD-ROM towers containing children’s software. At the time of the study, these were high-performance desktop machines.

15. The main library is connected to the Internet via a T-1 line.

16. The EDC program predates the implementation of subsidies to libraries for universal access under the 1996 Telecommunications Act, but it is exactly the type of program intended to receive funding under the Act, and indeed the library has applied for subsidies and expects to receive them (Sybil Boutilier, personal communication, 1998).

17. Of course, those living near the library are not the only patrons. As the flagship of a large library system, the New Main draws patrons from throughout the city.

18. When ordering chairs for the center, library planners toured another nearby computer center at the San Francisco Exploratorium (a hands-on museum of science and art) and noticed that groups of children tended to cluster around the few available computers. Anticipating this demand, they placed three chairs in front of every two computers at the EDC (Boutilier, personal communication, 1998).
19. Requests using the HTTP, FTP, and Gopher protocol were monitored. A telnet application was also provided in the EDC, but observation indicated that use of telnet was comparatively rare.

20. The caching proxy did not collect data because of network problems on two occasions during this period, once for 1 hour (December 7) and once for 3 hours (November 9).

21. Thanks to Jason Coffer, Steve McMahon, and François Bar for proposing and refining this method.

22. The Squid Internet Object Cache provided by the National Laboratory for Applied Network Research. The researchers would like to thank the NLANR for providing this tool; if an open-source object cache was not available, this research would not have been possible (see http://squid.nlanr.net).

23. The source code of v.1.1 was modified slightly to cause the logging of all headers for each transaction. Thanks to Guillaume Vambenepe for assistance in this effort.

24. Web pages were identified by selecting for the MIME type "text/html".

25. That is, requests containing an error code from the caching proxy: generally mistyped or unreachable hosts.

26. This is analogous to what are often termed "page views."

27. For sampling units vs. coding units, see Riffe et al. (1999, ch. 4).

28. Initially, the stem also included the first directory in the path after the domain name in cases where this resulted in a page that could be retrieved. By this scheme, "http://dir.yahoo.com/Education" would be distinct from "http://dir.yahoo.com/Reference." However, in the majority of cases pretested, this did not result in a different functional coding, so this practice was dropped for the simpler (but slightly cruder) hostname and domain.

29. The extent to which this consists of repeat visitors is not known.

30. On public school holidays during this period (Labor Day, Columbus Day, Veteran’s Day, and Thanksgiving Day), the EDC was also closed.

31. As an aside, this form of traffic analysis also provides ready access to extensive structural measures (features of the content: page size, number of images, etc.), but as these are not of theoretical interest they are not included here.

32. Once a site was coded as full-page advertising, no further coding of the content was done for that site, as the content viewed by the original users was often not available (that is, it can not be determined what ad was viewed by what user).

33. Note that many sites offer some of these features (e.g., free web-based e-mail), but only sites whose primary purpose is one of these services were coded in this category.

34. Unreachable during coding—as previously discussed, requests unreachable by participants were initially discarded.

35. Note that many of the pages coded “does contain” for this measure contained some non-English content and some English content together—with this method it is impossible to determine which language was read by the user.

36. For example, a publisher’s site may have information about books that they produce, but this would not be categorized as “does contain advertising” because it is not advertising for a topic other than books.

37. This measure is distinct from entire pages (“pop-ups”) whose primary purpose is advertising, which is in the functional category described previously.

38. This is in no way a learning measure; it is a measure of sites that self-label as education.

39. We opted for a broader definition than found in other literature because of this.

40. For example, there could be a site that allows you to find other sites (primary purpose category 4) that are pornographic (“does contain pornography”).

41. Page views of duration longer than 300 seconds were excluded as outliers—researchers watching children observed no page views of this length use these computers.

42. The time elapsed from a request from an EDC computer to the completion of the transfer of the content, measured with a precision of one thousandth of a second. The caching proxy measures this as a performance metric.

43. Note that this measure is subject to influence by the frequency of the type of site requested; more popular sites would tend to appear simultaneously more often regardless of any sharing behavior by users. It is presented primarily as descriptive of the atmosphere of the lab as a whole.

44. The observation of sharing in these two configurations was quite common, although only those children on the same side of the island could see each others’ screens, and only those children on the opposite side of the island could easily see each others’ faces. Children would often attempt to get their friends seated either next to them or directly across from them, but if this was not possible, they would also speak to strangers.

45. As an aside, due to the layout of the lab, the computers of interest directly next to the requesting computer and across from the requesting computer are one foot apart, resulting in a sharing statistic of over 1 if either of these two computers of interest were viewing the same page.

46. It is worth noting that intracomputer sharing (several people sharing the same computer) was extremely common as well but cannot be measured using this study design.

47. Thanks to Emily Murase for her assistance in this effort.

48. Although both coders agreed that zero instances appeared.

49. The site alloy.com, mentioned earlier, is an online teen magazine site. Children in the EDC visited only the chat area, however, so visits were categorized as “communicate with individuals.”

50. Note that this measure is distinct from full-page “pop-up” advertising, described earlier.

51. Sometimes called “analysis of variance by ranks.”

52. Each child could indicate more than one answer.

53. One clause of the act provides that operators with “actual knowledge” of visits by children are also obligated, but it is seems that as long as operators do not monitor their own sites, this will exempt them from any obligation (1999).

55. Presence/absence of privacy policy was not initially coded in the content analysis; a May visit to the top 10 chat sites in the sample produced this estimate.

56. This is a rough estimate based on the observation that Web addresses for privacy policy often contain the word “privacy.” The full sample was screened for URLs containing this word, and nine of the resulting pages were privacy policies of some sort (that is, they were titled “privacy policy”).

57. Surprisingly, replication for this finding comes from a bombastic profiltering organization. In an examination of the output of filtering...
software installed at three public libraries, a Family Research Council booklet emphasizes raw numbers, anecdotes, and graphic news reports. Yet, dividing the number of estimated pornographic sites by the number of total requests yields a percentage ranging from 0.002% to 0.53% for each library examined (Burt, 2000, pp. 1, 39–45). The booklet concedes, “0.53 percent of all web accesses may not sound significant, this translates into thousands of separate incidents” (p. 44).

REFERENCES

