Perinatal Causes of Cerebral Palsy

Terry S. Johnson, APN, NNP-BC, MN
Neonatal Nurse Practitioner
Founder, Lode Star Enterprises, Inc.

Objectives

• Discuss the historical perspectives regarding the etiology of cerebral palsy.
• Discuss the epidemiology and clinical presentation of cerebral palsy.
• Describe the potential role of birth weight and premature birth on the development of cerebral palsy.
• Identify the risk multiple gestation pregnancies on the incidence of cerebral palsy.
• Discuss the role of placental pathology and cerebral palsy.
• Identify the mechanism of brain damage caused by hyperbilirubinemia and kernicterus.

CP: Definitions

• Cerebral Palsy
 – Refers to a group of non-progressive disorders of movement and posture which cause activity limitations
 – Motor disturbances often accompanied by
 • Sensorineural deficits and functional disability
 – Disturbances of sensation
 – Cognition, communication, perception limitations
 – Behavioral issues
 – Seizure disorder

• International Classification of Functioning
 – Describes child’s health/well-being in terms of
 • Body structures – organs & limbs
 • Body functions – physiologic functioning
 • Activities – learning, communicating, walking
 • Participation – involvement in family, community life
 • Environmental facilitators – day care, education
 • Environmental barriers – negative attitudes, discrimination, lack of comprehensive insurance

• Cerebral Palsy has classically been separated by findings of spasticity
 – Spastic diplegia
 • Primarily affecting the lower limbs
 – Spastic hemiplegia
 • Affecting one side of the body
 – Spastic quadriplegia
 • Affecting all limbs
 – Choreaathetoid
 • Affecting extrapyramidal pathways of basal ganglia

• Cerebral Palsy
 – Prevalence
 • ~ 2.5 per 1,000 live births
 • Affects 1 in 5 school-aged children
 • Stable over past 40 years
 • Remarkably similar in developed countries
 • Modest increase in noted in VLBW infants
 • Approximately half of all cases develop after full-term births (36 wks) following an apparent normal gestation

• Term and Preterm Presentation
 – Term Presentation
 • ~ 50% of CP cases occur in infants born after 37 weeks of gestation; the other 50% occur in the approximately 10% of babies born preterm
 – Preterm Presentation
 • The relative risk of CP increases steadily with decreasing gestational age at birth
 • At the lowest gestational ages at which survival now occurs, the risk of CP is 5% to 15% or at least 50 times the risk of infants born at term

Paneth, N, et al. NeoReviews, 2005;vol.6, no.3, e133

• Neuro-Imaging of Children with CP
 – Nearly universal finding white matter loss in the periventricular regions of the brain
 – 10% and 15% of children who have CP have a recognizable malformation of the brain, such as schizencephaly, that must have evolved prior to the third trimester
 – Basal ganglia and thalamic damage is not rare
 – 10% to 20% of children have no recognizable abnormality on MRI or CT

Paneth, N, et al. NeoReviews, 2005;vol.6, no.3, e133

• William John Little (1810-1894)
 – Developed term “apoplexy” or “congenital paralysis”
 – Suggested association between birth injury, perinatal asphyxia and CP
 – Described congenital hemiplegia as a consequence of preterm birth
 – Hypothesized inadequate supply of “oxygen and materials for nutrition” and “insufficient removal of carbon and other residues”

• William Osler (1849-1919)
 – Agreed with Little that injury “usually dates from birth”
 – Introduced the phrase “cerebral palsy” to describe the “non-progressive neuromuscular disease in children”
 – Favored hypothesis of trauma, but stressed “it was nearly impossible to be sure about the causes of CP”

• Sigmund Freud (1856-1939)
 – Agreed with Little on role of asphyxia and birth trauma
 – Provided a comprehensive classification system for CP
 – Looked for causes of CP beyond the immediate intrapartum period
 – Also suggested it may be “congenital” from “deeper effects influencing the development of the fetus”
Timing and Possible Etiologies of Insult
- Antepartum period 70-80% of cases
 - Chromosomal abnormalities, placental pathology, multiple gestation, prematurity, LBW, perinatal infection
- Intrapartum period 20% of cases
 - Perinatal trauma, multiple gestation, intrapartum asphyxia, prematurity, LBW, perinatal infection
- Postnatal 10% or less of cases
 - Intrapartum asphyxia, hyperbilirubinemia, neurometabolic diseases, prematurity, LBW, perinatal infection

Chromosomal Anomalies
- ~10% of CP from chromosomal anomalies
- > 30,000 genes are expressed in the brain
- Major duplications or deficiencies are lethal
 - Trisomy 16 – most common trisomy, but lethal
 - Trisomy 13 – only 2.8% are live born infants
 - Trisomy 18 – only 5.4% are live born infants
 - Trisomy 21 – only 23.8% are live born infants
- Familial clustering is rare in CP
 - Suggesting that genes by themselves do not play a large role in CP

Placental Function
- "Sole Supply Line" and "Main Barrier"
 - Adaptive responses identified in the placenta
 - Attempts to ameliorate adverse environment
 - Increased NRBC's, chorioangiosis
 - Hyperinsulinemia → placental overgrowth
 - Lesions affecting the placenta/fetus
 - Uteroplacental vascularature
 - Fetoplacental vascularature
 - Inflammation

Placental Lesions

<table>
<thead>
<tr>
<th>Sentinel Lesions</th>
<th>Decreased Placental Reserve</th>
<th>Thrombo-inflammatory Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uteroplacental separation</td>
<td>Chronic patterns of limiting compensation</td>
<td>Fetal thrombotic vasculopathy</td>
</tr>
<tr>
<td>Fetal hemorrhage</td>
<td>Chronic maternal under-perfusion</td>
<td>Chronic villitis</td>
</tr>
<tr>
<td>Umbilical cord occlusion</td>
<td>Chronic abortion</td>
<td>Meconium-associated vascular necrosis</td>
</tr>
<tr>
<td>Amniotic fluid embolism</td>
<td></td>
<td>Choriamnionitis with vasculitis</td>
</tr>
</tbody>
</table>

Multiple Gestation
- Recognized by Freud as a risk factor
- Greater proportion multiples - preterm or LBW
- Infants of BW < 1500 grams comprise
 - 0.9% of singletons
 - 9.4% of twins
 - 32.2% of triplets
 - 73.3% of quadruplets
- Shift to left in BW → ↑ prevalence of CP
 - < 2500 gm no significant increase in risk
 - ≥ 2500 gm significant 3-4 fold increase risk

Multiple Gestation
- Factors peculiar to process of multiple gestation pregnancies
 - Surviving twin phenomena
 - Associated with severe morbidity in survivor
 - Risk of injury 1:10 in multiples vs. 1:400 of all births
 - Risk of CP even greater when both twins are live births and one dies in infancy
 - Injuries include
 - Multicystic encephalopathy or porencephaly
 - Ventriculomegaly, cerebral infarction
 - Monochorionicity is key risk feature
• Monochorionicity
 – Common component when fetal demise in one twin and CP in surviving twin

• Theories
 – Embolic
 • Thromboplastin-like substances
 – Ischemic
 • Shunting into low-resistance fetus
 – Hemodynamic instability
 • Bidirectional shunting → ischemic damage → affects either/both fetuses

Pharoah, POD Clinics in Perinatology 2006; vol 33; no 2; 301-313.

• Intrapartum Asphyxia
 – Occurs during first & second stages of labor
 – 2º to interruption of placental blood flow
 • Impaired gas exchange → hypoxemia → hypercapnia
 • Often identified by fetal acidosis (? pH < 7.0)
 • Redistribution of fetal cardiac output
 • Loss of cerebral vascular autoregulation
 • Progressive ↓ in CO with ↓ CBF

Pharoah, POD Clinics in Perinatology 2006; vol 33; no 2; 301-313.

• "Sentinel Event" Inclusion Criteria (AAP/ACOG)
 – Intrapartum Asphyxia (requires a minimum of the following)
 • Evidence of antepartum or intrapartum insult
 – Fetal HR abnormalities, thick meconium, ↓ BPP
 – Depression at birth → need for resuscitation
 – Prolonged assisted ventilation (> 10 minutes)
 – Low APGAR score (< 5) at 10 minutes
 – Cord pH ≤ 7.00; Base deficit ≥ 16
 • Evidence of neonatal encephalopathy
 – Alterations in tone, consciousness, reflexes
 – Usually with multisystem involvement
 – May or may not result in permanent neurologic impairment

Perlman, JM Clinics in Perinatology 2006; vol 33; no 2; 335-353.

• Intrapartum Asphyxia
 – Clinical Measures of Asphyxia
 • FHR Monitoring
 – 3 decade experience has demonstrated minimal impact on subsequent neurologic outcome
 – Incidence of seizures may be reduced
 – Long term neurologic & cognitive outcome is unaffected
 • MSAF
 – Affects 10-20% of infants
 – ? Of relationship to fetal stress
 – No association with regard to asphyxial process, duration of event or outcome

Pharoah, POD Clinics in Perinatology 2006; vol 33; no 2; 301-313.

• Intrapartum Asphyxia
 – Clinical Measures of Asphyxia
 • CPR
 – Need for CPR significantly ↑’s risk for abnormal outcome
 – Implies failure of fetal adaptive mechanisms
 • Apgar Score
 – Inappropriate to use to define birth asphyxia in isolation
 – Persistent low Apgar score at 5, 10, 20 minutes despite resuscitation is associated with ↑’ing mortality & morbidity
 – Low 5 minute Apgar score (< 5) + fetal acidemia (pH < 7.0) + need for intubation or CPR indicative of significant intrapartum insult
 – Such infants are 340-fold more likely to progress to moderate to severe encephalopathy

Perlman, JM Clinics in Perinatology 2006; vol 33; no 2; 335-353.

• Perinatal Trauma
 – Injuries sustained by infant during labor & delivery primarily as a result of mechanical forces
 – Actual incidence difficult to ascertain
 – Incidence sharply ↑’s with instrumented delivery
 – Role of ↑ C/S delivery rate (31.2%)”
 – Significant reduction in traumatic CNS injuries over past 20 years

Perlman, JM Clinics in Perinatology 2006; vol 33; no 2; 335-353.
• Perinatal Intracranial Injuries
 – Subdural hemorrhage
 • SVD 1.0-2.9 per 10,000 births
 • Vacuum or forceps 7 to 9.8 per 10,000
 • † Incidence in instrumented deliveries, older mothers, dysfunctional labor
 – Epidural hemorrhage
 • Rare in newborn; "trauma-related" phenomena
 – Intraparenchymal hemorrhage
 • Rarely an isolated phenomenon
 • Associated with depressed skull fractures, subarachnoid hemorrhages, epidural hematomas

• Perinatal Extracranial Injuries
 – Subarachnoid hemorrhage
 • Associated with instrumented deliveries, skull fractures
 – Skull fractures
 • Linear or depressed; usually on parietal bone
 • Most commonly an isolated phenomena
 – Subgaleal hemorrhage
 • Hemorrhage of aponeurotic layer
 • Incidence 4-60 per 10,000
 • Association with vacuum extraction, dragging shear

• Hyperbilirubinemia and Kernicterus
 – Excellent correlation between etiology, pathogenesis, and clinical symptoms
 – Basal ganglia involvement
 – Central auditory pathology

• Bilirubin
 – Result of normal physiologic processes
 – Clearance is a placental function in utero
 – Immaturity of liver & intestinal processes for metabolism, conjugation, excretion
 • ? Role as an anti-oxidant
 • ? Role in oxygen-rich transitional physiology
 – Neurotoxic at a cellular level

• The Pilot Kernicterus Registry
 • 80 US babies enrolled from 1984-1998
 – Factors
 • All discharged < 72 hrs after birth
 • 60% were term gestation
 • 65% breastfeeding
 • 67% were males
 • TB levels at ranged 26-50 mg/dl
 – Sentinel alerts issued
 – Policy statements
 – Practice guidelines

• Prediction & Prevention of “Dangerous” Hyperbilirubinemia
 – Predictors for TSB >25 mg/dl (73/51,387; 0.14%)
 • Early jaundice …………………Odds Ratio = 7.3
 • Family history: …………………Odds Ratio = 6.0
 • Exclusive breast feeding ………Odds Ratio = 5.7
 • Bruising …………………Odds Ratio = 4.0
 • Asian race ……………………Odds Ratio = 3.8
 • Cephalhematoma …………Odds Ratio = 3.3
 • Maternal age …………………Odds Ratio = 3.1
 • Lower gestation …………Odds Ratio = 0.6/wk
 – Conclusions: Prevention may require a closer follow-up than presently recommended by AAP

Kernicterus as “Never Event”
Acute Bilirubin Encephalopathy

- Phase 1
- Lethargy
- Poor feeding
- Hyperactive movements
- High-pitched cry
- Possible seizures

Chronic Bilirubin Encephalopathy

- Phase 2
- Seizures
- Respiratory failure

Kernicterus

- Lethargy
- Irritability
- Inconsolability
- Occurs after 1st year
- Poor feeding
- Apnea, fever
- No feeding
- High frequency hearing loss

Phase 3

- Hypotonia
- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Possible sequelae

- Hypotonia
- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Possible sequelae

- Poor feeding
- Apnea, fever
- No feeding
- High frequency hearing loss

Hypotonia

- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Retrocolis, opisthotonus

Coma

Dental dysplasia

Possible seizures

- Hypotonia
- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Possible sequelae

- Poor feeding
- Apnea, fever
- No feeding
- High frequency hearing loss

Hypotonia

- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Retrocolis, opisthotonus

Coma

Dental dysplasia

Possible seizures

- Hypotonia
- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Possible sequelae

- Poor feeding
- Apnea, fever
- No feeding
- High frequency hearing loss

Hypotonia

- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Retrocolis, opisthotonus

Coma

Dental dysplasia

Possible seizures

- Hypotonia
- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Possible sequelae

- Poor feeding
- Apnea, fever
- No feeding
- High frequency hearing loss

Hypotonia

- Hypertonia
- Bicycling movements
- Persistent upward or horizontal gaze
- High-pitched cry
- Oculogyric crisis

Retrocolis, opisthotonus

Coma

Dental dysplasia

Possible seizures

We need a bigger boat!

Roy Schieder, JAWS

Acute Bilirubin Encephalopathy

- Functional immaturity of the late preterm infant may obscure the clinical symptoms of acute bilirubin encephalopathy
- These infants are at greater risk for Kernicterus and BIND (Bilirubin Induced Neuronal Dysfunction)

Prematurity + LBW

- Inflammation
- Cell/Tissue Injury
- Intraventricular Hemorrhage
- Periventricular Leukomalacia
- Chronic Lung Disease/BPD
- Retinopathy of Prematurity
- Necrotizing Enterocolitis

- Prematurity and LBW
 - Schmidt, et al
 - Examined 3 neonatal complications (BPD, parenchymal brain injury, severe ROP) n 910 infants with BW < 1,000g
 - In survivors at 18 months 13% had CP; 26% had developmental disability
 - CP rates ↑ to 36% for those with IVH grade 3 or 4, ventriculomegaly, or cystic PVL
 - 24% of those with severe ROP (Stage 4 or 5) had CP
 - 17% with BPD (supplemental O2 at 36 wks) had CP
 - If free of these morbidities rate of death or developmental impairment at 18 months was 18%
 - If all three impairments present the rate of death or neurodevelopmental disability was 86%

- Prematurity and LBW
 - Stoll, et al
 - Role of postnatal infection on ND impairments
 - 6,093 survivors with BW between 401 – 1,000g
 - Born in US between 1993 -2001
 - Infants who did not have infection (n=2161)
 - Infants who had clinical infection + IV antibiotics (n=1538)
 - Infants who had sepsis (n=1922)
 - Infants who had NEC (n=279)
 - Infants who had meningitis (n=193)
 - 2/3rds of survivors had post natal infections
 - 1 in 5 of survivors who had sepsis, NEC, or meningitis had CP and high rate of cognitive disability

- Prematurity and LBW
 - Hintz, et al
 - Impact of NEC on ELBW survivors compared to survivors who did not have NEC
 - 1 in 4 who had surgically managed NEC had CP
 - > than 2 in 5 had developmental disability
 - Rates of CP were 12% in children without NEC
 - Impact of NEC is more than gastroenterological and has sustained contributions to neuromotor and cognitive disability
• **Intrauterine Growth**
 - Defined as increase over time in fetal growth
 - Growth velocity (mm/wk) vs. relative size (wt/GA)
 - “Optimum BW” ~ 1 SD heavier than average
 - At all gestations infants either smaller or heavier than this have progressively ↓ risk of CP
 - Rate for males is statistically greater than for females
 - ? Risk factor → abnormal growth → CP
 - ? Abnormal growth → risk factor → CP
 - Is CP a consequence or a cause of growth deviation or an associated phenomena?

• **Prematurity + LBW + Infection/Inflammation**
 - Maternal Infection and Risk of Preterm Birth
 - ~25% of all preterm births associated with maternal infections
 - Risk of infection increases as gestation decreases
 - 23-26 weeks gestation as many as ~45% of women in labor have positive amniotic fluid cultures

• **Perinatal Infections**
 - Maternal infection and risk of preterm birth
 - ~25% of all preterm births associated with maternal infections
 - Risk of infection increases as gestation decreases
 - 23-26 weeks gestation as many as ~45% of women in labor have positive amniotic fluid cultures

• **Transplacental Perinatal Viral Infections**
 - May account for 5-10% of all cases of CP
 - **Toxoplasmosis**
 - 1:1,000 live births; 3,000 infants per year
 - Risk of seizures, MR and motor abnormalities ~ 75%
 - Antibiotic treatment reduces risk to ~ 30%
 - **CMV**
 - 1:1000 live births;
 - 90% of affected infants are asymptomatic at birth
 - 80-90% of symptomatic infants → neurologic injury
 - Chorioretinitis, microcephaly, sensorineural hearing loss
 - Most common viral infection associated with CP

 - **Herpes Simplex**
 - 1:5,000 – 26,000 live births
 - 400 to 1000 cases annually in US
 - Three distinct syndromes
 - Localized (skin, eye, mouth)
 - With treatment ND morbidity is very rare
 - CNS involvement
 - Disseminated disease
 - Microcephaly, porencephalic cysts, blindness, CP
 - ~ 50% of survivors demonstrate neurodevelopmental abnormalities
• Bacterial Vaginosis
 – Altered normal vaginal flora
 – BV seen in 20% of all pregnancies
 – Carries a 2-6 fold increase risk of preterm birth
 – Strong association with chorioamnionitis
 • ~ Responsible for 80,000 preterm births annually
 • ~4,000 infants → permanent neurologic disability

• Nongenital Tract Infections
 – UTI
 – Maternal periodontal disease (~18%)

• Neonatal Infections
 – Pneumonia
 • PPHN with severe hypoxemia
 • Arterial spasm, ↑ capillary permeability, coagulopathy
 – Meningitis
 • Inflammatory vasculitis → vessel obstruction
 • Bacteria invade brain → necrotizing lesions
 • Liquefaction, cavitation, progressive hydrocephalus
 • CP in 20-50% of survivors of meningitis
 – SIRS & MODS
 • Modulated by pro-inflammatory cytokines

• Intra-Amniotic Infections (IAI’s)
 – “Clinical Chorioamnionitis”
 • Occur in ~50% of preterm births < 30 wks EGA
 • Signs & symptoms include
 – Maternal fever, leukocytosis, fetal tachycardia, uterine tenderness, foul-smelling amniotic fluid
 – Histologic chorio evidenced in only 62% of cases
 • Strong association between IAI’s, preterm rupture of membranes, preterm birth
 • Mechanism
 – IAI’s initiate immune response → cytokines, prostaglandins
 – Cause cervical softening, ROM, contractions

• Prematurity + LBW + Infection/Inflammation

• “Dual Role of Inflammation”
 – Interplay between proinflammatory challenge
 – Indigeneous protective responses
 • Endotoxin release
 • Stimulates TLR
 • Signal transduction pathways
 • Induced gene expression
 • Release of inflammatory cytokines

• “Histologic Chorioamnionitis”
 – May or may not be associated with infection
 – ROM not a prerequisite
 – Few women with H. chorio → clinical findings
 • ? Suboptimal culture techniques
 • ? Fastidious organism – mycoplasma, ureaplasma
 • ? Intrapartum antibiotic therapy
 – Associated with preterm birth & risk of
 • IVH
 • Periventricular echodensities
 • NEC
 • CP

Tridakse & Rugolo. Neonrvews 2007;8;e522-e632

Mechanisms of Cellular Injury

- Cytokines
 - Diverse group of soluble proteins
 - Produced by multiple cells
 - Function as intracellular messengers
 - Operate by pleiotropy & redundancy
 - Both pro- and anti-inflammatory agents
 - Interleukins
 - Interferons
 - Tumor Necrosis Factor

IAI and Cytokine-Induced Damage

- Cytokines exert a direct toxic effect
 - ↑ Production of nitric oxide synthase, free radicals
 - Cytokines interrupt oligodendrocyte development
 - ↓ Myelination, white matter injury, PVL, CP
 - 4-6 fold increase risk for white matter damage
 - 88% of brain tissue in infants with PVL
 - 6 fold increase in CP in preterm infants with FIRS

IAI and Birth Asphyxia

- IAI most common antecedent to
 - Birth depression, low APGAR score, HIE
- Mechanisms
 - Placental dysfunction due to villous edema
 - Placental abruption
 - Increased oxygen consumption
 - Reduced uterine blood flow
 - Endotoxic effect

IAI + Birth Asphyxia → HIE

- IAI most common antecedent to
 - Birth depression, low APGAR score, HIE
- Mechanisms
 - Placental dysfunction due to villous edema
 - Placental abruption
 - Increased oxygen consumption
 - Reduced uterine blood flow
 - Endotoxic effect

Loss of Cellular Function

- Depletion of ATP Reserves
- Anaerobic Metabolism
- Depletion of Oxygen Delivery
- ATP Energy stores
- Loss of ion gate control: Intracellular H+ & Ca++, water
- Energy inefficient state
- Lactic acidosis
- Loss of CBF
- Depletion of Oxygen Delivery
Cellular Death

“Hypoxic-ischemic brain damage is an evolving process, which begins during the insult and extends into the recovery period after resuscitation.”

Vannucci & Perlman

Necrosis
- Occurs rapidly
- Characterized by cellular swelling, membrane breakdown, activation of phagocytosis

Apoptosis
- Occurs slowly over hours to days
- Characterized by cellular shrinkage, nuclear pyknosis, genomic fragmentation

Simplexity

- Why Simple Things Become Complex and How Complex Things Can Be Made Simple
 - Things that seem complicated can be astoundingly simple
 - Things that seem simple can be dizzyingly complex
 - The science of redefining how we look at the world and using that new view in our work and lives

Neonatal Nurse Practitioner
Founder, Lode Star Enterprises, Inc.

7909 Knottingham Lane
Downers Grove, IL 60516
Cell: 630.81.2606
Phone/FAX: 630.725.9371
Email: lodestar@mindspring.com