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Abstract: Municipal wastewaters can generally provide real-time information on drug consumption,
the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle
consequences. From this point of view, wastewater-based epidemiology represents a modern di-
agnostic tool for describing the health status of a certain part of the population in a specific region.
Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as
well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies
pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly
contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastew-
ater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing
to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals,
drugs, and microorganisms can pass through wastewater treatment plants without any significant
change in their structure and toxicity and enter surface waters, treatment technologies need to be
improved. This short review summarizes the recent knowledge from studies on micropollutants,
pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from
healthcare facilities. It also proposes several possibilities for improving the wastewater treatment
process in terms of efficiency as well as economy.

Keywords: hospital wastewater treatment; pharmaceuticals; antibiotic-resistant microorganisms;
antimicrobial resistance genes; SARS-CoV-2

1. Introduction

As a result of human activity, water pollution has become a global challenge. This
raises significant concerns, in particular as regards the presence and risk of pharmaceuti-
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cals, other chemical compounds, and pathogenic microorganisms in wastewater. Water
pollution is a consequence of industrial production, laboratory research, high consumption
of medicines, and, most importantly, the existence of healthcare facilities. Healthcare facili-
ties are continuous point sources of contamination by various types of pharmaceuticals
or diagnostic agents, such as contrast media [1,2]. Concentrations of such compounds in
surface waters are relatively low, but information on their potential long-term effect on
living organisms is still unknown.

It is unrealistic to generally expect a decline in the production or use of some domi-
nant drug groups (especially antidepressants, antibiotics, or medication for cardiovascular
diseases) in the near future. However, it is necessary to find ways for health care providers
and the public to minimize the overuse of pharmaceuticals. At present, the use of CRP
(C-reactive protein) tests by general practitioners is insufficient in several parts of Europe,
despite the fact that their more frequent use could to some extent reduce the consumption
and subsequent presence of antibiotics in the environment [3]. The use of antibiotics has a
growing trend in the long run and its stagnation or decline is not expected [4]. Research is
already responding to this, pointing to the possible use of new types of pharmaceuticals in
combination with nanotechnologies to combat the emergence of resistance. New technolo-
gies use various nanomaterials based on carbon, titanium, silver, or gold with antibacterial
activity [5]. The possibility of modifying classic materials to obtain good antibacterial
properties and their subsequent possible use in healthcare facilities, for example in the
treatment of wall surfaces in waiting rooms, is also being investigated [6]. However, all
these substances would be additional and problematic wastewater pollutants.

Contrast agents, especially iodine-based substances, can also be a significant environ-
mental problem in the future. A limited overview of the use of such types of compounds
also means that the professional public does not have a comprehensive summary of their
contribution to surface water contamination and their impact on various components
of the environment in Slovakia, the Central European region, or elsewhere in the world.
Compared to pharmaceutical products, these are extremely biologically inert and have only
been studied to a limited extent. Another problem is the fact that even some innovative
technologies, such as ozonation, cannot completely remove them from wastewater [7].

The presence of pharmaceuticals in surface waters points to the need for applications
of new types of technologies (they can also be various combinations such as membrane
technologies and oxidation processes or sorption materials), which could remove resistant
types of microorganisms from wastewater in addition to micropollutants.

Generally, wastewater treatment at municipal WWTPs is often economically demand-
ing, due to the significant flow of wastewater during the day. Therefore, it would be
necessary to focus more on the treatment of dominant point sources of this type of pollu-
tion, such as healthcare facilities in this case, where the wastewater flow can be in volumes
of up to 5000 m3 per day. These waters are significantly more contaminated with contrast
agents, pharmaceuticals, and their metabolites compared to municipal wastewaters [8].

It should be emphasized that the monitoring of contrast agents, pharmaceuticals, and
their metabolites in surface or drinking waters is often limited in time and money and
therefore unsystematic. It regularly takes place only in some regions of Europe, which is
why the ability of scientists to compare individual regions in terms of the presence of these
micropollutants is limited [9].

2. Wastewater from Healthcare Facilities
2.1. Presence of Specific Micropollutants

Pharmaceuticals, hormones, contrast media, legal and illegal drugs, and their metabo-
lites can be found in wastewater from various healthcare facilities at significant concentra-
tion levels [10]. With the exception of Denmark, where discharge limits are specified, most
countries do not have special regulations for the disposal of wastewater from healthcare
facilities [1]. The fate of these compounds in the environment is still largely unknown
and published studies often deal only with their monitoring in wastewater and surface
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water [11]. On the other hand, values of other parameters for wastewater from healthcare
facilities such as COD, NH4, etc. are similar to municipal wastewater (Table 1) [9].

Table 1. Basic parameters of wastewater from hospitals and healthcare facilities [9].

Parameters Range of Values

Water quality

pH 6–9
Redox potential (mV) 850–950

Conductivity (µS·cm−1) 300–1000
Chlorides (mg·L−1) 80–400

Nitrogen (mg N2·L−1) 60–98
NH4 (mg NH4·L−1) 10–68

Nitrites (mg NO2·L−1) 0.1–0.58
Nitrates (mg NO3·L−1) 1–2

PO4 (mg P-PO4·L−1) 6–19
Soluble compounds (mg·L−1) 120–400

Oils (mg·L−1) 50–210
COD (mg·L−1) 1350–2480
TOC (mg·L−1) 31–180
BOC5/CHSK 0.3–0.4

AOX (mg·L−1) 0.55–100

Microorganisms

E. coli 103–106

Enterococci 103–106

Fecal coliforms 103–104

Total coliforms 105–107

EC50 (Daphnia), TU 9.8–117

Organics

Total disinfective substances (mg·L−1) 2–200
Total antibiotics (mg·L−1) 0.03–0.2

Cytostatics (mg·L−1) 0.005–0.05
Lipides regulators (mg·L−1) 0.001–0.01

Beta-blocators (mg·L−1) 0.0004–0.025

According to published data, healthcare facilities are also perceived as a possible
source of analgesics, antidepressants, antibiotics, or antiepileptics, but also antibiotic-
resistant bacteria [10]. Heberer and Feldmann published a study aimed at discovering
the occurrence of selected pharmaceuticals in wastewater from healthcare facilities in
Berlin [12]. They found that pharmaceuticals were removed only to a limited extent by
the sewage system and the treatment plant, with most of them entering surface waters.
The authors point out that the main sources of carbamazepine and diclofenac in Berlin’s
wastewater are predominantly households and hospitals with more than 12,000 beds.
Saussereau et al. analyzed the hospital effluent in Rouen, France, and the results were
then compared with the influent and effluent from a treatment plant [13]. Twenty fre-
quently used pharmaceuticals were monitored in wastewater from healthcare facilities.
The compounds with the highest measured concentrations were tramadol, venlafaxine,
citalopram, caffeine, and oxazepam. Concentrations of these drugs in wastewater ranged
from 0.1–2.4 µg·L−1.

Wastewater analyses in selected healthcare facilities in Slovakia, specifically in
Bratislava, pointed to high amounts (showed elevated concentrations compared to munici-
pal wastewaters) of pharmaceuticals such as tramadol (opioid analgesic) and midazolam
(sedative) (Table 2). We observed an increased incidence of methamphetamine in wastewa-
ter from the Ružinov polyclinic, which may be related to the treatment of drug-addicted
patients abusing this addictive substance. On the other hand, levels of cocaine, LSD,
and MDMA occurred only to a limited extent, in concentrations below LOQ in this type
of wastewater. Among legal drugs, caffeine predominates (bellow LOQ) in wastewater
from healthcare facilities. Increased nicotine use results in increased concentrations of its
metabolite cotinine (bellow 6700 ng/L).
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Table 2. Composition of wastewater in selected Bratislava healthcare facilities with emphasis on the
presence of specific micropollutants (pharmaceuticals and drugs) [9].

Substance DFNsP UNB Petržalka Polyclinic Ružinov

(ng·L−1)

Caffeine <LOQ <LOQ <LOQ
Cotinine 1100 280 6700
Codeine 21 <LOQ 10

Amphetamine <LOQ <LOQ 190
Oxycodone <LOQ <LOQ <LOQ

Methamphetamine 28 25 1100
MDMA <LOQ <LOQ <LOQ

Norketamine <LOQ <LOQ <LOQ
Mephedrone <LOQ <LOQ <LOQ

Ketamine 18 29 <LOQ
Benzoylecgonine <LOQ <LOQ <LOQ

Tramadol 260 510 2400
Cocaine <LOQ <LOQ <LOQ

LSD <LOQ <LOQ <LOQ
Venlafaxine 75 <LOQ 600
Oxazepam 38 <LOQ 52
Citalopram 173 47 250
Midazolam 680 18 <LOQ

Buprenorphine <LOQ <LOQ <LOQ
EDDP <LOQ <LOQ <LOQ

Methadone <LOQ <LOQ <LOQ
THC-COOH 52 <LOQ <LOQ
Terbutaline 15 240 20

Atenolol <LOQ 160 <LOQ
Bisoprolol 42 320 5200
Ampicillin <LOQ <LOQ <LOQ
Penicillin V <LOQ <LOQ <LOQ
Clonazepam <LOQ <LOQ <LOQ
Atorvastatin 12 40 294
Flumequine <LOQ <LOQ <LOQ
Metoprolol 96 310 2600
Ranitidine 31 1400 32

Furosemide 450 340 560

The authors Yuan et al. (Table 3) monitored 22 psychoactive drugs in the effluent
from two psychiatric hospitals in Beijing [14]. The pharmaceuticals with the highest con-
centrations in wastewater were representatives of neuroleptics: clozapine, quetiapine
(antipsychotic medication used for the treatment of schizophrenia); sulpiride (a benza-
mide neuroleptic used in the treatment of schizophrenia and other psychotic disorders);
antidepressants: fluvoxamine, citalopram (selective serotonin reuptake inhibitors indicated
for depression and symptoms of depressive disorders); but also the popular carboxam-
ide derivatives in our country: carbamazepine (antiepileptic drug) and benzodiazepine:
oxazepam (anxiolytic).

Table 3. Average drug concentrations determined in the effluent from psychiatric hospitals (A, B) and at the effluent of the
relevant WWTP [14].

Substance (ng·L−1) Effluent Psych.
Hospital A

Secondary Effluent
from WWTP

Effluent Psych.
Hospital B

Secondary Effluent
from WWTP

Clozapine 5600 300 5000 1200
Oxazepam 940 750 290 190
Sulpiride 2800 430 9800 11,000

Quetiapine 2000 <LOQ 5000 1200
Citalopram 67 19 260 160

Carbamazepine 88 <LOQ 160 180
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2.2. Presence of Antibiotic-Resistant Microorganisms

Antibiotic and biocide-resistant bacteria have become a global challenge, which is
slowly shifting our society into the so-called post-antibiotic era. European Commissioner
for Health Stella Kyriakides said that in current pandemic times, COVID-19 and antimi-
crobial resistance call for a united approach across policies, countries, and all levels of
society [15,16]. Many countries and global organizations are working to address this
through various monitoring programs and measures (the One Health Action Plan in the
EU, for example). The development and spread of antibiotic resistance is a complex process
that involves many variables [17]. This phenomenon is largely influenced by the selection
pressure induced by the presence of antimicrobials at subinhibitory concentrations. Phar-
maceutically active compounds induce the formation of mutations leading to antibiotic
resistance in bacteria. Some pharmaceuticals have been shown to increase the rate and
likelihood of resistance genes transmission from resistant bacterial strains to susceptible
ones, thereby contributing to the spread of resistance [18,19].

Wastewater from healthcare facilities, the source of various sensitive or antibiotic-
resistant bacteria, is often discharged into the sewage system without prior treatment, thus
contributing to an increase in the concentration and spectrum of pharmaceuticals as well
as the number of antibiotic-resistant bacteria and antibiotic-resistance genes in municipal
wastewater [20,21]. According to the data from the European Center for Disease Control
(ECDC), at least one in three hospitalized patients and one in two patients undergoing
surgery in the EU receives antibiotic treatment on any given day. Some of these uses
may be unnecessary and may contribute to the spread of antimicrobial resistance [22].
Many hospitalized patients are infected with resistant bacteria or can be asymptomatic
carriers of such bacteria. For example, a Europe-wide sequencing survey of 2000 samples of
Klebsiella pneumoniae from patients in 244 hospitals in 32 countries showed that the hospital
environment provides suitable space for the transfer of genes encoding carbapenemases
(enzymes that cleave the latest generation of cephalosporins) [23]. In addition, the mi-
crobiota and microbiome of healthy individuals contain antibiotic-resistant bacteria and
resistance genes [24]. The degree of bacterial resistance in healthcare facility effluents can
be significantly different compared to other aquatic environments due to the use of specific
antimicrobial agents in healthcare facility conditions. These are, for example, cefotiam,
piperacillin, and vancomycin, which are used exclusively in the environment of healthcare
facilities. Wastewater from healthcare facilities is therefore an important source not only
of pharmaceuticals but also of antibiotic-resistant bacteria and resistance genes. Thus, it
represents a very suitable environment for the development and spread of the antimicrobial
resistance phenomenon [21,25–27].

Effluents from healthcare facilities in Slovakia and the Czech Republic contain rela-
tively high levels of coliform bacteria (including E. coli) and gram-positive enterococci with
the majority showing a multidrug resistance phenotype [25,28,29]. Such strains present in
untreated wastewater from healthcare facilities can enter municipal WWTPs and, despite
the high degree of dilution in the sewerage system, pass through the WWTP to the recipi-
ent and the environment [30]. Although antibiotic-resistant bacteria do not always pass
through WWTPs, many antibiotics do and reach surface waters thus contributing to the
development of antibiotic resistance. The numbers of antibiotic-resistant coliform bacteria
in the wastewater of Slovak and Czech healthcare facilities are about one logarithmic order
higher compared to the numbers at the WWTP inflow. The numbers of antibiotic-resistant
E. coli and enterococci are at a similar level or slightly reduced compared to inflow wa-
ters [28,31]. However, hospital wastewater contains a high number of multidrug-resistant
coliform bacteria and E. coli, we must consider the risk of the occurrence of strains produc-
ing broad-spectrum beta-lactamases (ESBLs). These strains can transfer multiple resistance
genes through the conjugative plasmid and spread them to susceptible bacterial species.
A massive occurrence of ESBL-producing bacteria has been recorded in wastewater from
healthcare facilities. In addition, isolates from healthcare facility outlets are often charac-
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terized by carrying several different resistance genes on plasmids or chromosomes at the
same time, making them able to resist a wide range of different antimicrobials [25,32,33].

In addition to ESBL-producing coliform bacteria, outlets from healthcare facilities are
also considered to be the primary reservoir of vancomycin-resistant enterococci, which also
belong to clinically relevant groups of bacteria. However, the monitoring of wastewater in
Slovakia showed that these resistant’s occurred in municipal wastewater rather than in the
effluents from healthcare facilities [28,31]. Another important issue is that low concentra-
tions of non-antimicrobial pharmaceuticals such carbamazepine, atenolol, valsartan but
also cotinine in wastewater can also contribute to the development of antibiotic resistance.
However, hospital effluents contain a mixture of different pharmaceuticals at low concen-
trations, they can also significantly contribute to the development and spread of antibiotic
and biocide-resistant bacteria and resistance genes [26].

2.3. Presence of Viruses in Wastewater from Healthcare Facilities

Nowadays, the most discussed topic is the presence of viruses in the wastewater due to
the SARS-CoV-2 pandemic and their proven presence in municipal wastewater. However,
the investigation of viruses in medical facilities wastewater is a topic of broader importance.
Collected sewage from health facilities is abundant in large amounts of toxic substances
and pathogenic organisms such as bacteria and viruses. Therefore, insufficient degradation
of the medical wastewater might lead to pathogen circulation in the environment and
recurring infections [34]. The most common viruses that can be found in the treated
wastewater are enteric viruses such as Hepatitis A, but also noroviruses, rotaviruses,
adenoviruses, and astroviruses. These cause a variety of diseases such as gastroenteritis,
meningitis, and hepatitis. Most of them replicate massively in the intestinal tract and are
shed into the feces in high concentrations [35].

SARS-CoV and SARS-CoV-2 were likewise detected in the hospital wastewater [36,37].
It was proven that SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) located
on the surface of enteric cells, replicates, and is shed into the feces similarly to enteric
viruses. The fact was subsequently employed by many researchers and public health
authorities to detect SARS-CoV-2 by RT-qPCR in the wastewater and used as an epidemio-
logical tool for controlling the local SARS-CoV-2 epidemic [38]. Although reinfection by
SARS-CoV-2 from wastewater has not been observed yet, further research is necessary as
we know that many other viruses are found infectious in wastewaters including SARS-
COV-1, and the presence of the SARS-CoV-2 was already detected in surface waters [39–42].
Cycle thresholds (CT) vary and reflect the pandemic situation in the population. Lately, the
investigation involves genetic sequencing as a potential method for detecting mutations in
the wastewater. The method will be even more crucial to employ at healthcare facilities as
vaccination and the convalescence plasma treatment will increase selective pressure on the
virus to mutate [43]. Analysis of new mutations and variants will again help epidemiolo-
gists in setting the right public health measures to contain the pandemic. Similarly, new
mutations lead to higher infectivity of the virus, with fewer virus particles required for
infection, which can play an important role in wastewater reinfections [44].

After the precise detection of viruses in the hospital wastewater, effective elimination
is needed. Chlorination, ultraviolet, and ozone treatment are all commonly used disin-
fection technologies in hospital wastewater treatment plants and are also proven to be
effective in the case of virus elimination [45]. On the contrary, a study by Zhang et al.,
reported detection of RNA SARS-CoV-2 in septic tanks after disinfection with sodium
hypochlorite according to WHO guidelines [46]. Therefore, a combination of chlorination
and other disinfection technologies such as plasma treatment, advanced oxidation reac-
tion (e.g., Fenton reaction), ultrafiltration, or adsorption on nanoparticles is vital to avoid
reinfections [47].
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3. Innovative Processes Efficient in the Treatment of Wastewater from
Healthcare Facilities

Current research is focused not only on monitoring the known pharmaceuticals and
their metabolites in wastewater but also on studying the potential of new degradation
processes. The study by Yuan et al. dealt with the ability of treatment plants to remove
these types of micropollutants from the wastewater and to decrease the load on the envi-
ronment [14]. The results showed only a limited ability to treat wastewater using biological
processes (activated sludge) implemented in treatment plants. The complex structures of
some compounds (especially pharmaceuticals with two aromatic rings) are highly resistant
to biological purification, leading to a limited ability to degrade them. The lowest removal
efficiency was obtained for oxazepam. In the case of sulpiride and carbamazepine, we even
observed an increase in their concentration in the treatment plant from psychiatric hospital
B. The collection time, the retention time, the sorption/desorption in the treatment plant,
and the physicochemical properties of the studied compounds influence the concentration
of the compounds [14]. An experimental technique based on the sub- and super-critical
water oxidation of wastewater was used for amoxicillin and ciprofloxacin elimination. The
feasibility of the method was tested in the temperature range from 473 K to 773 K and at
flow rates of 3 and 5 mL/min. The highest COD and TOC reductions were achieved at the
highest temperature of 773 K, where they were reduced by 76% and 63%, respectively [48].
However, conventional treatment (based mainly on mechanical and biological processes) is
not efficient enough [49–51]. New treatment processes (see examples in Table 4) include
various membrane bioreactors, nanomaterials, ferrates, Fenton reaction, ozonation, hetero-
geneous catalysis, ultrasound, aquatic plants, and adsorption e.g., on biochar or activated
carbon [51–54].

Table 4. Technological processes and their combinations in the treatment of wastewater from
healthcare facilities [9,51–53,55–57].

Treatment Process Aim

Ozonation Disinfection/degradation
Chlorination Disinfection

Photo-Fenton reaction Disinfection/degradation
Fenton reaction and modifications Disinfection/degradation

Coagulation—filtration—disinfection Disinfection/degradation
Ozonation/UV radiation Disinfection/degradation

Ozonation/UV radiation/H2O2 Disinfection/degradation
Ozonation/UV radiation/H2O2/biological degree Disinfection/degradation

Septic/anaerobic filter Degradation
Septic/Fenton reaction Disinfection/degradation

Flocculation/activated sludge Degradation
Anaerobic and aerobic reactor with

stabilized biofilm Degradation

Aerobic reactor with stabilized biofilm/ozonation Disinfection/degradation
Activated sludge Degradation

Activated sludge/chlorination Disinfection/degradation
Bioreactor—filamentous fungi Degradation
Membrane bioreactor (MBR) Degradation

MBR in combination with sorbents, AOPs,
chlorination, catalysis Disinfection/degradation

BDD—boron-doped diamond electrode Disinfection/degradation
Ferrates (Fe6+)

Anodic Oxidation with solid polymer electrolyte
Ultrasound irradiation

Disinfection/degradation
Disinfection/Degradation
Disinfection/Degradation

Hospital wastewaters often contain significant amounts of fecal coliforms, which
exhibit resistant or multi-resistant properties to various types of antibiotics [52,53,58–60].
Therefore, the degradation processes are investigated in terms of removal efficiency not
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only for a wide range of micropollutants but also for pathogenic microorganisms, so the
disinfection ability is evaluated [61,62].

Currently, many different methods for the treatment of wastewater from healthcare
facilities are being researched, which often combine chemical and biological degradation
procedures in different ways [63–65]. A combination of ozonation with active sorbent (e.g.,
activated carbon), UV-C and H2O2, MBR (membrane bioreactor), and AOPs (advanced
oxidation processes) dominates [52,66–69]. The historically used methods for disinfection
of these types of waters are chlorination and UV-C radiation [69,70]. However, the main
drawback of chlorination is the risk of the formation of various chlorine-rich organic by-
products, which can negatively affect water organisms [52]. As in municipal wastewater,
wastewater treatment from healthcare facilities can be performed by conventional chemical
(e.g., coagulation) [71], and biological processes—where nitrification [52] predominates. In
addition, research can be observed in various innovative processes such as the applicability
of the enzymes themselves [72] or their combination with a root treatment plant [63],
the combination of activated sludge using vermifiltration [65], the applicability of wood-
destroying fungi [20], or various modifications of nanomaterials, sorbents and related e.g.,
photocatalysis (Table 5) [61,73].

Advanced oxidation processes (AOPs) and their various combinations with biological
processes [67,74] achieve the best efficiencies in the treatment of wastewater in terms of
chemical and biological pollution. An essential step in the effectiveness of AOPs is the
production of free radicals, where the hydroxyl radical and various forms of reactive oxygen
species (ROS) predominate [52,53,59,71,75–78]. AOPs that are frequently investigated
include electrochemical AOPs [75,78–80].

In general, the most effective AOPs that are currently being intensively investigated
in terms of wastewater treatment include the Fenton reaction (FR), photo-Fenton reac-
tion(pFR), ozonation, and their modifications [29,52,53,75–77,81,82]. The combination of
FR with biological processes also appears to be interesting [58,59]. The combination of a
Fenton or photo-Fenton reaction, followed by purification of the effluent from a healthcare
facility using activated sludge has been described in a study by Kajitvichyanukul et al. [58].
In a study by Miralles-Cuevas et al., nanofiltration was placed before the photo-Fenton
reaction [83]. In addition to already described procedures, and the abilities of ferrates-iron
(VI)—use in water purification and disinfection [53] are becoming a topical issue. Ferrates
are very strong oxidizing agents that are able to degrade a wide range of drugs present in
wastewater [84–86]. Currently, there is limited information from published literature about
their disinfection power and purification of concentrated point sources of micropollutants
such as healthcare facilities.

Table 5. Monitoring of the occurrence of specific micropollutants in effluents from healthcare facilities
after the treatment process.

Compound Effluent Concentration (µg·L−1) Study

Caffeine

12.3–42 [87]
15.6 [88]

12.1–182 [89]
<7.2 [53]

Carbamazepine

0.03–0.07 [90]
<0.017–1.7 [87]
LOD–0.24 [14]

0.7–2.7 [91]
0.64–1.2 [92]

0.222 [93]
0.018–6.08 [89]

0.003–0.036 [94]
0.163 [88]



Antibiotics 2021, 10, 1070 9 of 14

Table 5. Cont.

Compound Effluent Concentration (µg·L−1) Study

Citalopram 0.019–0.322 [14]
47–490 [53]

Cocaine
0.05 [95]
<19 [53]

Benzoylecognine
(metabolite cocaine)

0.029 [95]
<7 [53]

Codeine

0.378 [95]
0.01–5.7 [90]
0.26–3.2 [92]
<2.3–58 [53]

6-acetylcodeine <0.002 [95]
Diazepam <0.001–0.038 [92]

0.069 [93]

Ketamine
0.206 [95]

<4.2–29 [53]
Lorazepam 0.17–0.79 [92]

LOD–0.353 [14]
Lidocaine 9.133 [93]

Methamphetamine 0.26 [95]
<4.2–1100 [53]

Morphine 1.24 [95]
3.679 [93]

6-acetylmorphine <0.0005–0.039 [95]

Oxazepam
0.186–0.942 [14]

1.123 [93]
<24–52 [53]

Tramadol
0.958 [14]

260–2400 [53]

Venlafaxine
0.811 [14]

<24–600 [53]

Current advances in the development of new technologies and materials in the degra-
dation of micropollutants (pharmaceuticals, drugs, pesticides) in wastewater offer the
use of boron-doped diamond electrodes [53]. The advantage of these electrodes is the
significant increase in wastewater disinfection efficiency, as their application generates
radical forms of oxygen (singlet oxygen, hydroxyl radical).

4. Conclusions and Suggestions

Various analytical procedures are used to monitor the presence and concentration
of micropollutants, which may ultimately be reflected in an inaccurate description of the
current situation. As part of a systematic collection, it would be interesting to obtain results
directly from the WWTP (inflow and outflow). However, placing analytical equipment
(mostly LC-MS/MS) in treatment plants seems unrealistic for application for several
reasons. The price of the instrument, its operation and the need of a specially trained
analytical chemist dominate. Therefore, it would be necessary to have central laboratories
in different regions of Europe to regularly collect and evaluate water samples to monitor
micropollutants.

After precise monitoring, efficient degradation should take place. Currently, hospital
wastewaters are treated with a combination of physical and chemical processes. Membrane
technologies, sorbents, UV irradiation, and chlorination are the most commonly used
but oftentimes insufficient in degrading complex micropollutants and organisms. These
should be further combined with AOPs for the successful treatment of such wastewater for
alleviating the burden on the environment.

Another possibility is the development and utilization of novel (bio)sensors that can
continuously monitor the selected micropollutants in wastewater and transfer the recorded
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data wirelessly to the monitoring station. There, the situation will be assessed and, if
necessary, steps can be taken to eliminate the current environmental burden.

It would also be necessary to improve the life cycle of the released pharmaceuticals.
Targeted consumer motivation can be an example of how to solve this problem so that it
does not end in improper disposal, for example in sewers (after the expiration date or the
patient’s death).

The last, but not the least, possibility is the improvement of treatment technologies
based on AOPs. In combination with automatic monitoring systems present directly in the
sewer or at the wastewater treatment plant, the wastewater treatment processes with AOPs
can be started automatically and instantly, and thus react immediately to the unfavorable
environmental situation.
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9. Mackul’ak, T.; Bodík, I.; Bírošová, L. Drogy a liečivá ako mikropolutanty, 1st ed.; FCHPT STU v Bratislave: Bratislava, Slovakia, 2016;
ISBN 978-80-89597-34-5.

10. Aydin, S.; Aydin, M.E.; Ulvi, A.; Kilic, H. Antibiotics in hospital effluents: Occurrence, contribution to urban wastewater, removal
in a wastewater treatment plant, and environmental risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 544–558. [CrossRef]

11. Ngigi, A.N.; Magu, M.M.; Muendo, B.M. Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant,
and in surface water in Nairobi County, Kenya. Environ. Monit. Assess. 2019, 192, 18:1–18:16. [CrossRef]

12. Heberer, T.; Feldmann, D. Contribution of effluents from hospitals and private households to the total loads of diclofenac
and carbamazepine in municipal sewage effluents—Modeling versus measurements. J. Hazard. Mater. 2005, 122, 211–218.
[CrossRef] [PubMed]

13. Saussereau, E.; Lacroix, C.; Guerbet, M.; Cellier, D.; Spiroux, J.; Goullé, J.P. Determination of levels of current drugs in hospital
and urban wastewater. Bull. Environ. Contam. Toxicol. 2013, 91, 171–176. [CrossRef] [PubMed]

14. Yuan, S.; Jiang, X.; Xia, X.; Zhang, H.; Zheng, S. Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric
hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 2013, 90, 2520–2525. [CrossRef] [PubMed]

15. ECDC. Antimicrobial Resistance and Consumption Remains High in the EU/EEA and the UK, according to New ECDC Data.
Available online: https://www.ecdc.europa.eu/en/news-events/antimicrobial-resistance-and-consumption-remains-high-
press-release (accessed on 13 July 2021).

16. Zhou, C.; Wu, J.; Dong, L.; Liu, B.; Xing, D.; Yang, S.; Wu, X.; Wang, Q.; Fan, J.; Feng, L.; et al. Removal of antibiotic
resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater. 2020, 388,
122070:1–122070:8. [CrossRef]

17. Pärnänen, K.M.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.;
Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical
antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124:1–eaau9124:10. [CrossRef]

18. Jiao, Y.-N.; Chen, H.; Gao, R.-X.; Zhu, Y.-G.; Rensing, C. Organic compounds stimulate horizontal transfer of antibiotic resistance
genes in mixed wastewater treatment systems. Chemosphere 2017, 184, 53–61. [CrossRef]

19. Liu, Y.; Tong, Z.; Shi, J.; Jia, Y.; Yang, K.; Wang, Z. Correlation between Exogenous Compounds and the Horizontal Transfer of
Plasmid-Borne Antibiotic Resistance Genes. Microorganisms 2020, 8, 1211. [CrossRef]

20. Mir-Tutusaus, J.A.; Parladé, E.; Villagrasa, M.; Barceló, D.; Rodríguez-Mozaz, S.; Martínez-Alonso, M.; Gaju, N.; Sarrà, M.;
Caminal, G. Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. J. Biol. Eng. 2019, 13,
47:1–47:13. [CrossRef]

21. Wang, Q.; Wang, P.; Yang, Q. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci. Total Environ.
2018, 621, 990–999. [CrossRef]

22. Vandael, E.; Latour, K.; Goossens, H.; Magerman, K.; Drapier, N.; Catry, B.; Versporten, A.; Andre, M.; Aouachria, S.; Aoun, M.;
et al. Point prevalence survey of antimicrobial use and healthcare-associated infections in Belgian acute care hospitals: Results of
the Global-PPS and ECDC-PPS 2017. Antimicrob. Resist. Infect. Control 2020, 9, 13:1–13:13. [CrossRef]

23. David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al.
Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4,
1919–1929. [CrossRef]

24. Bírošová, L.; Kislíková, K.; Lépesová, K. Antibiotic resistant coliforms: From human gut to wastewater. In Nutrients, Wastewater
and Leachate: Testing, Risks and Hazards; Amimul, A., Ed.; Nova Publishers: New York, NY, USA, 2018; ISBN 978-1-53613-949-5.

25. Lépesová, K.; Olejníková, P.; Mackul’ak, T.; Cverenkárová, K.; Krahulcová, M.; Bírošová, L. Hospital Wastewater—Important
Source of Multidrug Resistant Coliform Bacteria with ESBL-Production. Int. J. Environ. Res. Public Health 2020, 17, 7827. [CrossRef]

26. Bírošová, L.; Lépesová, K.; Grabic, R.; Mackul’ak, T. Non-antimicrobial pharmaceuticals can affect the development of antibiotic
resistance in hospital wastewater. Environ. Sci. Pollut. Res. 2020, 27, 13501–13511. [CrossRef] [PubMed]

27. Thai-Hoang, L.; Charmaine, N.; Hongjie, C.; Zhu, Y.X.; Hsien, K.T.; Sebastian, B.T.M.; Zhi, Z.; Yew-Hoong, G.K. Occurrences
and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country.
Antimicrob. Agents Chemother. 2021, 60, 7449–7456. [CrossRef]

28. Lépesová, K. Výskyt, Štúdium a Možnosti Redukcie Vybraných Baktérií Rezistentných Voči Antibiotikám v Kaloch a Vodách z
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