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Mesh patterns

The notion of a mesh pattern, generalizing several classes of patterns, was introduced
by Brändén and Claesson to provide explicit expansions for certain permutation
statistics as, possibly infinite, linear combinations of (classical) permutation patterns.
A pair (τ,R), where τ is a permutation of length k and R is a subset of J0, kK × J0, kK,
where J0, kK denotes the interval of the integers from 0 to k, is a mesh pattern of
length k.

• P. Brändén and A. Claesson, Mesh patterns and the expansion of permutation statistics
as sums of permutation patterns, Electronic J. Combin., 18(2) (2011), 5.
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Let (i, j) denote the box whose corners have coordinates (i, j), (i, j + 1), (i + 1, j + 1),
and (i + 1, j).
Let the horizontal lines represent the values, and the vertical lines denote the positions
in the pattern.
Mesh patterns can be drawn by shading the boxes in R. The following picture
represents the mesh pattern with τ = 231 and R = {(1, 2), (2, 1)}:

For instance, the permutation 416524 contains the above mesh pattern:
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The first systematic study of mesh patterns was not done until

• I. Hilmarsson, I. Jónsdóttir, S. Sigurdardóttir, L. Vidarsdóttir, and H. Ulfarsson,
Wilf-classification of mesh patterns of short length, Electr. J. Combin., 22(4) (2015), 13.

where 25 out of 65 non-equivalent avoidance cases of patterns of length 2 were solved. That
is, in the 25 cases, the number of permutations avoiding the respective mesh patterns was
found.
In our research, we initiate a systematic study of distributions of mesh patterns by giving 27
distribution results for the patterns considered by Hilmarsson et al. including 14 distributions
for which avoidance was not known.
Moreover, for the unsolved cases, we prove an equidistribution result (out of 6 equidistribution
results we prove in total), and conjecture 6 more equidistributions.
Techniques used by us include generating functions, recurrence relations, and bijections. The
results in this presentation are from

• S. Kitaev and P. B. Zhang, Distributions of mesh patterns of short lengths, Adv. in Appl.
Math., 110 (2019), 1–32.
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We note that from the distribution point of view, we cannot consider just the 65
patterns presented by Hilmarsson et al., since there are more patterns to consider.

For example, the pattern Nr. 39 = was considered there, while its Wilf-equivalent
pattern (by the Shading Lemma) was not considered.

However, these two patterns have different distributions.
Two patterns, p1 and p2, are said to be Wilf-equivalent if for any n ≥ 0, the number
of permutations of length n avoiding p1 is equal to that avoiding p2.
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Let Sn be the set of all permutations of length n, which we call n-permutations.
For example, S3 = {123, 132, 213, 231, 312, 321}.
For a pattern p and a permutation π, we let p(π) denote the number of occurrences of
p in π.
Also, let Sn(p) denote the set of all permutations of length n avoiding p and
S(p) = ∪n≥0Sn(p).
Finally, let

F(x) =
∑
n≥0

n!xn.

Our main enumerative method is via deriving a functional equation for the generating
function in question, and solving it; we use recurrence relations in the remaining cases.
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Occurrences of the pattern are known as strong fixed points. However, the
distribution of strong fixed points seems to be unknown before our paper.
Theorem
Let

F(x, q) =
∑
n≥0

xn
∑
π∈Sn

q (π) =
∑
n≥0

xn
∑
π∈Sn

q (π),

and A(x) be the g.f. for S( ) = S( ). Then,

A(x) = F(x)
1 + xF(x) ; F(x, q) = F(x)

1 + x(1 − q)F(x) .
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By a “trivial” distribution we mean the situation when either the pattern in question
can occur at most once and its avoidance was given by Hilmarsson et al. or pattern’s
occurrences can easily be understood from the shape of the pattern. There are 10 such
patterns:

Nr. 5 = Nr. 10 =

Nr. 11 = Nr. 12 =

Nr. 13 = Nr. 18 =

Nr. 19 = Nr. 20 =

Nr. 21 = Nr. 22 =
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We use the approach similar to, but in several cases (much) more involved than, the
proof of Theorem 1.1 to find the distribution and, whenever appropriate, avoidance for
the following 12 patterns:

Nr. Repr. p A(x) F(x, q)

16 (1+x)F(x)
1+xF(x)

∑
i≥0 q(

i
2)xi ∏i

j=0
F(qjx)

1+qjxF(qjx)

17
(

1 − x + x
1+xF(x)

)
F(x)

(
1 − x + x

1+(1−q)xF(x)

)
F(x)

27 F(x)− x2F(x)3

1+xF(x) F(x)− (1−q)x2F3(x)
1+(1−q)xF(x)

28 F(x)
1+x2F2(x)

F(x)
1+(1−q)x2F2(x)

30 (1+x)F(x)
1+x+x2F(x)

(1+x−qx)F(x)
1+(1−q)x+(1−q)x2F(x)

33 (1+2xF(x))F(x)
(1+xF(x))2

∑∞
i=0 q( i

2)xi
(

F(x)
1+xF(x)

)i+1

34 F(x)
1+x2F(x)

F(x)
1+(1−q)x2F(x)
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Nr. Repr. p A(x) F(x, q)

55 F(x)
1+x(F(x)−1)

F(x)
1+(1−q)x(F(x)−1)

56

63

64 2F(x)−1
F(x)

(2−q)F(x)+q−1
(1−q)F(x)+q

65
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Next, we consider six patterns for which our generating functions approach does not
work. Instead, we derive recurrence relations for the distribution of respective patterns.
The patterns are:

Nr. 8 = Nr. 9 =

Nr. 14 = Nr. 15 =

Nr. 36 = Nr. 45 =

In what follows, we denote by Tn,k the number of n-permutations with k occurrences
of the pattern in question. Also, let Tn(x) =

∑n−1
k=0 Tn,kxk.
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The distributions for the patterns Nr. 8 = and Nr. 9 = are given by the
unsigned Stirling numbers of the first kind (the sequence A132393 in the OEIS):
Theorem (Nr. 8 and Nr. 9)
Both patterns p1 = and p2 = satisfy

Tn,k =Tn−1,k−1 + (n − 1)Tn−1,k (1)

with the initial conditions Tn,0 = (n − 1)! for n ≥ 1 and T0,0 = 1, which shows that
Tn,k = C(n, k + 1), the unsigned Stirling number of the first kind. The row generating
function for Tn,k is given by

n−1∑
k=0

Tn,kxk =
n−1∏
i=1

(x + i). (2)
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An occurrence of the pattern Nr. 14 = is known as a small ascent, and its reverse
as a small descent. The distribution of this pattern is given by the sequence A123513.
The next theorem derives a recurrence relation for the pattern and shows that the
same recurrence relation works for the pattern Nr. 15 = thus establishing
equidistribution of these patterns.
Theorem (Nr. 14 and Nr. 15)
Both patterns p1 = and p2 = satisfy the recurrence relation

Tn,k =Tn−1,k−1 + (k + 1)Tn−1,k+1 + (n − k − 1)Tn−1,k (3)

with the initial conditions T1,0 = 1,T2,0 = 1,T2,1 = 1. Equivalently,

Tn(x) = (x + n − 1)Tn−1(x) + (1 − x)T′
n−1(x) (4)

with the initial conditions T1(x) = 1 and T2(x) = 1 + x.
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Next, we find the recurrence relation for the distribution of the pattern Nr. 36 = .
Note that an occurrence of the pattern is a small ascent in which the left element is a
left-to-right minimum, that is, an element having no smaller elements to the left of it.
Theorem (Nr. 36)
The pattern p = satisfies the recurrence relation

Tn,k =(k + 1)Tn−1,k+1 + (n − k)Tn−1,k − Tn−2,k + Tn−2,k−1 (5)

with the initial conditions T1,0 = 1,T2,0 = 1,T2,1 = 1. Equivalently,

Tn(x) = nTn−1(x) + (1 − x)T′
n−1(x) + (x − 1)Tn−2(x) (6)

with the initial conditions T1(x) = 1 and T2(x) = 1 + x.



Introduction “Trivial” distributions The generating functions method Distributions via recurrence relations An equidistribution result Concluding remarks

Now, we find the recurrence relation for the distribution of the pattern Nr. 45 = ,
which is the most difficult case among the recurrence relations.
Theorem (Nr. 45 )
The pattern p = satisfies the recurrence relation

Tn,k = (k + 1)Tn−1,k+1 + (n − k − 1)Tn−1,k + Tn−1,k−1

+ (k + 1)Tn−2,k+1 + (n − 2k − 2)Tn−2,k − (n − k − 1)Tn−2,k−1 (7)

with the initial conditions T1,0 = 1,T2,0 = 1,T2,1 = 1. Equivalently,

Tn(x) =(x + n − 1)Tn−1(x) + (1 − x)T′
n−1(x)

+ (n − 2)(1 − x)Tn−2(x) + (1 − x)2T′
n−2(x), (8)

with the initial conditions T1(x) = 1 and T2(x) = 1 + x.
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We were not able to find the distributions of the folllwing three patterns.
Conjecture
The patterns Nr. 48 = , Nr. 49 = , Nr. 50 = have the same distribution.

Theorem (Nr. 48 and Nr. 49)
The patterns p1 = and p2 = are equidistributed. Structures in question:

x1

y1

x2

y2

x3

y3

A

B1 B2

B3

C1 C2

C3

D1 D2

D3

Fig 1: a permutation π with three
occurrences of the pattern p1
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Fig 2: a permutation π with three
occurrences of the pattern p2
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1. Conjectured equidistributions of Nr. 48 (49) and 50
The structure of permutations with k occurrences of the pattern Nr. 50 = is as
given in Fig. 3 for k = 3, where X1 and X3 can be any permutations, and X2 and A
must be - avoiding for X ∈ {B,C,D}.

Even though the structure in Fig. 3 is very
similar to those in Fig. 1 and 2 corresponding
to the patterns Nr. 48 and Nr. 49, respectively,
we were not able to find a bijective proof
showing the conjectured equidistribution of
the three patterns.

Indeed, there is a problem with - avoiding
blocks X2 in Fig. 3, for X ∈ {B,C,D}, having
relations with both X1 and X3, horizontally and
vertically, while in Fig. 1 and 2 the respective
blocks X2 have only horizontal relations with
X1, and X1 and X3 have vertical relations.

x1

y1

x2

y2

x3

y3

A

B1 B2

B3

C1 C2

C3

D1 D2

D3

Fig 3: Related to Pattern Nr. 50
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2. Conjectured distribution for Nr. 3

Conjecture
The distribution of the pattern Nr. 3 = is given by the sequence A200545 in the
OEIS, which is the triangle, read by rows, given by

(1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, . . .) DELTA (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .)

where DELTA is the operator defined in A084938 in terms of continued fraction: the
triangle [r0, r1, . . .] DELTA [s0, s1, . . .] has generating function

1
1 − r0x+s0xy

1− r1x+s1xy
1− r2x+s2xy

1−...

.

Note that the operator DELTA was already linked to patterns in permutations, and
also to so-called Riordan arrays, in A200545 (OEIS).
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3. Joint distribution of patterns

As a direction for further research, we suggest studying joint distribution of patterns
considered in this paper and other permutation statistics.
As an illustration of this idea, we derive the following generating function

F(x, q, t) =
∑
n≥0

xn
∑
π∈Sn

q (π)tdes(π)

generalizing our first theorem above.
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4. Final remarks

As a final remark, we note that it would be interesting to classify completely mesh
patterns of length 2 with respect to their distribution.
As noted above, the number of equivalence classes here is larger than that of
Wilf-equivalence classes (given by equivalence with respect to avoidance) discussed in
Hilmarsson et al.
Also, note the appearance of the following follow up paper to our results.

• S. Kitaev, P. B. Zhang and X. Zhang. Distributions of several infinite families of
mesh patterns, Appl. Math. Comput., 372 (2020), 124984.
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