
Ames Laboratory Publications Ames Laboratory

7-2003

The Parallel Implementation of a Full
Configuration Interaction Program
Zhengting Gan
Iowa State University

Yuri Alexeev
Iowa State University

Mark S. Gordon
Iowa State University, mgordon@iastate.edu

Ricky A. Kendall
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_pubs

Part of the Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/
ameslab_pubs/326. For information on how to cite this item, please visit http://lib.dr.iastate.edu/
howtocite.html.

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for
inclusion in Ames Laboratory Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fameslab_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fameslab_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ameslab_pubs?utm_source=lib.dr.iastate.edu%2Fameslab_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ameslab?utm_source=lib.dr.iastate.edu%2Fameslab_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ameslab_pubs?utm_source=lib.dr.iastate.edu%2Fameslab_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=lib.dr.iastate.edu%2Fameslab_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ameslab_pubs/326
http://lib.dr.iastate.edu/ameslab_pubs/326
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu

The Parallel Implementation of a Full Configuration Interaction Program

Abstract
Both the replicated and distributed data parallel full configuration interaction (FCI) implementations are
described. The implementation of the FCI algorithm is organized in a hybrid strings-integral driven approach.
Redundant communication is avoided, and the network performance is further optimized by an improved
distributed data interface library. Examples show linear scalability of the distributed data code on both PC and
workstation clusters. The new parallel implementation greatly extends the hardware on which parallel FCI
calculations can be performed. The timing data on the workstation cluster show great potential for using the
new parallel FCI algorithm in expanding applications of complete active space self-consistent field
applications.

Keywords
Configuration interaction

Disciplines
Chemistry

Comments
The following article appeared in Journal of Chemical Physics 119 (2003): 47, and may be found at
doi:10.1063/1.1575193.

Rights
Copyright 2003 American Institute of Physics. This article may be downloaded for personal use only. Any
other use requires prior permission of the author and the American Institute of Physics.

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_pubs/326

http://dx.doi.org/10.1063/1.1575193
http://lib.dr.iastate.edu/ameslab_pubs/326?utm_source=lib.dr.iastate.edu%2Fameslab_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages

The parallel implementation of a full configuration interaction program
Zhengting Gan, Yuri Alexeev, Mark S. Gordon, and Ricky A. Kendall

Citation: The Journal of Chemical Physics 119, 47 (2003); doi: 10.1063/1.1575193
View online: http://dx.doi.org/10.1063/1.1575193
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/119/1?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application
J. Chem. Phys. 142, 184107 (2015); 10.1063/1.4920975

Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space
implementation with application to (Rb – Ba) +
J. Chem. Phys. 128, 014108 (2008); 10.1063/1.2805369

Improved implementation and application of the individually selecting configuration interaction method
J. Chem. Phys. 122, 024110 (2005); 10.1063/1.1829045

Parallel Programming with Message Passing and Directives
Comput. Sci. Eng. 3, 22 (2001); 10.1109/5992.947105

Parallel implementation of the CI-vector evaluation in full CI/CAS-SCF
J. Chem. Phys. 113, 5653 (2000); 10.1063/1.1290014

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/701402136/x01/AIP-PT/JCP_ArticleDL_092315/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Zhengting+Gan&option1=author
http://scitation.aip.org/search?value1=Yuri+Alexeev&option1=author
http://scitation.aip.org/search?value1=Mark+S.+Gordon&option1=author
http://scitation.aip.org/search?value1=Ricky+A.+Kendall&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.1575193
http://scitation.aip.org/content/aip/journal/jcp/119/1?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/18/10.1063/1.4920975?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/128/1/10.1063/1.2805369?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/128/1/10.1063/1.2805369?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/2/10.1063/1.1829045?ver=pdfcov
http://scitation.aip.org/content/aip/journal/cise/3/5/10.1109/5992.947105?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/113/14/10.1063/1.1290014?ver=pdfcov

The parallel implementation of a full configuration interaction program
Zhengting Gan
Scalable Computing Laboratory, Ames Laboratory U.S. D.O.E., Ames, Iowa 50011

Yuri Alexeev and Mark S. Gordon
Scalable Computing Laboratory, Ames Laboratory U.S. D.O.E., Ames, Iowa 50011 and
Department of Chemistry, Iowa State University, Ames, Iowa 50011

Ricky A. Kendall
Scalable Computing Laboratory, Ames Laboratory U.S. D.O.E., Ames, Iowa 50011 and
Department of Computer Science, Iowa State University, Ames, Iowa 50011

~Received 26 December 2002; accepted 26 March 2003!

Both the replicated and distributed data parallel full configuration interaction~FCI! implementations
are described. The implementation of the FCI algorithm is organized in a hybrid strings-integral
driven approach. Redundant communication is avoided, and the network performance is further
optimized by an improved distributed data interface library. Examples show linear scalability of the
distributed data code on both PC and workstation clusters. The new parallel implementation greatly
extends the hardware on which parallel FCI calculations can be performed. The timing data on the
workstation cluster show great potential for using the new parallel FCI algorithm in expanding
applications of complete active space self-consistent field applications. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1575193#

I. INTRODUCTION

Full configuration interaction~FCI! provides the exact
nonrelativistic solution of the many-electron Schro¨dinger
equation in a given finite one-electron basis space. Therefore
it is commonly used as a benchmark tool to assess approxi-
mate correlation methods. In addition, FCI is also employed
in complete-active space self-consistent field~CASSCF!
~Ref. 1! programs to obtain the CI coefficients of CASSCF
wave functions. Because the FCI calculation is carried out at
every CASSCF iteration, considerable effort has been ex-
pended to develop and implement efficient FCI algorithms to
handle the relatively large active spaces, required by com-
plex chemical systems.1–5

Because of the simplicity in computing the coupling co-
efficients, almost all modern FCI algorithms are based on
determinants instead of configuration state functions~CSFs!.
A major step forward in determinant-based FCI was intro-
duced by Handy2 with the idea of separate alpha and beta
strings for alpha and beta spins. Following this innovation,
more efficient algorithms have been proposed and imple-
mented, including the work by Olsenet al.,3 Zarrabian
et al.,4 Michael et al.,5 Rossi et al.,6 Sherrill et al.,7 Ivanic
et al.,9 and others. However, despite the diversity of the al-
gorithms, the implementations of FCI programs remain es-
sentially in two different ways, either the integral driven ap-
proach or the configuration driven approach.6,8

The memory and efficiency requirements of a FCI cal-
culation make it an ideal application for parallel computing.
By taking advantage of the computational capacity provided
by state-of-the-art high performance parallel supercomputers,
FCI calculations that include up to ten billion determinants
have been reported.8 However, the problem of parallel full

CI performance still requires attention. For example, due to
the excessive communication present in parallel FCI calcu-
lations, existing parallel FCI implementations are limited to
supercomputers, such as the CRAY-T3E8,17 and IBM SP.6

Because clusters of PCs and workstations have become in-
creasingly accepted as powerful alternatives to expensive su-
percomputers, a FCI code that runs effectively on clusters is
highly desired, albeit a challenging, task.

The difficulties in achieving high performance on paral-
lel computers come from the complexity of modern com-
puter architectures, and the networked distributed memory
makes the situation even worse. Since there are multiple per-
formance factors on parallel computers, any single mode CI
driven method will have some pitfalls. Instead, a more flex-
ible algorithm is needed. The original determinant FCI code9

in GAMESS is a straight string driven implementation. The
algorithm produces reasonable efficiency, but the computa-
tional potential is not fully exploited, and the structure of
data and computational algorithm is not well suited for dis-
tributed computing. In this paper we present an efficient
implementation of both replicated data and distributed data
parallel FCI algorithms. In these new codes a combined
string driven and integral driven approach is proposed to
optimize both the sequential performance and the interpro-
cessor communication. In the distributed data implementa-
tion we identify the redundant communication in a parallel
FCI calculation and its collective nature. These problems are
solved conveniently in our combined approach. In addition,
the communication performance is further improved by the
implementation of new distributed data interface~DDI!10

communication routines. The performance and scalability of
the new parallel implementation are demonstrated by ex-
amples.

JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 1 1 JULY 2003

470021-9606/2003/119(1)/47/13/$20.00 © 2003 American Institute of Physics

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

II. THEORY AND METHODS

A. Description of the FCI algorithm

The FCI solves the Schro¨dinger equation by making use
of the variational principle. In practice, it solves the eigen-
vector problem of the Hamiltonian matrix in the determinant
basis space defined by distributing then electrons overN
spin orbitals. Since usually only a few eigenvalues and
eigenvectors are required in CI calculations, the eigenvalue
problem is commonly solved by iterative diagonalization
methods proposed by Davidson11 or Liu.12 In the Davidson
diagonalization method the Hamiltonian matrix is projected
onto a small set of subspace vectors, and the solution vector
is obtained by full diagonalization in this small subspace.
The subspace is improved at each iteration by adding a new
basis vector, which is derived from the Ritz residual. When
the subspace becomes too large to handle, a restart procedure
is applied and the subspace is contracted. The most time
consuming step in each iteration is the calculation of the
Hamiltonian projection vectors for the new basis vectorC,

s5HC, ~1!

whereH is the Hamiltonian matrix. As the dimension of the
CI space increases, the storage of the Hamiltonian matrix in
memory or even on disk soon becomes impossible. Thus a
direct CI technique must be employed to calculate thes
vector without explicit construction of the Hamiltonian ma-
trix. This strategy eliminates the storage problem of the
Hamiltonian matrix, so a significantly larger CI calculation
becomes possible.

The Hamiltonian operatorĤ in the Schro¨dinger equation
is generally expressed in second quantized form as

Ĥ5(
i j

hi j Êi j 1
1

2 (
i jkl

~ i j ,kl !~Êi j Êkl2d jkÊil !. ~2!

Here Êi j is the shift operator,hi j are one-electron Hamil-
tonian matrix elements, and (i j ,kl) are two-electron inte-
grals. In the following discussions we will useu,n,w to rep-
resent determinants,I,J,K to represent strings,k,l to represent
the orbital array of a string,La ,Lb to represent alpha and
beta excitation lists, and superscriptsl,t to denote unspeci-
fied alpha and beta spins.

In the FCI wave function, a determinant is expressed as
a combination of alpha and beta strings. An alpha string is
defined as an ordered product of creation operators for spin
orbitals with alpha spin, and a beta string is defined similarly,

uK&5uKaKb&, uKa&5)
i 51

na

a l ~ i !,a
1 , uKb&5)

i 51

nb

ak~ i !,b
1 .

~3!

l (i) and k(i) are the orbital arrays for the alpha and beta
strings, respectively. It is convenient to splitÊi j into alpha
and beta parts,

Êi j 5Êi j
a 1Êi j

b , ~4!

and the Hamiltonian can be rewritten as a combination of six
parts,

Ĥ5Ĥ11Ĥ21Ĥ31Ĥ41Ĥ51Ĥ6 ,

Ĥ15(
i

hii Êi i
a1

1

2 (
i j

@~ i i , j j !2~ i j , j i !#Êii
aÊj j

a

1
1

2 (
i j

~ i i , j j !Êii
aÊj j

b 1(
i

hii Êi i
b

1
1

2 (
i j

@~ i i , j j !2~ i j , j i !#Êii
bÊj j

b

1
1

2 (
i j

~ i i , j j !Êii
bÊj j

a ,

Ĥ25(
iÞ j

hi j Êi j
a 1

1

2 (
i i jk ,iÞ j

@~ i j ,kk!2~ ik,k j !#Êi j
a Êkk

a

1
1

2 (
i jk ,iÞ j

~ i j ,kk!Êi j
a Êkk

b ,

Ĥ35(
iÞ j

hi j Êi j
b 1

1

2 (
i jk ,iÞ j

@~ i j ,kk!2~ ik,k j !#Êi j
b Êkk

b

1
1

2 (
i jk ,iÞ j

~ i j ,kk!Ei j
b Êkk

a , ~5!

Ĥ45
1

2 (
i jkl ,iÞ j ÞkÞ l

~ i j ,kl !~Êi j
a Êkl

a !,

Ĥ55
1

2 (
i jkl ,iÞ j ÞkÞ l

~ i j ,kl !~Êi j
b Êkl

b !,

Ĥ65
1

2 (
i jkl ,iÞ j ÞkÞ l

~ i j ,kl !~Êi j
a Êkl

b 1Êi j
b Êkl

a !.

Here some of the two electron terms are grouped with one
electron term for ease of implementation. The six terms can
be viewed as the diagonal term (Ĥ1), alpha (Ĥ2) and beta
(Ĥ3) single replacement terms, alpha (Ĥ4) and beta (Ĥ5)
double replacement terms, and the combination of alpha and
beta single excitations (Ĥ6).

The coupling coefficients are the matrix elements of op-
eratorÊi j

l and the operator productÊi j
l Êkl

t .

Ei j
l,un5^uuÊi j

l un&,
~6!

Ei j ,kl
lt,un5^uuÊi j

l Êkl
t un&.

In the determinant basis, a nonzero coupling coefficient of a
single operatorÊi j

l can be either 1 or21, and the associated
phase factorPi j

l,un can be obtained by counting the occupied
orbitals thatu andn have in common between orbitalsi and
j, as discussed in Ref. 8.

Ei j
l,un5~21!Pi j

l,un
,

~7!

Pi j
l,un5 (

k5 i 11

j 21

Êkk
l,un .

The coefficientsEi j ,kl
lt,un can be evaluated by summing over

all the intermediate states,

48 J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Gan et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

Ei j ,kl
lt,un5(

w
^uuÊi j

l uw&^wuÊkl
t un&. ~8!

Although this may appear to be very complicated, only one
intermediate state ofw has a nonzero contribution, so it is
computed as the product of two single operator coefficients,
and its phase factor is the sum of the two,

Ei j ,kl
lt,un5~21!Pi j ,kl

lt,un
; Pi j ,kl

lt,un5Pi j
l,uw1Pkl

t,wn . ~9!

Now, let Hi be the matrix form of operatorĤ i , with the
computational task of thes vector apportioned accordingly,

s5H1C1H2C1H3C1H4C1H5C1H6C

5s11s21s31s41s51s6 ,

s1,u5(
n

H(
i

hii Eii
a,un1(

i , j
@~ i i , j j !2~ i j , j i !#Eii

a,unEj j
a,un

1(
i j

~ i i , j j !Eii
a,unEj j

b,un1(
i

hii Eii
b,un

1(
i , j

@~ i i , j j !2~ i j , j i !#Eii
b,mnEj j

b,unJ Cn ,

s2,u5(
n

H(
iÞ j

hi j Ei j
a,un1 (

i jk ,i , j
@~ i j ,kk!2~ ik,k j !#

3Ei j
a,unEkk

a,un1 (
i jk ,i , j

~ i j ,kk!Ei j
a,unEkk

b,unJ Cn ,

s3,u5(
n

H(
iÞ j

hi j Ei j
b,un1 (

i jk ,i , j
@~ i j ,kk!2~ ik,k j !#

3Ei j
b,unEkk

b,un1 (
i jk ,i , j

~ i j ,kk!Ei j
b,unEkk

a,unJ Cn , ~10!

s4,u5(
n

H (
iÞ j ÞkÞ l ,i j ,kl

@~ i j ,kl !2~ i l , jk !#Ei j ,kl
aa,unJ Cn ,

s5,u5(
n

H (
iÞ j ÞkÞ l ,i j ,kl

@~ i j ,kl !2~ i l , jk !#Ei j ,kl
bb,unJ Cn ,

s6,u5(
n

H (
iÞ j ÞkÞ l

~ i j ,kl !~Ei j ,kl
ab,un!J Cn ,

whereu andn denote elements of vectorss andC. Follow-
ing Olsen,3 in the case ofMs50 the computation of terms
s3 ands5 can be eliminated and the computational effort of
s6 can also be halved by imposing the condition

s~a,b!5~21!ss~b,a!. ~11!

B. String and list generation

A string is represented by a list of occupied orbitals in
ascending energy order. During a FCI calculation, the infor-
mation about a string is frequently accessed, so it is expedi-
ent to store this information rather than generate it on the fly.
An effective way to accomplish this is to store strings in their
bit format. In a system containingna a electrons andM
orbitals, a string can be represented by a binary word of

lengthM. Each bit represents an orbital; the bit is set to 1 if
the orbital is occupied and set to 0 if it is empty. This is also
called a string’s binary representation. InFORTRAN a string
can be stored as an integer and its information can be easily
retrieved using theibtest intrinsic function. However, if the
number of orbitalsM exceeds the total number of the bits of
an integer word, this storage scheme becomes very inconve-
nient. First, a string has to be stored using several integers
and the bit testing becomes nontrivial. Second, the efficiency
of bit testing is also reduced because of the increased number
of unoccupied orbitals. To avoid such problems an alterna-
tive orbital format is used in the code presented here, when
the orbital space is relatively large. In this scheme only the
occupied orbitals of a string are stored and each takes one
byte of memory. InFORTRAN this can be implemented using
an INTEGER*1 or CHARACTERarray. The combination of
bit format and orbital format exploits the nature of FCI cal-
culations, as a realistic FCI calculation can either have a
large number of electrons or a large number of active orbit-
als, but not both. Thus either the bit format or the orbital
format of a string will be suitable for a given FCI calcula-
tion.

The canonical order of a stringKl can be obtained by
using a modifiedWYBseries arrays proposed by Wang and
co-workers~WYB!,13,14

Cano~Kl!511(
i 51

nl

WYBi@k~ i !#. ~12!

Here l denotes either alpha or beta spin of electrons,nl is
the number of electrons in stringKl , andk(i) is the orbital
array. TheWYBarrays can be generated recursively,

WYBi~J!5WYBi 21~J21!1WYBi~J21!, ~13!

or be calculated directly

WYBi~J!5S J21
i D . ~14!

The canonical order generated by this indexing system is
different from the addressing system proposed by Knowles
et al.,15 where theZ matrix is used. Here we useL(na ,M) to
denote the list of alpha strings in canonical order,na is the
number of electrons with alpha spin andM is the total num-
ber of orbitals. Table I shows the list ofna53, M56 using
the two different indexing schemes. Only one set ofWYB
arrays is used for both alpha and beta strings, while theZ
matrix has to be built for alpha and beta strings separately.
Besides, theZ matrix is more complicated to construct com-
pared toWYBarrays. The formula for theZ matrix is

Z~ i ,J!5 (
m5M2J1 i

M2 i F S m
na

D2S m21
na2 i 21D G ,

~M2na1 i>J> i ; i ,na!,

Z~na ,J!5J2na , ~M>J>na!.

The canonical order of alpha and beta strings is used to ad-
dress the determinants in the CI vector. The structure of the
FCI coefficient matrix can be viewed as a two-dimensional
matrix whose columns and rows are labeled by the canonical

49J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Parallel full CI

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

order of alpha and beta strings, respectively. When Abelian
spatial symmetry is exploited, we define the irreducible rep-
resentation~irrep! of a string as the product of the irreps of
its occupied orbitals,

G~Kl!5)
i 51,nl

G@k~ i !#. ~15!

Here G(K) and G(k) represent the irreps of stringK and
orbital k, respectively. Because of the spatial symmetry im-
posed on the CI coefficient vector, the allowed combination
of alpha and beta strings must be symmetry matched. If al-
pha and beta strings are grouped according to their irreps, the
matrix of CI vectors becomes symmetry blocked. Each block
consists of only the alpha columns of that given irrep and
thus has reduced dimension. LetCa and Cb represent the
canonical order of stringKa andKb . Then, the address of a
determinant is obtained by

Addr~Ka ,Kb!5ADDR~Ca!1ORDB~Cb!, ~16!

where the entry address of each alpha column is kept in the
ADDR array, and theORDBarray maps the canonical order
of the beta string onto the actual order in its symmetry block,
i.e., the offset value in the alpha column it belongs to. The
contribution from the alpha string and the beta string can be
computed and stored separately; this facilitates the combina-
tion of alpha and beta strings.

The simple formula for calculating a string’s canonical
order and the addressing scheme for a CI vector also leads to
the optimization of a list generation technique. Given a string
Kl and operatorÊi j , its single excitation stringKl8 can be
generated by removing the electron from thej th orbital and
placing it in thei th orbital. The canonical order ofKl8 and
the phase factor ofÊi j can be computed once the stringKl8 is
formed. However, since only the canonical orderCl8 and the

phase factor are of interest, it is possible to obtain them
without explicit construction of the new string. This can be
done by looping over the occupied orbitals ofKl in strictly
ascending order with new orbitali included and old orbitalj
excluded. The phase factor is computed at the same time by
counting the number of occupied orbitals between orbitali
and j. The entire operation is completed within one single
loop over the original string, and no new string is formed.
So, the operation count is basically cut by half. This opti-
mized list generation technique is very useful because list
generation is used extensively in FCI algorithms.

The list generation algorithm described here is designed
to serve the needs of the combined CI driven approach, in
which both string driven and integral driven loops will be
employed. For this reason, a buffer array is used to hold the
generated excitation list. The single excitation string driven
list is straightforwardly generated by applying all possible
Êi j operators to each string. To generate the double excita-
tion list, operatorsÊi j andÊkl are applied separately to each
string. The intermediate stringKl8 after applyingÊkl is gen-
erated explicitly, so the final double excitation stringsKl9 can
be computed fromKl8 , applying the technique discussed
above. The method presented here does not generate the in-
tegral driven strings directly. If an integral driven list is de-
sired, it is obtained by sorting the stored string driven list. It
should be mentioned that various advanced integral driven
list generation methods have been proposed, including the
direct list approach5,8 and reduced list approach.6 The possi-
bility of employing such algorithms has also been consid-
ered. The problem with the direct list approach is that two
entire string space tests are required for each pair of integral
indices~i,j!, and most such test operations are redundant. In
addition, the enormous bit counting operation in the direct
list approach raises a technical concern because such an op-
eration can be very inefficient inFORTRAN unless mixed
c/Fortran programming is used. The problem of string space
testing is avoided in the more recently proposed reduced list
approach. In the latter, the excitation list is generated by
inserting a pair of occupied orbitali and unoccupied orbitalj
into the reducedn21 electron list. All the generated strings
are valid excitation pairs, thus no operation is wasted. How-
ever, this algorithm cannot guarantee the symmetry of the
generated strings, since the reduced list no longer has any
symmetry information. Such problems do not exist in the list
generation algorithm presented here, as the imposed symme-
try requirement on strings can be easily satisfied by looping
over only the symmetry matched orbitals. LetG denote the
irrep, i andj denote the orbitals, andKl8 the strings generated
from Kl by applyingEi j . We have

G~Kl!* G~Kl8 !5G~ i !* G~ j !. ~17!

The orbital pairi,j can simply be skipped if it does not match
the required symmetry. Since the string driven list generation
is highly efficient, it is more advantageous to obtain the in-
tegral driven excitation list from the string driven one at the
expense of extra sorting and storage, rather than adopt the
list algorithms discussed above. Another benefit of this

TABLE I. The order of alpha strings usingWYBarrays and theZ matrix for
M56, na53.

Order of
string Ka

String Ka

WYBarray Z matrix

1 123 123
2 124 124
3 134 125
4 234 126
5 125 134
6 135 135
7 235 136
8 145 145
9 245 146

10 345 156
11 126 234
12 136 235
13 236 236
14 146 245
15 246 246
16 346 256
17 156 345
18 256 346
19 356 356
20 456 456

50 J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Gan et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

method is that the spatial locality in the string driven list is
partially preserved in the final integral driven list, thus reduc-
ing communication.

C. Algorithm implementation

The s vector updating step is traditionally organized in
either an integral-driven or a string-driven approach, as dis-
cussed in Refs. 6 and 8. However, the choice of one of these
methods has mostly been concerned with the operation
count, not the data structure and its access pattern in CI
calculations. Because of the nonuniform memory access
~NUMA ! pattern of modern CPU architectures, one generally
needs to exploit either spatial locality or temporary data lo-
cality in order to obtain reasonable CPU performance. In
parallel computing, the distributed memory adds another
layer to the memory hierarchy. This provides huge storage
capacity, but generally incurs high latency and has limited
bandwidth to access. Clearly, exploiting the data locality is at
least as important as decreasing the operation count to
achieve high performance on modern hardware architectures.
With these considerations in mind, a combined string driven
and integral driven approach has been implemented in thes
vector construction. The combined multiple CI driven
scheme was first proposed in theGUGACI code developed by
one of us,16 where the main data structure consists of three
parts: the CI coefficient vector, the integral array, and the
coupling coefficients. Accordingly, the configuration driven,
integral driven, and loop driven approaches are integrated at
different loop levels to make memory access to each part
more efficient. In a FCI calculation the primary data is con-
tained in theC and s vectors, so the string driven loops
should be employed wherever these vectors are involved. In
a sequential code, the string driven loops are best placed in
the innermost loop updating thes vector. In a distributed
data parallel code the string driven loops can also be used in
the outermost loop to optimize the communication between
processors. Although the storage of the integral array is gen-
erally not a problem in a FCI calculation, the integral driven
approach is much more efficient than the string driven one in
computing Hamiltonian matrix blocks. In the integral driven
approach the same intermediate result can be used to com-
pute a series of similar Hamiltonian matrix blocks, which is
actually generated implicitly in a direct CI approach. Re-
using data here is a powerful technique, because it not only
saves computation time, but also exploits the temporary data
locality at the same time. It is thus desirable to integrate the
two schemes together so that both the construction of the
Hamiltonian matrix and the matrix vector product can be
carried out with optimal performance. We now briefly de-
scribe the implementation of the combined CI driven scheme
in the two major routines, the beta-beta routine and the
alpha-beta routine.

The beta-beta routine computes the terms ofs3 ands5

@Eq. ~10!#, which correspond to the single and double re-
placement of beta strings, respectively. In the algorithm pre-
sented here part of the two-electron operator term that con-
tributes to the same determinant pairs is also grouped into
s3 . Such grouping is expected to be much more efficient
than computing those terms separately. The contribution to

the same Hamiltonian matrix element is added together be-
fore the multiplication by CI coefficients. As a result, the
number of multiplication operations is reduced, and~more
important! fewer memoryload and store operations on the
CI elements are required. In the straightforward string driven
implementation ofs3 one loops over each beta string and
generates its single replacement strings first, then each beta
pair is combined with the corresponding alpha strings and
their contributions tos3 can be counted. However, this
simple algorithm does not perform well. One reason is that
the stride of the inner loop, which equals the number of beta
strings in that symmetry block, is too large. In modern CPU
architecture a large stride in the innermost loop results in
poor cache performance. Most importantly, there is repeated
computation. Since the detailed orbital information of each
alpha string is needed to compute the two-electron term in
s3 for each beta pair the entire alpha strings must be un-
packed. Despite the optimized string storage scheme, such
excessively repeated operations would still cost considerable
computer time. Moreover, the computation of Hamiltonian
elements is inefficient as well, because every element is com-
puted from scratch.

To address the problems mentioned above, an integral
driven approach is employed inside the string driven outer
loop. First, one sets up a buffer array to store the generated
beta single replacement pairs. The use of a buffer enables us
to loop over the alpha string first so the innermost loop only
acts on the CI elements in the same alpha column. The re-
duced memory stride leads to improved cache reuse and
memory page access patterns. The stride is limited by the
size of a single alpha column. Since an alpha column can
easily fit in L2 cache~or even L1 cache for small cases!,
temporary locality can be expected if there are enough op-
erations in the same alpha column. Second, an integral
driven loop is used to organize the updating ofs3 . The
benefit comes from the effective data reuse in the computa-
tion of Hamiltonian matrix elements. Because the last term
in H3 involving the alpha orbital array does not depend on
beta strings, except for the integral index, this term can be
computed and shared by all the beta pairs with the same
integral index. In the current implementation the alpha string
orbital information is unpacked and computed only once for
each beta integral index list, and the contribution to Hamil-
tonianH3 is calculated and stored temporarily. The interme-
diate result can be utilized by all the beta pairs that belong to
the current integral index label, so that no further computa-
tion over alpha strings is needed. This strategy for reusing
data not only amortizes the overhead of string unpacking but
also greatly reduces the computational effort for calculating
the Hamiltonian matrix elements.

The algorithms for two differents3 implementations are
outlined below. The original algorithm has a very simple
structure but the computation of the innermost loop is very
demanding and not cache friendly. Although the second al-
gorithm looks much more complicated, the innermost loop is
very simple. Tests suggest that the optimized~second! algo-
rithm is much more efficient than the original~first! one.

51J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Parallel full CI

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

A pure string driven algorithm fors38

Loop over each beta stringKb

Generate excitation stringKb8 by applyingEj j ,
Loop over alpha strings,

Retrieve orbitals array of alpha string
CalculateH3 , do s3 contribution.

A combined driven algorithm fors3 calculation:

Generate theintegral driven beta list Lb

@do the following if buff is full#
loop over indexindij

loop over alpha strings, precompute and store the
intermediate result forH3

loop over alpha strings~string driven!
loop over beta pairs withindij ~integral driven!

computeH3 and updates3 .

In the computation ofs5 a buffer array is used to hold
the beta double excitation list temporarily, so the string
driven loop over alpha strings can be applied first. However,
since the computation of the Hamiltonian matrix element
here is rather straightforward, there is no need to use the
integral driven approach. The innermost loop is optimized by
using a string driven beta double excitation list to improve
the cache performance. Note that since the stored beta list is
retrieved for every alpha string, it is important to keep the
array size in a reasonable range so it can fit into cache. In the
code presented here, this is accomplished by imposing an
upper limit on the size of the buffer array. The storage of the
entire double excitation list is not only unnecessary, but also
can be very inefficient, even if sufficient memory is avail-
able.

The computation ofs6 requires the combination of al-
pha and beta single excitation lists. For this reason the buffer
array is divided into two parts,ialoop andibloop, to hold the
generated alpha and beta excitation lists separately. Still, one
loops over the generated alpha excitation pairs first, so the
inner loop over the beta list will act on the alpha columns
defined by the given alpha pair. Temporary data locality can
be exploited if the length of the beta list is long enough,
because the more operations on the same chunk of data, the
more chance there is to find the required data already in
cache. Two major efforts are involved: building the Hamil-
tonian block and updating thes vector. To accomplish these
tasks, the alpha list is generated in an integral driven loop
and the beta list in a string driven loop. The alpha excitation
pairs with the same integral index are grouped together so
they can use the same integrals and intermediate data when
combined with the beta list. Because of the reuse of data, the
Hamiltonian matrix blocks, although never explicitly gener-
ated, can be computed very efficiently. The string driven beta
single excitation list is used in the innermost loop so the
computation of the matrix vector product can be performed
in a cache efficient way. ForMs50, however, the parallel
strategy requires the overall structure in the alpha-beta part
to be organized in an integral driven approach, so the integral
index conditioni j <kl can be applied to halve the computa-
tional cost. In such cases, an integral driven beta single ex-

citation list is generated and used to organize the innermost
loop.

Algorithm for alpha-beta routine,MsÞ0:

Generate theintegral driven alpha list La

@do the following if buff is full#
Generate thestring driven beta listLb

@do the following if buff is full#
Loop overindij of La

Precompute the intermediate quantities forH6

Loop over alpha pairs with indexindij ~integral
driven!

Loop over beta pairs~string driven !, do s6

contribution.

Algorithm for alpha-beta routine,Ms50:

Generate theintegral driven alpha list La

@do the following if buff is full#
Generate theintegral driven beta listLb

@do the following if buff is full#
Loop overindij of La

Loop over alpha pairs with indexindij ~integral
driven!

Loop overindkl of Lb , indkl< indi j ,
Loop over beta pairs with indexindkl ~inte-
gral driven !,
do s6 contribution.

III. PARALLEL IMPLEMENTATION

A. Parallization of subspace operations

In the parallel FCI program presented here both the CI
coefficient vectorsC and the correspondings vectors are
kept in distributed memory. The CI vector is first organized
in symmetry blocks, and then distributed evenly over all
available processors. To avoid explicit access of a single ar-
ray element, an alpha column is chosen as the smallest unit
for a network communication. Therefore the determinants in
the same alpha column must be kept on the same node.

The iterative Davidson diagonalization procedure is
chosen as the first step because of the consideration of
both parallel efficiency and memory capacity. According to
Amdahl’s law, even a small percentage of serial code can
cause serious scalability problems in parallel applications.
Moreover, the memory requirement for the huge subspace
vectors can generally only be partially solved using distrib-
uted memory.

Each Davidson iteration involves several vector opera-
tions, the construction of the Hamiltonian matrix in the sub-
space, the computation of the residual vector, the precondi-
tioning of the residual, Schmidt orthogonalization, and the
normalization of the new basis vector. Fortunately, the par-
allelization of these subspace operations is rather straightfor-
ward. Since all the subspace vectors are distributed, the com-
putationally intensive vector operations can be carried out
locally on each processor, and only scalar values are required
to communicate through network calls. The communication
overhead here is negligible.

The most difficult part of the parallelization is theHC

52 J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Gan et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

step, in which the locals vector is obtained from basis vec-
tor C. Both replicated data and distributed data algorithms
have been implemented to parallelize this step.

B. Replicated data implementation

In a replicated data implementation two working arrays
X and Y are needed to hold the entire CI vector and the
partially formeds vector. As both theC and s vectors are
originally distributed, addi–allgatherv ~MPI–allgatherv!
operation is called to collect the distributed vectorC into the
working arrayX on each processor. TheHC calculation can
then be executed in parallel and the partials vector obtained
in array Y. After the HC calculation, the partials result is
summed and scattered into thes array on each processor by
calling the standardddi–reduce–scatter ~MPI–Reduce–
scatter! operation. No communication is involved inside the
HC computation.

The key issue in parallelizing theHC task is to obtain
good load balancing on each processor. To achieve this, a
dynamic load balancing strategy is employed. The entireHC
computation is split into many subtasks, each of which is
defined as updating a segment of thes vector. A task list is
generated before theHC calculation, and the tasks are dy-
namically assigned to processors at run time.

Good load balance can be easily achieved by generating
a long task list and many small tasks. However, the associ-
ated communication and computation overhead is undesir-
able. As a compromise between load balance and the com-
munication overhead, task aggregation is done to artificially
produce some large tasks. Three parameters are used in the
program to define the parallel subtasks:
~i! Ntask–proc: the average number of tasks per processor.
~ii ! R–size: the ratio of the size of large tasks to that of small
tasks.
~iii ! R–num: the ratio of the number of large tasks to that of
small tasks.

The parameters are set to default values and can also be
specified by input directives. Using these parameters to de-
fine the task list also gives us more flexibility porting the
code to different hardware platforms.

Once generated, the tasks are properly arranged in the
task list. Good load balance can be obtained by executing the
tasks in the order of decreasing size. Figures 1 and 2 give an
example of a task list and the resulting load balance on a 16
node PC cluster.

C. Distributed data implementation

In the distributed data implementation, a segment is de-
fined as the part of a CI vector on each node. To make full
use of the data locality, a static load balancing scheme is
employed. The computational task of each node is defined as
updating its locals segment. Using this task definition, in-
terprocessor communication is only required for collecting
the CI coefficient vectorsC. The network communication
can be carried out in a one-sided asynchronous manner, so
that the remote CI coefficient vectors can be easily accessed
without the collaboration of remote nodes. The one-sided
communication feature is supported by DDI~distributed data
interface! routines. In DDI two processes are spawned on
each processor. One of these performs the computation; the
other becomes the data server. A copy of the localC vector is
required in the data server so it can be accessed by other
remote processors. In the distributed data implementation the
need for the replicated arraysX and Yis removed. Instead, a
small sized buffer arrayZ is used to facilitate both commu-
nication and computation. The remote CI coefficients, if
needed, are first collected in the local bufferZ, and the up-
dating of thes segment can be carried out locally. The two
approaches are illustrated in Figs. 3 and 4.

1. Beta-beta routine

The beta-beta routine involves the single and double ex-
citations of beta strings. Since the CI vector is distributed by
alpha columns, this part can be done completely locally. The
sequential algorithms can be applied here, but only the local
alpha strings should be involved because only the locals
vector will be updated. However, each processor needs to
create the entire set of beta single and double excitation lists,
so the list generation process is duplicated. This can cause
problems in the parallelization effort.8,17 The most effective

FIG. 1. The size of subtasks in calculation of H3COH ~14,14! using repli-
cated data parallel approach. 16 processors are used. The task parameters are
set toNtask–proc54.5, R–size510, R–num51.2. FIG. 2. Load balancing of HC step on 16 node PC cluster. The calculation

is for H3COH ~14,14! using the replicated data parallel approach. The pa-
rameters are set toNtask–proc54.5, R–size510, R–num51.2.

53J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Parallel full CI

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

way to solve this problem is to decrease the computation
cost. In the current implementation the overhead is greatly
reduced by an efficient list generation algorithm, so its im-
pact on the overall performance is almost negligible.

2. Alpha-beta routine

The calculation ofs6 is the most time consuming step.
Since the alpha columns are globally distributed, this part
also incurs intensive network communication to get the CI
coefficients from remote processors. To exploit the sparse-
ness of the FCI Hamiltonian matrix, network vectorgather
andscatteroperations are commonly used to collect and dis-
tribute the remote data. Thegatheroperation applies to theC
vector, and thescatteroperation applies to thes vector. Ac-
cording to the task definition, only the local part of thes
vector is updated, so thescatteroperation is not necessary in
the current implementation.

To effectively hide any latency of the communications
subsystem, it is favorable to send a small number of large

messages instead of a large number of small messages. For
this reason, a buffer array is used to collect and store the
remote alpha columns. The computational procedure of the
alpha-alpha routine can be divided into three steps. First, the
alpha single excitation listLa is generated by looping over

the local alpha strings and applying all theÊi j operators.
Second, the required remote alpha blocks in the excitation
list are gathered into the local buffer array via network com-
munication. Third, the beta listLb is generated and combined
with the alpha list, and thes6 contribution can be calculated
using the coefficient vector gathered in the buffer array.
Communication only occurs in the second step; all the other
steps are completely local. In order to avoid sending and
receiving many small single alpha columns, an optimized
communication technique can be applied by grouping the
required remote alpha strings according to the nodes on
which they reside. After grouping one can send thegather
request of many alpha columns to the remote node in one
communication call. The entire vector gathering step is com-
pleted by sending such a request to and receiving the coeffi-
cient vector from remote nodes one by one.

Even with such an optimization, the above algorithm can
still be very communication intensive. Thegatherstep men-
tioned above is a collective operation; thus it requires the
completion of all work on the participating nodes. Such an
operation is not efficient on clusters. Especially if it is done
in block mode, the communication must be carried out one
by one and in a predefined order, which adds additional syn-
chronization overhead. Moreover, there is the problem of
‘‘redundant communication.’’ Since the size of buffer array is
always limited, the whole process of list generation generally
requires many loop cycles to complete, thus the same remote
alpha string may be generated and requested many times in
different loop cycles. As shown in Fig. 5, the same remote
alpha blocks may be fetched through network communica-
tion repeatedly. Although such problems have not been ad-
dressed by other distributed data FCI implementations, it is
important to decrease communications to a minimum in or-
der to achieve good performance on clusters.

The solution to this problem in the algorithm presented
here is to replace the redundant communication with extra
computation; trading cycles for communication. Instead of
looping over only the local alpha strings, one loops over the
entire alpha strings. The entire alpha string space is swept
and the remote alpha string is placed into the gather list only
if it has a single excitation string that is local. Since each
alpha string is looped only once, redundant communication
is avoided. At the same time the collectivegather is decou-
pled into point-to-pointgatherautomatically if one computes
the contribution ofs6 node by node, as illustrated in Fig. 5.
Note that repeated computation occurs here since the entire
alpha single excitation list is generated and checked on each
node. However, because the string driven list in the current
algorithm can be generated very efficiently, such extra com-
putation has little impact on the overall performance. An-
other important issue is the network contention that might
arise if all nodes start the loop from the first node. This
situation can be partially eased by changing the starting node
of each computational processor. The starting node can be

FIG. 3. Outline of replicated data parallel FCI.

FIG. 4. Outline of distributed data parallel FCI.

54 J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Gan et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

randomly chosen or can be specified in a predefined order. In
this code each node starts from its local alpha strings, and
then it loops over the remaining nodes in a cyclic order. In
practice better results are obtained in this way, although the
difference is not significant.

Once the required CI coefficients are fetched into the
buffer array, thes6 construction can be carried out com-
pletely locally. The sequential algorithm discussed above is
applied, and the computation is organized in a combined CI
driven approach. ForMs50 the innermost loop must be
organized in an integral driven approach, because of the
static load balancing scheme employed here.

3. Alpha-alpha routine

The alpha-alpha routine computes the contribution ofs2

ands4 . As discussed above, this can be omitted by applying
a vector transposition step forMs50. Since the calculation
of s2 involves only single alpha replacement, this part is
integrated into the alpha-beta routine and the contribution of
s2 is calculated as a byproduct ofs6 . This eliminates the
communication fors2 . The terms4 involves double excita-
tions of alpha strings and it is treated separately. Intensive
network communication occurs here in order to get the re-
mote alpha blocks for the calculation ofs4 . The communi-
cation is handled in the same way as in the alpha-beta rou-
tine, so repeated communication is avoided.

4. DDI in GAMESS

The distributed data interface10 ~DDI! is the built in fa-
cility in GAMESSfor network communications. Its underlying
libraries include TCP/IP sockets code, MPI-1 and SHMEM
libraries. DDI provides basic network communication func-
tions, including point-to-point operations likesendand re-
ceive and collective operations likebroadcastand global
sum. In addition, DDI also provides features including dis-

tributed and globally addressed array and one-sided commu-
nication, which are very useful for many quantum chemistry
codes.

On clusters, the one-sided communication is imple-
mented by creating two processes on each node. One process
handles real computational tasks, and the other becomes the
data server. The data server holds the distributed array; its
task is to listen to network messages and respond to the data
request. Three basic operations are provided in DDI: remote
get, put, andaccumulate. There are advantages to using one-
sided communications. First, it reduces programming diffi-
culty. Second, it is efficient because the asynchronous com-
munication model eases the overhead of explicit
synchronization between processors.

However, many applications may require more compli-
cated communication patterns. For example, thegather op-
eration used in thes vector updating step requires non-
contiguous access to the distributed data, which is beyond
the ability of remoteget. To use theget function the required
data must be placed contiguously in the distributed array.
One can of course complete the remotegather task by re-
peatedly requesting single alpha columns, but the associated
synchronization and latency overhead would be very costly,
especially on clusters. In addition, bandwidth is also severely
limited if the size of a single alpha column is very small.
Clearly, such problems can be solved if the data server is
‘‘smart’’ enough to do a local vectorgather before sending
the data. Such an operation would be very simple if one had
an appropriate communication library interface.

To add more functionality to DDI, a message handling
function ddi–userwas created, and a DDI message ID from
99 to 199 is reserved for it. Insideddi–user, the programmer
can assign a reserved ID to a unique communication pattern
and develop the corresponding request handling function.
The next step is to pass the message and control from DDI to
ddi–user. The DDI data serveris a daemon process that

FIG. 5. Communication patterns of two different algorithms for alpha-beta routine. Numbers in the graph are for illustration purpose only. The numbers in
bold indicate redundant communication.

55J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Parallel full CI

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

exists until the program finishes, so a call is placed to
ddi–userin the daemon loop. The control will be returned to
DDI daemon immediately if the message ID does not match
those reserved. Otherwise,ddi–user will hand the message
request to the proper user defined functions via a message
mapping mechanism. A remotegather operation is handled
in the following way. First, the computation process~caller!
sends a vectorgatherrequest to the DDI server. The message
is received by the DDI daemon and then passed toddi–user.
Since the message ID forgather is a reserved one,ddi–user
will take it and pass the execution control to the target func-
tion ddi–vgather, where the vectorgatherrequest is actually
handled. Insideddi–vgatherthe server process first requests
and receives the information about the requested alpha lists
from the caller, then performs a localgather using a buffer
array and sends the compiled data to the caller.

The implementation of remote vectorgatheris not a new
idea. In fact, ARMCI~Ref. 18! ~aggregate remote memory
copy interface! also provides a set of descriptive communi-
cation interfaces, where a vector version of thegetoperation
is provided. However, it is not simple to include all the com-
munication patterns in real applications. With the ability to
add user predefined communication routines, the DDIdata
serverevolves to acommunication server, thereby providing
more flexibility in developing performance network commu-
nication functions. For example, in the vector transposition
step required by the simplification condition forMs50, the
DDI server acts in dual roles: it collects the transposed vector
blocks and records the property of those blocks. After syn-
chronization, it sends the recorded property array to a local
computational process, and then sends the transposed blocks
one by one. Such a communication intensive operation gen-
erally does not scale well on clusters. However, with the
‘‘smart’’ DDI communication serverit performs very effi-
ciently and therefore does not create too much overhead.

IV. PARALLEL PERFORMANCE AND ANALYSIS

First, consider the sequential performance of the new
parallel code. This is often ignored in parallel applications,
but it provides an important baseline against which to com-
pare scalable performance. Further, it is impossible to
achieve high performance computing without a good under-
lying serial code. An inefficient sequential algorithm can cost
precious parallel CPU cycles, and this inefficient use of com-
putational resources only increases as more processors are
used. In Table II the timing of theHC construction per CI

iteration is listed for both the original code9 and the present
distributed data parallel code running on one processor. Note
that in the sequential code only the upper triangle of Hamil-
tonian matrix elements is computed. The distributed data
code is designed with the concept of local and remote data in
mind. When a Hamiltonian matrix element is found only the
local s vector is updated, thus the computation of the entire
Hamiltonian matrix is required. Despite the extra computa-
tion, the sequential performance is significantly improved.
The increased efficiency is even greater in high-spin and
high-symmetry cases. The good performance in high-spin
cases can be explained by the string driven innermost loop in
the alpha-beta routine. ForMs50 an integral driven inner-
most loop over beta pairs is employed in the parallel code.
The string driven innermost loop is more effective in exploit-
ing the spatial locality so better cache and CPU performance
can be obtained. In high-symmetry cases the significant per-
formance gain indicates that the list generation algorithm is
not only efficient, but also well suited for Abelian group
symmetry.

Two example calculations, one singlet and one doublet,
are chosen to test the performance and scalability of the new
parallel FCI code. The calculations were performed on a PC
cluster consisting of 16 PII 400-MHz processors linked to a
central hub using a 100-Mbps fast Ethernet connection. The
cluster has 8-GB aggregate memory with 512 MB each. The

FIG. 6. Parallel performance of replicated data FCI code on PC cluster~PII
400 MHz, 100-Mbps fast Ethernet, 16 nodes!.* Doublet state of H3CSiH2 ,
10 306 296 Dets. generated by distributing 13 electrons among 14 active
orbitals.** Singlet state of H3COH, 11 778 624 Dets. generated by distrib-
uting 14 electrons among 14 active orbitals.

TABLE II. Timing comparison of calculations on single CPU IBM Power3II 375-MHz node.

Molecule
Point
group Irrep

Spin
mult Nel Norb

Dimension
~determ!

Time per iteration~s!
Speed

upOrig. FCI DDI FCI

H3COH C1 a1 1 14 14 11 778 624 694.4 352.9 1.97
H3CSiH2 C1 a1 2 13 14 10 306 296 3734.9 541.6 6.90

HNO CS a1 1 12 14 4 513 905 151.3 70.5 2.15
H3CN CS a2 3 12 16 24 986 830 8850.0 986.6 8.98
H2O C2v a1 1 10 14 1 002 708 25.5 8.1 3.15
C2H4 D2h a1g 1 12 16 8 018 480 281.3 66.2 4.25

Si2H41 D2h b3u 2 11 16 4 369 587 337.0 42.7 7.89

56 J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Gan et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

singlet calculation on H3COH uses a FCI space of
11 778 624 determinants generated by distributing 14 elec-
trons over 14 active orbitals. The doublet calculation on
H3CSiH2 has a 10 306 296 determinant space generated by
distributing 13 electrons over 14 active orbitals. In the sin-
glet calculation only beta-beta and alpha-beta routines are
performed and the alpha-alpha routine is replaced by a vector
~matrix! transposition step; in the doublet calculations the
alpha-alpha routine is also executed.

Figure 6 illustrates the parallel performance of the repli-
cated data code. The timing of theHC computation as well
as that of one typical Davidson iteration is measured and
analyzed. In the replicated data approach two collective op-
erations have to be performed before and after theHC com-
putation. The standard MPICH library is used for these col-
lective communications. It is shown that in both calculations
the computation time of theHC step scales almost perfectly,
illustrating the effectiveness of the dynamic load balancing
scheme. The overall speedup of the doublet calculation is
about 12 on 16 nodes, which is reasonably good performance
considering the cluster’s fast Ethernet connection. However,
the speedup of the singlet calculation is only 8.4. Clearly, the
ratio of computation to communication is an important factor
for parallel efficiency, as in the singlet calculation the com-
putational effort is nearly halved, while the communication
remains almost the same. The communication time in the
H3COH calculation takes 47.4% of the total iteration time
running on 16 nodes, almost as much as the cost of compu-
tation. Of course, one expects the performance to improve
using a better MPI library or hand-tuned collective routines.
However, it is clear that the collective operations will remain
the bottleneck on PC clusters. Besides, the replicated data
approach is restricted by the memory capacity of a single
CPU node.

The parallel efficiency of the distributed data parallel
FCI code was tested on the same PC cluster. The results for
the singlet and doublet calculations are presented in Figs. 7
and 8, respectively. The singlet calculation scales almost per-
fectly; the speedup on 16 nodes is 15.7. A slight super linear
speedup is obtained in the beta-beta routine because of the

cache effect. Note that in the beta-beta routine the generation
of the entire single and double excitation lists is repeated on
each node. This is hard to avoid if one is to exploit the data
locality, as discussed with regard to the direct list parallel
implementation.8,17 However, they were unable to find a
more efficient approach within the framework of an integral
driven list generation scheme, so the scalability of the beta-
beta routine is severely limited. In the present beta-beta
implementation the list generation cost is decreased using the
optimized string driven algorithm. The excellent scalability
of this beta-beta routine also illustrates that an efficient se-
quential algorithm can help the parallel performance. Simi-
larly, the repeated list computation in the alpha-beta routine
should not present a big problem, as only the single excita-
tion list is involved. Although the overall performance ben-
efits a little from the super linear speedup in the beta-beta
routine, the key issue here is still the reduced communication
cost. For example, on 16 nodes the time per CI iteration is
about 149 sec, and the time for communication is less than 5
sec.

In the doublet calculation the beta-beta routine again
shows almost perfect scalability. The speedup of the alpha-
beta routine drops a little compared to the singlet calculation
but it is still reasonable. Since the alpha-beta routine here is
organized in the combined driven approach, its actual perfor-
mance is better than that in the singlet calculation. The
alpha-alpha routine is dominated by communication, so it
does not perform as well as the other routines. Two possi-
bilities are under investigation for future improvement of this
part. The first method is to combine the alpha-beta and
alpha-alpha routine together so the gathered remote vectors
can be shared. Because the double excitation list is usually
very large, the network performance may be further im-
proved by dynamically choosing betweenvector gatherand
block getbased on the volume of communication. Another
method is to transpose the CI vector so one can apply the
algorithm of the beta-beta routine instead. In this way two
vector transposition operations are required, one for theC
vector and one for thes vector. However, the storage of the
transposed vectors may increase the memory requirement
greatly, unless disk I/O is involved.

FIG. 7. Parallel performance of distributed data code in FCI~14,14! calcu-
lation of singlet state of H3COH on PC cluster. 11 778 624 Dets are gener-
ated by distributing 14 electrons among 14 active orbitals.

FIG. 8. Parallel performance of distributed data code in FCI~13,14! calcu-
lation of doublet state of H3CSiH2 on PC cluster. 10 306 296 Determinants
are generated by distributing 13 electrons among 14 active orbitals.

57J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Parallel full CI

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

All electron FCI calculations on the potential curve of
ground state N2 have also been performed as a benchmark on
the 16 node PII cluster. A small basis set 6-31G was used,
andD2h symmetry employed. A total of 16 different geom-
etries were computed to obtain the potential curve. The FCI
~14,18! calculation includes 126 608 256 determinants in the
CI space, and it requires 6.3 GB aggregate memory, close to
the cluster’s 8-GB memory limitation. The N2 calculation
takes 750 sec per CI iteration, of which about 85 sec are
spent on network communication and about 20 sec are lost
due to load imbalance. There is a total of 12.6 GB data
transferred per iteration and the average network bandwidth
is about 75 Mbps, showing the effectiveness of the improved
DDI communication server. The efficiency of CPU usage is
measured as 83% for the entire calculation.

The parallel performance of the distributed data parallel
code was also tested on an IBM pSeries p640 cluster. The
IBM cluster represents the high end hardware platform in
cluster computing. Each IBM node consists of 4 power3II
processors running at 375 MHz, and each node has a dual
Gigabit Ethernet 64-bit PCI connection. In contrast with the
Pentium II processor, the IBM processor has a much larger
4-MB level 2 cache. It is necessary to keep the size of the
buffer array basically unchanged in one set of calculations in
order to factor out the cache effect. Otherwise the scalability
obtained on the IBM system would be misleading. The cal-
culations were performed on H3COH ~14,14! and H2O2

~14,15! using up to 32 processors. As shown in Fig. 9, almost
the same linear scalability is obtained in both calculations.
Besides the speedup performance, the timing data in Table II
is redone in Table III. Despite the slower CPU clock rate, the
FCI ~14,14! calculation running on the IBM cluster is;4–5
times faster than that on the PII cluster. The calculation re-
quires only 33 sec per iteration on 16 IBM processors com-
pared with 149 sec on the PC cluster. It is very encouraging
that one iteration of a FCI~14,14! calculation can be com-
pleted within merely 18 sec. It is therefore expected that the
parallel algorithm presented here will considerably expand
the potential applicability of CASSCF, making calculations
with such large or even larger active spaces routine. In Ref. 6

a similar CASSCF~14,14! calculation was performed on an
IBM SP2 using eight four-way Power3 nodes; one CI itera-
tion took about 270 sec to complete. The two calculations are
comparable, as in the FCI only the active orbitals are in-
volved andCI symmetry was used in both calculations. The
present calculations were executed on Power3II 375-MHz
nodes, which are twice as fast as the Power3 200-MHz
nodes. The FCI~14,15! calculation on H2O2 with 41 million
determinant basis was also performed to examine how the
efficiency changes with the size of the problem. As illus-
trated in Fig. 9, the increase in execution time is proportional
to the increase in the CI dimension, indicating good effi-
ciency of the algorithm in large calculations.

V. CONCLUSIONS

The implementation of both replicated and distributed
data parallel FCI programs is presented in this paper. Data
reuse, cache performance, and communication cost are the
primary concerns in this parallel implementation. A com-
bined CI driven scheme is implemented to meet these com-
bined requirements. In the CI driven strategy the communi-
cation is controlled by a string driven approach, the
Hamiltonian matrix is computed in integral driven scheme,
and the matrix vector multiplication is again performed using
a string driven approach.

Improved string storage and CI address calculation
schemes are proposed and implemented. Both string driven
and integral driven lists are employed, and their generation
algorithms are discussed. The list generation procedure is
further combined with a buffer algorithm to balance the stor-
age overhead and the computation cost of list generation.

In the replicated data parallel implementation load bal-
ancing is the essential concept. The dynamical load balanc-
ing strategy, although quite simple, effectively achieves good
work balance and reduces the associated overhead. However,
the parallel performance of the replicated data code is still
limited by the collective network operations, and the capac-
ity of the program is restricted by the amount of memory
available on a single node.

In the distributed data parallel implementation the com-
munication cost is our primary concern. To make better use
of data locality a static load-balancing scheme is employed.
The communication costs in parallel FCI were analyzed, al-
lowing the redundant communication and its collective op-
eration nature to be identified. With the help of the combined
CI driven scheme and an efficient list generation algorithm,

FIG. 9. Parallel performance of distributed data FCI on IBM cluster.* Sin-
glet state of H3COH, 11 778 624 Dets generated by distributing 14 electrons
among 14 active orbitals.** Singlet state of H2O2 , 41 409 225 Dets gener-
ated by distributing 14 electrons among 15 active orbitals.

TABLE III. Timing per iteration of distributed data FCI on IBM cluster. The
number of determinants in the CI calculation is 11 778 624 for H3COH and
41 409 225 for H2O2 , respectively.

NProc

Time per iteration

H3COH ~14,14! H2O2 ~14,15!

4 108.63 515.11
8 57.9 287.91

16 33.15 157.64
24 23.15 108.18
32 17.75 86.1

58 J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Gan et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

it was possible to replace redundant communication with in-
expensive computation, and decouple the collectivegather
into point-to-pointgather at the same time. In addition, an
optimizedgather routine was implemented in DDI, and the
network performance is improved correspondingly with re-
duced latency and synchronization overhead.

The parallel codes were tested on both a low end PC
cluster and a high end IBM cluster. The sequential perfor-
mance is significantly improved, and the parallel code exhib-
its linear parallel scalability on both platforms. The example
calculations show that the new distributed data parallel algo-
rithm could extend the supported hardware for parallel FCI
calculations to even low end PC clusters, and the high com-
putational performance archived on IBM clusters shows its
great potential in expanding the applicability of CASSCF
applications.

Several issues are worthy of further investigation, in-
cluding the cache effect on the buffer arrays, load balance in
the distributed data scheme, optimization of the alpha-alpha
routine, out of core storage of the subspace vectors, and
implementations that make use of the SHMEM library.

ACKNOWLEDGMENTS

We are grateful to Professor Wen, Professor Ruedenberg,
Dr. Joe Ivanic, and Dr. Mike Schmidt for helpful discussions.
This research was performed in the Ames Laboratory Scal-
able Computing Laboratory~SCL!, and sponsored by the
Mathematical, Information and Computational Sciences Di-
vision of the Office of Advanced Scientific Computing Re-
search, Office of Science of the U.S. Department of Energy
under Contract No. W-7405-eng-82 and the DOE SciDAC
program. The Linux PC clusterspiderwas the platform for
our code development and testing work. It was funded by the
Fundamental Interactions program of the Ames Laboratory,
supported by the U.S. DOE Basic Energy Sciences Division.

Part of the calculations in this work were performed on an
IBM workstation cluster made possible by grants from IBM
in the form of a Shared University Research grant, the
United States Department of Energy, and the United States
Air Force Office of Scientific Research.

1P. E. M. Siegbahn, Chem. Phys. Lett.109, 417 ~1984!.
2N. C. Handy, Chem. Phys. Lett.74, 280 ~1980!.
3J. Olsen, B. O. Roos, P. Jorgensen, and H. J. A. Jensen, J. Chem. Phys.89,
2185 ~1988!.

4S. Zarrabian, C. R. Sarma, and J. Paldus, Chem. Phys. Lett.155, 183
~1989!.

5M. Klene, M. A. Robb, M. J. Frisch, and P. Celani, J. Chem. Phys.113,
5653 ~2000!.

6E. Rossi, G. L. Bendazzoli, and S. Evangelisti, J. Comput. Chem.19, 658
~1998!.

7C. D. Sherrill and H. F. Schaefer III, Adv. Quantum Chem.34, 143~1999!.
8R. Ansaloni, G. L. Bendazzoli, S. Evangelisti, and E. Rossi, Comput.
Phys. Commun.128, 496 ~2000!.

9J. Ivanic and K. Ruedenberg, Theor. Chem. Acc.106, 339 ~2001!.
10M. W. Schmidt, K. K. Baldridge, J. A. Boatzet al., J. Comput. Chem.14,

1347 ~1993!; G. D. Fletcher, M. W. Schmidt, and M. S. Gordon, Adv.
Chem. Phys.110, 267 ~1999!; Comput. Phys. Commun.128, 190 ~2000!.

11E. R. Davidson, J. Comput. Phys.17, 87 ~1975!.
12B. Liu, Numerical Algorithms in Chemistry: Algebraic Methods, edited by

C. Moler and I. Shavitt, LBL-8158 Technical Report, Lawrence Berkeley
Laboratory, Berkeley, CA, 1978.

13Z. Gan, K. Su, Y. Wang, and Z. Wen, Sci. China, Ser. B: Chem.42, 43
~1999!.

14Y. Wang, Z. Gan, K. Su, and Z. Wen, Sci. China, Ser. B: Chem.42, 649
~1999!.

15P. J. Knowles and N. C. Handy, Chem. Phys. Lett.111, 315 ~1984!.
16Z. Gan, Y. Wang, K. Su, and Z. Wen, J. Comput. Chem.22, 560 ~2001!.
17L. Gagliardi, G. L. Bendazzoli, and S. Evangelisti, J. Comput. Chem.18,

1329 ~1997!.
18J. Nieplocha and B. Carpenter,ARMCI: A Portable Remote Memory Copy

Library for Distributed Array Libraries and Compiler Run-Time Systems,
Proceedings of the 3rd Workshop on Runtime Systems for Parallel Pro-
gramming~RTSPP! of International Parallel Processing Symposium IPPS/
SPDP’99, San Juan, Puerto Rico, April 1999, in~1! Parallel and Distrib-
uted Processing, edited by J. Rolimet al., Springer-Verlag LNCS~1986!,
and ~2! IPPS/SDP’99 CDROM~1999!.

59J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 Parallel full CI

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:45:20

	7-2003
	The Parallel Implementation of a Full Configuration Interaction Program
	Zhengting Gan
	Yuri Alexeev
	Mark S. Gordon
	Ricky A. Kendall
	The Parallel Implementation of a Full Configuration Interaction Program
	Abstract
	Keywords
	Disciplines
	Comments
	Rights

	tmp.1449778237.pdf.CjKpR

