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The Parallel Implementation of a Full Configuration Interaction Program

Abstract

Both the replicated and distributed data parallel full configuration interaction (FCI) implementations are
described. The implementation of the FCI algorithm is organized in a hybrid strings-integral driven approach.
Redundant communication is avoided, and the network performance is further optimized by an improved
distributed data interface library. Examples show linear scalability of the distributed data code on both PC and
workstation clusters. The new parallel implementation greatly extends the hardware on which parallel FCI
calculations can be performed. The timing data on the workstation cluster show great potential for using the
new parallel FCI algorithm in expanding applications of complete active space self-consistent field
applications.
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Both the replicated and distributed data parallel full configuration intera@&Giy implementations

are described. The implementation of the FCI algorithm is organized in a hybrid strings-integral
driven approach. Redundant communication is avoided, and the network performance is further
optimized by an improved distributed data interface library. Examples show linear scalability of the
distributed data code on both PC and workstation clusters. The new parallel implementation greatly
extends the hardware on which parallel FCI calculations can be performed. The timing data on the
workstation cluster show great potential for using the new parallel FCI algorithm in expanding
applications of complete active space self-consistent field application003 American Institute

of Physics. [DOI: 10.1063/1.1575193

I. INTRODUCTION ClI performance still requires attention. For example, due to
the excessive communication present in parallel FCI calcu-
Full configuration interaction(FCI) provides the exact |lations, existing parallel FCI implementations are limited to
nonrelativistic solution of the many-electron Scoirer  supercomputers, such as the CRAY-F3Eand IBM SP
equation in a given finite one-electron basis space. TherefoilBecause clusters of PCs and workstations have become in-
it is commonly used as a benchmark tool to assess approxéreasingly accepted as powerful alternatives to expensive su-
mate correlation methods. In addition, FCI is also employethercomputers, a FCI code that runs effectively on clusters is
in complete-active space self-consistent fi€dldASSCH  highly desired, albeit a challenging, task.
(Ref. 1) programs to obtain the CI coefficients of CASSCF  The difficulties in achieving high performance on paral-
wave functions. Because the FCI calculation is carried out el computers come from the complexity of modern com-
every CASSCEF iteration, considerable effort has been exputer architectures, and the networked distributed memory
pended to develop and implement efficient FCI algorithms tamakes the situation even worse. Since there are multiple per-
handle the relatively large active spaces, required by comformance factors on parallel computers, any single mode ClI
plex chemical system's? driven method will have some pitfalls. Instead, a more flex-
Because of the simplicity in computing the coupling co-ible algorithm is needed. The original determinant FCI dode
efficients, almost all modern FCI algorithms are based ofnin camMESS is a straight string driven implementation. The
determinants instead of configuration state functi®@SFs.  algorithm produces reasonable efficiency, but the computa-
A major step forward in determinant-based FCI was intro-tional potential is not fully exploited, and the structure of
duced by Hand¥with the idea of separate alpha and betadata and computational algorithm is not well suited for dis-
strings for alpha and beta spins. Following this innovationtributed computing. In this paper we present an efficient
more efficient algorithms have been proposed and impleimplementation of both replicated data and distributed data
mented, including the work by Olseet al,® Zarrabian parallel FCI algorithms. In these new codes a combined
et al,* Michael et al,> Rossiet al,® Sherrill et al,” Ivanic  string driven and integral driven approach is proposed to
et al,® and others. However, despite the diversity of the al-optimize both the sequential performance and the interpro-
gorithms, the implementations of FCI programs remain eseessor communication. In the distributed data implementa-
sentially in two different ways, either the integral driven ap-tion we identify the redundant communication in a parallel
proach or the configuration driven appro&ch. FCI calculation and its collective nature. These problems are
The memory and efficiency requirements of a FCI cal-solved conveniently in our combined approach. In addition,
culation make it an ideal application for parallel computing.the communication performance is further improved by the
By taking advantage of the computational capacity providedmplementation of new distributed data interfagi@DI)*°
by state-of-the-art high performance parallel supercomputergommunication routines. The performance and scalability of
FCI calculations that include up to ten billion determinantsthe new parallel implementation are demonstrated by ex-
have been reportédHowever, the problem of parallel full amples.

0021-9606/2003/119(1)/47/13/$20.00 a7 © 2003 American Institute of Physics
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Il. THEORY AND METHODS |:|:|:|1+|:|2+|:|3+|:|4+|:|5+|:|6’
A. Description of the FCI algorithm

N .1 Lo

The FCI solves the Schdinger equation by making use Hi=2 hiEf+ 52 NUN I A UBIDAI=H S
of the variational principle. In practice, it solves the eigen- ' N
vector problem of the Hamiltonian matrix in the determinant 1 L aaep =
basis space defined by distributing theelectrons ovemlN + 5% (ii ’”)EiiEjJJ“Z hii Ej
spin orbitals. Since usually only a few eigenvalues and
eigenvectors are required in ClI calculations, the eigenvalue 1 o o agag
problem is commonly solved by iterative diagonalization +§% LG 1) = (D TEGEj]
methods proposed by Davidsdror Liu.*? In the Davidson
diagonalization method the Hamiltonian matrix is projected
onto a small set of subspace vectors, and the solution vector
is obtained by full diagonalization in this small subspace.
The subspace is improved at each iteration by adding a new

1 T C Aa
+§% (i ,jj) EFES

R N 1 A
Ho=2> hyEl+2 > [(ij,kk)—(ik k) IESER,

basis vector, which is derived from the Ritz residual. When 7] 2ijiCT 4]
the subspace becomes too large to handle, a restart procedure
is applied and the subspace is contracted. The most time 1 . Eop
. | feration Ul +5 2 (kREGEL,
consuming step in each iteration is the calculation of the 20iKT#] !
Hamiltonian projection vectos for the new basis vectdt, 1
" o Fad B - .. (i . Fad B = B
s=HC, ) Hg—;j hy Ef + zijk%,- [(ij kk)— (ik,kj) IELES,
whereH is the Hamiltonian matrix. As the dimension of the 1 R
Cl space increases, the storage of the Hamiltonian matrix in + EE (i ,kk)EﬁEka, )
memory or even on disk soon becomes impossible. Thus a k%]
direct CI technique must be employed to calculate the 1 o
vector without explicit construction of the Hamiltonian ma- Hy=5 2 (i kKD (EfjEg),
. . . 2|]k|,|#1#k#|
trix. This strategy eliminates the storage problem of the
Hamiltonian matrix, so a significantly larger CI calculation 1 N o
becomes possible. HS:Ei‘kI i;ﬂ#l (i KD(EFER),
The Hamiltonian operatdt in the Schrdinger equation e
is generally expressed in second quantized form as .1 L. PN
JenerEy e ’ Fo=p S (ifkI(EGER+ELED).
A 1 o A 2ijkl i %] £k
H:iEj hijEij+3 % (11, KD(Eij B = 6. @ Here some of the two electron terms are grouped with one

electron term for ease of implementation. The six terms can

Here E; is the shift operatorh;; are one-electron Hamil- be viewed as the diagonal terrfi{), alpha @i,) and beta
tonian matrix elements, andj(kl) are two-electron inte- (A,) single replacement terms, alph&j) and beta @)

grals. In the following discussions we will use,w t0 rep-  qqple replacement terms, and the combination of alpha and
resent determinantt,J,K to represent string%,| to represent beta single excitations )
6 .

the Orb't‘f’ll array of a stringl.,,L 'to represent alpha aqd The coupling coefficients are the matrix elements of op-
beta excitation lists, and superscripts to denote unspeci- N .
eratorEj; and the operator produ&{‘j Ey -

fied alpha and beta spins.
In the FCI wave function, a determinant is expressed as EA,uV:<u|E_>\_|V>

a combination of alpha and beta strings. An alpha string is " nen

defined as an ordered product of creation operators for spin Ei}]TkTV:<U|Eﬁ Erlv).

orbitals with alpha spin, and a beta string is defined similarly, ) ) _ -
In the determinant basis, a nonzero coupling coefficient of a

(6)

Ny I"IB . 2\ . .
_ B v _ v single operatoE;j; can be either 1 or-1, and the associated
K)=[KoKpg), |K“>_il;[1 (i), |KB>_£I1 “k(i).B phase factoPi)}'“V can be obtained by counting the occupied

3 orbitals thatu and v have in common between orbitaland
_ _ ) j, as discussed in Ref. 8.

[(i) and k(i) are the orbital arrays for the alpha and beta .
strings, respectively. It is convenient to sgi; into alpha ENY=(-DPi",
and beta parts, -1 7
~ 2 ~ P_}\_,UV: E)\,UV.
E,=Ef+Ef, 4 ! k;rl Kk
and the Hamiltonian can be rewritten as a combination of sixThe coefficientdEﬁf,;‘f” can be evaluated by summing over

parts, all the intermediate states,
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Er lengthM. Each bit represents an orbital; the bit is set to 1 if
Ikalv_E (u[E} [w)(w|Eg|»). (8 the orbital is occupied and set to 0 if it is empty. This is also
called a string’s binary representation. HDRTRAN a string
Although this may appear to be very complicated, only onecan be stored as an integer and its information can be easily
intermediate state ofv has a nonzero contribution, so it is retrieved using thébtestintrinsic function. However, if the
computed as the product of two single operator coefficientspumber of orbitalsM exceeds the total number of the bits of

and its phase factor is the sum of the two, an integer word, this storage scheme becomes very inconve-

EX uy nient. First, a string has to be stored using several integers
TUV_( 1) |] kI . P)\TUV_ P?\-'UW‘F PT,WV. (9) . . .. ..

ij ki ' ij ki ij kl and the bit testing becomes nontrivial. Second, the efficiency

of bit testing is also reduced because of the increased number
of unoccupied orbitals. To avoid such problems an alterna-
tive orbital format is used in the code presented here, when
oc=H;C+H,C+H3;C+H,C+H;C+HgC the orbital space is relatively large. In this scheme only the
occupied orbitals of a string are stored and each takes one
byte of memory. IFFORTRAN this can be implemented using

an INTEGER 1 or CHARACTERarray. The combination of
E [E h;i Ei’ UV‘*'E [CiL i) — LD IEFESY bit format and orbital format exploits the nature of FCI cal-

culations, as a realistic FCI calculation can either have a

Now, let H; be the matrix form of operatoH;, with the
computational task of the vector apportioned accordingly,

:(Tl+0'2+0'3+0'4+0'5+0'6,

large number of electrons or a large number of active orbit-

+Z (i ,JJ)Eﬁ’quﬁ’u“rE hiESY als, but not both. Thus either the bit format or the orbital
. format of a string will be suitable for a given FCI calcula-
=S LG = i JEFRER tion.
2 L(Tj]) = (1], JDIEFHES z The canonical order of a string, can be obtained by

using a modifiedNVYBseries arrays proposed by Wang and

v . o co-workers(WYB,*3%
=2 [E hGEFY "+ > (1], kk) = (ikk))]
ijk,i<j DN
CandK,)=1+ >, WYB[k(i)]. (12
XEicjv,qua uvy 2 |] kk Ez}',quEf(uv] CV' i=1
k. 1<] Here \ denotes either alpha or beta spin of electransis
the number of electrons in strirtg, , andk(i) is the orbital
=2 [; hi ESY+ k2<_ [(i],kk)—(ik,k])] array. TheWYBarrays can be generated recursively,
v 1#] <]
WYB(J)=WYB_,(J—1)+WYB(J—1), (13)
EB UVEB 2 Iqu (i), kk) EB E u»] Co, (10) or be calculated directly
J-1

WYB(J)= (14

O4u= [ 2 [ kD = (k) ] ﬁ-",’iz.“”]Cw i
v i#j#k#l,ij <kl
The canonical order generated by this indexing system is
(] KD — (il jk)JEEBY" ¢ different from the addressing system proposed by Knowles
’ ke et al,’® where theZ matrix is used. Here we uggn,,M) to
denote the list of alpha strings in canonical ordey,is the
_ aB,uv number of electrons with alpha spin aktis the total num-
06”_2 Le; (1. kD (Eifk )]C”’ ber of orbitals. Table | shows the list of, =3, M=6 using
the two different indexing schemes. Only one setVé¥B
arrays is used for both alpha and beta strings, whilezhe
matrix has to be built for alpha and beta strings separately.
Besides, th& matrix is more complicated to construct com-

pared toWYBarrays. The formula for th& matrix is

Os5u= o N
v i#]#k#l,ij <kl

whereu and v denote elements of vectoessand C. Follow-

ing Olsen® in the case oMs=0 the computation of terms
o3 andog can be eliminated and the computational effort of
o can also be halved by imposing the condition

O'(a,,B)=(—1)So'(,6’,a). (11) M —i m m—1
TS [ A
B. String and list generation m=M-—J+i a a

A string is represented by a list of occupied orbitals in (M—n,+i=J=i;i<n,),
asqendmg energy _ordt_ar. During a FCI calculat|oq, Fhe mfor-. Z(n, J)=J—n,, (M=J=n).
mation about a string is frequently accessed, so it is expedi- “« « “«
ent to store this information rather than generate it on the flyThe canonical order of alpha and beta strings is used to ad-
An effective way to accomplish this is to store strings in theirdress the determinants in the ClI vector. The structure of the
bit format. In a system containing, « electrons andvi FCI coefficient matrix can be viewed as a two-dimensional
orbitals, a string can be represented by a binary word ofmatrix whose columns and rows are labeled by the canonical
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TABLE I. The order of alpha strings usingYBarrays and th& matrix for phase factor are of interest, it is possible to obtain them

M=6,n,=3. without explicit construction of the new string. This can be
String K, done b)_/ looping over the occgpied orbitalskof in striqtly
Order of . ascending order with new orbitaincluded and old orbitajl
stingK, WyBarray Z matrix excluded. The phase factor is computed at the same time by
1 123 123 counting the number of occupied orbitals between orbhital
2 124 124 andj. The entire operation is completed within one single
3 134 125 loop over the original string, and no new string is formed.
: 2% 126 h i is basically cut by half. This opti
5 195 134 S(_), the operation count is basically cut by half. This opti-
6 135 135 mized list generation technique is very useful because list
7 235 136 generation is used extensively in FCI algorithms.
8 145 145 The list generation algorithm described here is designed
9 245 146 to serve the needs of the combined CI driven approach, in
10 345 156 hich both strina dri dint | dri | il b
1 126 234 which both string driven and integral driven loops will be
12 136 235 employed. For this reason, a buffer array is used to hold the
13 236 236 generated excitation list. The single excitation string driven
14 146 245 list is straightforwardly generated by applying all possible
12 gjg ggg Eij operators to eAach striAng. To generate the double excita-
17 156 345 tion list, operatorss;; andEy, are applied separately to each
18 256 346 string. The intermediate string, after applyingE,, is gen-
19 3% 3% ted explicitly, so the final double excitation stri
20 456 456 erated explicitly, so the final double excitation strifgscan

be computed fronK; , applying the technique discussed
above. The method presented here does not generate the in-
tegral driven strings directly. If an integral driven list is de-
ﬁ%ired, it is obtained by sorting the stored string driven list. It
should be mentioned that various advanced integral driven
list generation methods have been proposed, including the
direct list approach® and reduced list approaéiThe possi-
bility of employing such algorithms has also been consid-
ered. The problem with the direct list approach is that two
ro= I Tk (15  entire string space tests are required for each pair of integral
] ) indices(i,j), and most such test operations are redundant. In
Here I'(K) and I'(k) represent the irreps of string and  ,qgition, the enormous bit counting operation in the direct
orbital k, respectively. Because of the spatial symmetry im-jis; anproach raises a technical concern because such an op-
posed on the CI coefficient vector, the allowed combination, ation can be very inefficient iIFORTRAN unless mixed
of alpha and beta strings must be symmetry matched. If aly/rqriran programming is used. The problem of string space
pha and beta strings are grouped according to their irreps, theiing is avoided in the more recently proposed reduced list
matrix of Cl vectors becomes symmetry blocked. Each block,,qach . 1n the Iatter, the excitation list is generated by
consists of only the alpha columns of that given irrep angnserting a pair of occupied orbitakind unoccupied orbital
thus has reduced dimension. L&, and C; represent the i the reducech— 1 electron list. All the generated strings
canonical order of strin§, andK 5. Then, the address of a ¢ y4jid excitation pairs, thus no operation is wasted. How-
determinant is obtained by ever, this algorithm cannot guarantee the symmetry of the
Addr(K, Kz =ADDR(C,)+ORDB(Cy), (16) generated strings, since the reduced list no longer has any
symmetry information. Such problems do not exist in the list

. ﬁeneration algorithm presented here, as the imposed symme-
ADDR array, and th@ORDB array maps the canonical order try requirement on strings can be easily satisfied by looping

of the beta string onto the actual order in its symmetry bIocvaer only the symmetry matched orbitals. ledenote the

€., t_he foset value in the alp_ha column it belongs to. Thelrrep,i andj denote the orbitals, ard, the strings generated
contribution from the alpha string and the beta string can b

§rom K, by applyingE;; . We have
computed and stored separately; this facilitates the combina- » DY appyIngs;;

tion of alpha and beta strings. _ .
The simple formula for calculating a string’s canonical ~ I'(K\)*T'(K)=T(i)*T'(j). (17
order and the addressing scheme for a CI vector also leads to

the optimization 9f a list generation technique. Given a stringrpe orpital pairi,j can simply be skipped if it does not match
K\ and operatok;;, its single excitation string<; can be  the required symmetry. Since the string driven list generation
generated by removing the electron from fltle orbital and s highly efficient, it is more advantageous to obtain the in-
placing it in theith orbital. The canonical order df; and  tegral driven excitation list from the string driven one at the
the phase factor (fEij can be computed once the striig is  expense of extra sorting and storage, rather than adopt the
formed. However, since only the canonical or@rand the list algorithms discussed above. Another benefit of this

order of alpha and beta strings, respectively. When Abelia
spatial symmetry is exploited, we define the irreducible rep
resentatior(irrep) of a string as the product of the irreps of
its occupied orbitals,

i=1n,

where the entry address of each alpha column is kept in th
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method is that the spatial locality in the string driven list isthe same Hamiltonian matrix element is added together be-
partially preserved in the final integral driven list, thus reduc-fore the multiplication by CI coefficients. As a result, the
ing communication. number of multiplication operations is reduced, gnabre
importan} fewer memoryload and store operations on the
Cl elements are required. In the straightforward string driven

~ The o vector updating step is traditionally organized in jmplementation ofos one loops over each beta string and
either an integral-driven or a string-driven approach, as disgenerates its single replacement strings first, then each beta

cussed in Refs. 6 and 8. However, the choice of one of thesg; j5 combined with the corresponding alpha strings and
methods has mostly been concemed with the Operation oir contributions tooz can be counted. However, this

count, not the data structure and 'ts. access pattern in Cslimple algorithm does not perform well. One reason is that
calculations. Because of the nonuniform memory acces

(NUMA) pattern of modern CPU architectures, one generallyﬁqef str@e of the inner loop, wh|c_h equals the number of beta

. ) . strings in that symmetry block, is too large. In modern CPU
needs to exploit either spatial locality or temporary data Io_architecture a large stride in the innermost loop results in
cality in order to obtain reasonable CPU performance. In 9 P

parallel computing, the distributed memory adds anotheP?°" cache performance. Most importantly, there is repeated

layer to the memory hierarchy. This provides huge Storaggomputat.ion.. Since the detailed orbital information of each
capacity, but generally incurs high latency and has limitec?/Ph@ string is needed to compute the two-electron term in
bandwidth to access. Clearly, exploiting the data locality is a’s for €ach beta pair the entire alpha strings must be un-
least as important as decreasing the operation count #acked. Despite the optimized string storage scheme, such
achieve high performance on modern hardware architecturegxcessively repeated operations would still cost considerable
With these considerations in mind, a combined string driverfomputer time. Moreover, the computation of Hamiltonian
and integral driven approach has been implemented iwrthe €lements is inefficient as well, because every element is com-
vector construction. The combined multiple CI driven puted from scratch.

scheme was first proposed in theGaci code developed by To address the problems mentioned above, an integral
one of ust® where the main data structure consists of threedriven approach is employed inside the string driven outer
parts: the CI coefficient vector, the integral array, and thdoop. First, one sets up a buffer array to store the generated
coupling coefficients. Accordingly, the configuration driven, beta single replacement pairs. The use of a buffer enables us
integral driven, and loop driven approaches are integrated &b loop over the alpha string first so the innermost loop only
different loop levels to make memory access to each pardcts on the Cl elements in the same alpha column. The re-
more efficient. In a FCI calculation the primary data is con-duced memory stride leads to improved cache reuse and
tained in theC and o vectors, so the string driven loops memory page access patterns. The stride is limited by the
should be employed wherever these vectors are involved. I§ize of a single alpha column. Since an alpha column can
a sequential code, the string driven loops are best placed 'uglasny fit in L2 cache(or even L1 cache for small cases
the innermOSt |00p updating thﬁ vector. In a distributed temporary |0ca|ity can be expected if there are enough Op_
data parallel code the string driven loops can also be used i8ations in the same alpha column. Second, an integral
the outermost loop to optimize the communication betweenyiyen loop is used to organize the updating @f. The
processors. Although the storage of the integral array is gelsenefit comes from the effective data reuse in the computa-

erally not a problem in a FCI calculation, the integral drivenyjon of Hamiltonian matrix elements. Because the last term
approach is much more efficient than the string driven one iR, Hs involving the alpha orbital array does not depend on

computing Hamiltonian matrix blocks. In the integral driven beta strings, except for the integral index, this term can be

approach the same intermediate result can be used to COI’&-)mputed and shared by all the beta pairs with the same
pute a series of similar Hamiltonian matrix blocks, which is.

S . integral index. In the current implementation the alpha string
actually generated implicitly in a direct Cl approach. Re- = " o
. . . : orbital information is unpacked and computed only once for
using data here is a powerful technique, because it not onl

saves computation time, but also exploits the temporary dat ach beta integral index list, and the contribution to Hamil-

locality at the same time. It is thus desirable to integrate théon"”‘m_|3 is calculated and stored temporarily. The interme-

two schemes together so that both the construction of thgiate result can be u.tilized by all the beta pairs that belong to
Hamiltonian matrix and the matrix vector product can bethe current integral index label, so that no further computa-

carried out with optimal performance. We now briefly de- {ion over alpha strings is needed. This strategy for reusing
scribe the implementation of the combined Cl driven schemélata not only amortizes the overhead of string unpacking but
in the two major routines, the beta-beta routine and the!So greatly reduces the computational effort for calculating
alpha-beta routine. the Hamiltonian matrix elements.

The beta-beta routine computes the termsrgfand o The algorithms for two different-; implementations are
[Eq. (10)], which correspond to the single and double re-outlined below. The original algorithm has a very simple
placement of beta strings, respectively. In the algorithm prestructure but the computation of the innermost loop is very
sented here part of the two-electron operator term that cordemanding and not cache friendly. Although the second al-
tributes to the same determinant pairs is also grouped intgorithm looks much more complicated, the innermost loop is
o3. Such grouping is expected to be much more efficienvery simple. Tests suggest that the optimizsecond algo-
than computing those terms separately. The contribution tathm is much more efficient than the origindirst) one.

C. Algorithm implementation



52 J. Chem. Phys., Vol. 119, No. 1, 1 July 2003

A pure string driven algorithm foo;

Loop over each beta string
Generate excitation strinlg}, by applyingE;;,
Loop over alpha strings,
Retrieve orbitals array of alpha string
CalculateH3, do o5 contribution.

A combined driven algorithm foer; calculation:

Generate théntegral driven beta list L 4
[do the following if buff is full]
loop over indexindij
loop over alpha strings, precompute and store the

Gan et al.

citation list is generated and used to organize the innermost

loop.
Algorithm for alpha-beta routinél s+ 0:

Generate théntegral driven alpha list L,
[do the following if buff is full]
Generate thetring driven beta listL 4
[do the following if buff is full]
Loop overindij of L,
Precompute the intermediate quantities fy
Loop over alpha pairs with indeixdij (integral
driven)
Loop over beta pairgstring driven), do og

intermediate result foH contribution.
loop over alpha stringéstring driven)
loop over beta pairs witindij (integral driven)

computeH s and updaters.

Algorithm for alpha-beta routinéyls=0:

Generate théntegral driven alpha list L,
[do the following if buff is full]
Generate théntegral driven beta listL 5
[do the following if buff is full]
Loop overindij of L,
Loop over alpha pairs with indexdij (integral
driven)
Loop overindkl of Lz, indkl<indij,
Loop over beta pairs with indeixdkl (inte-
gral driven),
do o contribution.

In the computation ofr5 a buffer array is used to hold
the beta double excitation list temporarily, so the string
driven loop over alpha strings can be applied first. However,
since the computation of the Hamiltonian matrix element
here is rather straightforward, there is no need to use the
integral driven approach. The innermost loop is optimized by
using a string driven beta double excitation list to improve
the cache performance. Note that since the stored beta list is
retrieved for every alpha string, it is important to keep the
array size in a reasonable range so it can fit into cache. In the
code presented here, this is accomplished by imposing an
upper limit on the size of the buffer array. The storage of thdll. PARALLEL IMPLEMENTATION
entire double.exci_ta}tion list is rjot on.Iy. unnecessary_, but a_ls%_ Parallization of subspace operations
can be very inefficient, even if sufficient memory is avail-
able. In the parallel FCI program presented here both the CI

The computation ofrg requires the combination of al- COefficient vectorsC and the corresponding vectors are
pha and beta single excitation lists. For this reason the buffef€Pt in distributed memory. The ClI vector is first organized
array is divided into two partsaloop andibloop, to hold the N Symmetry blocks, and then distributed evenly over all
generated alpha and beta excitation lists separately. Still, or?éva'lable processors. To avoid explicit access of a single ar-

loops over the generated alpha excitation pairs first, so th y element, an alpha_colgmn is chosen as the smgllest umt
inner loop over the beta list will act on the alpha columns or a network communication. Therefore the determinants in

) . : . the same alpha column must be kept on the same node.
defined by the given alpha pair. Temporary data locality can The iterative Davidson diagonalization procedure is

be exploited if the length of the beta list is long enough, hosen as the first step because of the consideration of

because the more operations on the same chunk of data, .tﬁgth parallel efficiency and memory capacity. According to

more chance tr_lere is to find_ the require_d _data already N mdahl's law, even a small percentage of serial code can
cache. Two major efforts are involved: building the Hamil- cause serious scalability problems in parallel applications.

tonian block and updating the vector. To accomplish these Moreover, the memory requirement for the huge subspace

tasks, the alpha list is generated in an integral driven 100Ractors can generally only be partially solved using distrib-
and the beta list in a string driven loop. The alpha excitation g memory.

pairs with the same integral index are grouped together SO Each Davidson iteration involves several vector opera-
they can use the same integrals and intermediate data wh@@s, the construction of the Hamiltonian matrix in the sub-
combined with the beta list. Because of the reuse of data, thgpace, the computation of the residual vector, the precondi-
Hamiltonian matrix blocks, although never explicitly gener-tioning of the residual, Schmidt orthogonalization, and the
ated, can be computed very efficiently. The string driven betormalization of the new basis vector. Fortunately, the par-
single excitation list is used in the innermost loop so theglelization of these subspace operations is rather straightfor-
computation of the matrix vector product can be performedyard. Since all the subspace vectors are distributed, the com-
in a cache efficient way. Favis=0, however, the parallel putationally intensive vector operations can be carried out
strategy requires the overall structure in the alpha-beta pardcally on each processor, and only scalar values are required
to be organized in an integral driven approach, so the integrab communicate through network calls. The communication
index conditionij <kl can be applied to halve the computa- overhead here is negligible.

tional cost. In such cases, an integral driven beta single ex- The most difficult part of the parallelization is th¢C
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FIG. 1. The size of subtasks in calculation ofGOH (14,14 using repli- Node Number

cated data parallel approach. 16 processors are used. The task parameters are . .
set toNtask_proc=4.5,R_size=10,R_num=1.2. FIG. 2. Load balancing of HC step on 16 node PC cluster. The calculation

is for H;COH (14,19 using the replicated data parallel approach. The pa-
rameters are set tdtask_proc=4.5,R_size=10,R_num=1.2.

step, in which the locadr vector is obtained from basis vec-

tor C. Both replicated data and distributed data algorithms  Once generated, the tasks are properly arranged in the

have been implemented to parallelize this step. task list. Good load balance can be obtained by executing the
tasks in the order of decreasing size. Figures 1 and 2 give an
example of a task list and the resulting load balance on a 16

B. Replicated data implementation node PC cluster.

In a replicated data implementation two working arrays
X and Y are needed to hold the entire Cl vector and theC. Distributed data implementation
partially formedo vector. As both theC and o vectors are
originally distributed, addi_allgatherv (MPI_allgathery
operation is called to collect the distributed vedfinto the
working arrayX on each processor. TH¢C calculation can

In the distributed data implementation, a segment is de-
fined as the part of a Cl vector on each node. To make full
use of the data locality, a static load balancing scheme is
) - ) employed. The computational task of each node is defined as
then be executed in parallel and the paritalector obtained ,4ating its localr segment. Using this task definition, in-
in array Y. After the HC calculation, the partiab result IS yornr0cessor communication is only required for collecting
summed and scattered into thearray on each processor by e ¢ coefficient vector<. The network communication
calling the standardddi_reduce scatter (MPI_Reduce 5 he carried out in a one-sided asynchronous manner, so

scattej operation. No communication is involved inside the yat the remote CI coefficient vectors can be easily accessed
HC computat!on. ) . i . without the collaboration of remote nodes. The one-sided
The key issue in parallelizing theC task is to obtain  .mmynication feature is supported by D@istributed data
good Igad balancmg. on each pr'ocessor. To achleve.th|s, iﬁterfacé routines. In DDI two processes are spawned on
dynamic load balancing strategy is employed. The efiite  o5ch processor. One of these performs the computation: the
computation is split into many subtasks, each of which isyer hecomes the data server. A copy of the I@maéctor is
defined as updating a segment of theector. Atask listis  yoqjired in the data server so it can be accessed by other
generated before thelC calculation, and the tasks are dy- yomqte processors. In the distributed data implementation the
namically assigned to processors at run time. _need for the replicated arraysand Yis removed. Instead, a

Good load balance can be easily achieved by generatingy | sized buffer array is used to facilitate both commu-
a long task list and many small tasks. However, the assoChjcation and computation. The remote CI coefficients, if

ated communication and computation overhead is undes"ﬁeeded are first collected in the local buferand the up-

able: AS, a compromise between Iogd bglance and the, COMating of theo segment can be carried out locally. The two
munication overhead, task aggregation is done to art'f'c'a"yapproaches are illustrated in Figs. 3 and 4.

produce some large tasks. Three parameters are used in the )

program to define the parallel subtasks: 1. Beta-beta routine

(i) Ntask proc: the average number of tasks per processor. The beta-beta routine involves the single and double ex-
(if) R_size the ratio of the size of large tasks to that of small citations of beta strings. Since the Cl vector is distributed by

tasks. alpha columns, this part can be done completely locally. The
(iii) R_num the ratio of the number of large tasks to that of sequential algorithms can be applied here, but only the local
small tasks. alpha strings should be involved because only the lacal

The parameters are set to default values and can also lvector will be updated. However, each processor needs to
specified by input directives. Using these parameters to desreate the entire set of beta single and double excitation lists,
fine the task list also gives us more flexibility porting the so the list generation process is duplicated. This can cause
code to different hardware platforms. problems in the parallelization effdtt’ The most effective
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messages instead of a large number of small messages. For

this reason, a buffer array is used to collect and store the

Fem———- Locooeeo ' remote alpha columns. The computational procedure of the

i "’f"_‘:‘i‘"_L_Gf_TfIff_“_’_¢ alpha-alpha routine can be divided into three steps. First, the
_ alpha single excitation list, is generated by looping over

the local alpha strings and applying all tlﬁej operators.
HC Step ¢ ¢ HC Step Second, the required remote alpha blocks in the excitation
list are gathered into the local buffer array via network com-
YParidlg) | ¥ (Partial ) munication. Third, the beta lidt, is generated and combined
with the alpha list, and thes contribution can be calculated
i using the coefficient vector gathered in the buffer array.
e e } Communication only occurs in the second step; all the other
A 4 h 4 steps are completely local. In order to avoid sending and
Local o vec. Local o vec. receiving many small single alpha columns, an optimized
communication technique can be applied by grouping the
Node 1 Node 2 required remote alpha strings according to the nodes on
which they reside. After grouping one can send tfagher
request of many alpha columns to the remote node in one
communication call. The entire vector gathering step is com-
jpleted by sending such a request to and receiving the coeffi-
yient vector from remote nodes one by one.

Even with such an optimization, the above algorithm can
still be very communication intensive. Tlyatherstep men-
tioned above is a collective operation; thus it requires the
completion of all work on the participating nodes. Such an
operation is not efficient on clusters. Especially if it is done

The calculation ofog is the most time consuming step. in block mode, the communication must be carried out one
Since the alpha columns are globally distributed, this parby one and in a predefined order, which adds additional syn-
also incurs intensive network communication to get the C|Ch|’0nizati0n overhead. Moreover, there is the prob|em of
coefficients from remote processors. To exploit the sparseredundant communication.” Since the size of buffer array is
ness of the FCI Hamiltonian matrix, network vecgather  always limited, the whole process of list generation generally
andscatteroperations are commonly used to collect and disyequires many loop cycles to complete, thus the same remote
tribute the remote data. Tryatheroperation applies to th€  apha string may be generated and requested many times in
vector, and thescatteroperation applies to the vector. Ac-  (jfferent loop cycles. As shown in Fig. 5, the same remote
cording to the task definition, only the local part of the  gipha blocks may be fetched through network communica-
vector is Updated, SO tfm:atteroperation is not necessary in tion repeated|y' A|th0ugh such prob|ems have not been ad-
the current implementation. dressed by other distributed data FCI implementations, it is

To effectively hide any latency of the communications important to decrease communications to a minimum in or-
Subsystem, it is favorable to send a small number of |arg@er to achieve good performance on clusters.

The solution to this problem in the algorithm presented
here is to replace the redundant communication with extra

LocalCvee. poemem—cewua Fo————==- Local C vec.
)
1

X (Replicated C) X (Replicated C)

FIG. 3. Outline of replicated data parallel FCI.

way to solve this problem is to decrease the computatio
cost. In the current implementation the overhead is greatl
reduced by an efficient list generation algorithm, so its im-
pact on the overall performance is almost negligible.

2. Alpha-beta routine

Local C vec. Local C vec. computation; trading cycles for communication. Instead of
looping over only the local alpha strings, one loops over the
HC Step HC Step . . X . L
entire alpha strings. The entire alpha string space is swept
Local o vec. Local o vec. and the remote alpha string is placed into the gather list only
if it has a single excitation string that is local. Since each
HCstp A f HC Step alpha string is looped only once, redundant communication
‘ is avoided. At the same time the collectigatheris decou-
Z (C buffer) Local ovec.) . . . . .
Aoy 4!, pled into point-to-poingatherautomatically if one computes
Computational ‘\\ // the contribution ofog node by node, as illustrated in Fig. 5.
Process .. M eem e e eam \ Note that repeated computation occurs here since the entire
} DDLGTV(Remote Vector Gather) alpha single excitation list is generated and checked on each
DataServer  =T7TTTTTT N node. However, because the string driven list in the current
,/ . algorithm can be generated very efficiently, such extra com-
Local C vec. d 1 Local Cvec. putation has little impact on the overall performance. An-

other important issue is the network contention that might
arise if all nodes start the loop from the first node. This
situation can be partially eased by changing the starting node
FIG. 4. Outline of distributed data parallel FCI. of each computational processor. The starting node can be

Node 1 Node 2
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Original Algorithm (loop over local o first) Revised Algorithm (loop over remote o first)
---------- List La is generated —-—----owesseccecneee --—--——- List La is generated --------------eeunrv-
X’(C buffer) X’(C buffer)

(t:: ~Lollective Vector Gather ‘~\Bgint-t0-Point Vector Gather
X(Local C) X(Local C) X(Local C) X(Local C) X(Local C) X(Local C)
La=(3159..) La=(102104101.) La=(13591012.)
---------- New List La’ is generated -------------- -==eee-eee New List La’ is generated ---------em=ee
X*(C buffer) X’(C buffer)
Point-to-Point Vector Gather
(t:: ~Lollective Vector Gather SRy - '
X(Local C) X(Local C) X(Local C) X(Local C) X(Local C) X(Local C)
La'=(8378..) La=(109101103...) La=(102103 105 106 ...)
Nodel Node2 Node3 Nodel Node2 Node3

FIG. 5. Communication patterns of two different algorithms for alpha-beta routine. Numbers in the graph are for illustration purpose only. Tleseémumbe
bold indicate redundant communication.

randomly chosen or can be specified in a predefined order. lmibuted and globally addressed array and one-sided commu-
this code each node starts from its local alpha strings, andication, which are very useful for many quantum chemistry
then it loops over the remaining nodes in a cyclic order. Incodes.
practice better results are obtained in this way, although the On clusters, the one-sided communication is imple-
difference is not significant. mented by creating two processes on each node. One process
Once the required CI coefficients are fetched into thenandles real computational tasks, and the other becomes the
buffer array, thesg construction can be carried out com- data server. The data server holds the distributed array; its
pletely locally. The sequential algorithm discussed above igask is to listen to network messages and respond to the data
applied, and the computation is organized in a combined Clequest. Three basic operations are provided in DDI: remote
driven approach. FoMs=0 the innermost loop must be get, put andaccumulate There are advantages to using one-
organized in an integral driven approach, because of thgjded communications. First, it reduces programming diffi-

static load balancing scheme employed here. culty. Second, it is efficient because the asynchronous com-
munication model eases the overhead of explicit
3. Alpha-alpha routine synchronization between processors.

However, many applications may require more compli-
g(e:;alted communication patterns. For example, dhther op-
a vector transposition step fél s=0. Since the calculation ratlpn used in they vector_ updatlng step requires. non-

. : . ._contiguous access to the distributed data, which is beyond
of o, involves only single alpha replacement, this part is e ability of remoteget To use thegetfunction the required
integrated into the alpha-beta routine and the contribution o}h y 9 : get e req
o, is calculated as a byproduct ef,. This eliminates the data must be placed contiguously in the distributed array.
communication folo,. The terma, involves double excita- Onet (;,jalm of coutr_se chFIetIe ;[]he relmgmhetz)r tffhk by re- ted
tions of alpha strings and it is treated separately. Intensiy@Ca€Cly requesting single ajpha columns, but the associate

synchronization and latency overhead would be very costly,

network communication occurs here in order to get the re ) e o
mote alpha blocks for the calculation of,. The communi- especially on clusters. In addition, bandwidth is also severely

cation is handled in the same way as in the alpha-beta rodiMited if the size of a single alpha column is very small.
tine, so repeated communication is avoided. Clearly, such problems can be solved if the data server is

“smart” enough to do a local vectogather before sending
_ the data. Such an operation would be very simple if one had
4. DDl in GAMESS an appropriate communication library interface.

The distributed data interfat®(DDI) is the built in fa- To add more functionality to DDI, a message handling
cility in camEssfor network communications. Its underlying functionddi_userwas created, and a DDI message ID from
libraries include TCP/IP sockets code, MPI-1 and SHMEM?99 to 199 is reserved for it. Insididi_user, the programmer
libraries. DDI provides basic network communication func-can assign a reserved ID to a unique communication pattern
tions, including point-to-point operations likeendandre- and develop the corresponding request handling function.
ceive and collective operations likbroadcastand global ~ The next step is to pass the message and control from DDI to
sum In addition, DDI also provides features including dis- ddi_user The DDI data serveris a daemon process that

The alpha-alpha routine computes the contribution-pf
ando,. As discussed above, this can be omitted by applyin
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TABLE Il. Timing comparison of calculations on single CPU IBM Power3Il 375-MHz node.

Time per iteratiofs)

Point Spin Dimension Speed

Molecule group Irrep mult Nel Norb (determ) Orig. FCI DDI FCI up
H;COH C, a; 1 14 14 11778624 694.4 352.9 1.97
H;CSiH, C, a; 2 13 14 10 306 296 3734.9 541.6 6.90
HNO Csg a; 1 12 14 4513905 151.3 70.5 2.15
H3CN Cq a, 3 12 16 24986 830 8850.0 986.6 8.98
H,O Cy, a; 1 10 14 1002 708 255 8.1 3.15
C,H, D,y ayg 1 12 16 8018 480 281.3 66.2 4.25
Si,H, + D,y ba, 2 11 16 4369 587 337.0 42.7 7.89

exists until the program finishes, so a call is placed tditeration is listed for both the original codland the present
ddi_userin the daemon loop. The control will be returned to distributed data parallel code running on one processor. Note
DDI daemon immediately if the message ID does not matchihat in the sequential code only the upper triangle of Hamil-
those reserved. Otherwisddi_userwill hand the message tonian matrix elements is computed. The distributed data
request to the proper user defined functions via a messag®de is designed with the concept of local and remote data in
mapping mechanism. A remotgather operation is handled mind. When a Hamiltonian matrix element is found only the
in the following way. First, the computation procdssllen local o vector is updated, thus the computation of the entire
sends a vectagatherrequest to the DDI server. The messageHamiltonian matrix is required. Despite the extra computa-
is received by the DDI daemon and then passedidiouser. tion, the sequential performance is significantly improved.
Since the message ID fgatheris a reserved onaldi_user  The increased efficiency is even greater in high-spin and
will take it and pass the execution control to the target func-high-symmetry cases. The good performance in high-spin
tion ddi_vgather where the vectogatherrequest is actually cases can be explained by the string driven innermost loop in
handled. Insidaldi_vgatherthe server process first requests the alpha-beta routine. Fdis=0 an integral driven inner-
and receives the information about the requested alpha listeost loop over beta pairs is employed in the parallel code.
from the caller, then performs a locghtherusing a buffer  The string driven innermost loop is more effective in exploit-
array and sends the compiled data to the caller. ing the spatial locality so better cache and CPU performance
The implementation of remote vectgatheris not a new can be obtained. In high-symmetry cases the significant per-
idea. In fact, ARMCI(Ref. 18 (aggregate remote memory formance gain indicates that the list generation algorithm is
copy interface also provides a set of descriptive communi- not only efficient, but also well suited for Abelian group
cation interfaces, where a vector version of ¢fgtoperation  symmetry.
is provided. However, it is not simple to include all the com- Two example calculations, one singlet and one doublet,
munication patterns in real applications. With the ability to are chosen to test the performance and scalability of the new
add user predefined communication routines, the B&ta  parallel FCI code. The calculations were performed on a PC
serverevolves to a&communication servethereby providing  cluster consisting of 16 Pl 400-MHz processors linked to a
more flexibility in developing performance network commu- central hub using a 100-Mbps fast Ethernet connection. The
nication functions. For example, in the vector transpositioncluster has 8-GB aggregate memory with 512 MB each. The
step required by the simplification condition fdts=0, the
DDI server acts in dual roles: it collects the transposed vector

blocks and records the property of those blocks. After syn- 187

chronization, it sends the recorded property array to a local 16

computational process, and then sends the transposed blocks /
one by one. Such a communication intensive operation gen- 1 /
erally does not scale well on clusters. However, with the ik / o

“smart” DDl communication serveit performs very effi-
ciently and therefore does not create too much overhead.

Speedup
o o B
W

IV. PARALLEL PERFORMANCE AND ANALYSIS

—&— HC Comput, **
n- ”lﬁrglcal Iter.**

—E— Comput. *

—&— Typical Iter. *

First, consider the sequential performance of the new
parallel code. This is often ignored in parallel applications,
but it provides an important baseline against which to com- 0 5 2 4 6 5 10 12 14 16 s
pare scalable performance. Further, it is impossible to NProc
achieve high performance computing without a good under-
|y|ng Se”al Code An |neff|c|ent Sequen“al algorlthm can COStFIG 6. Parallel performance of replicated data FCI code on PC Cl(‘er
400 MHz, 100-Mbps fast Ethernet, 16 nogl&Doublet state of HCSiH,,

precious parallel CPU cycles, and this inefficient use of COm-:LO 306 296 Dets. generated by distributing 13 electrons among 14 active

putational resources C_'nly increases as more Processors @gitais** singlet state of HCOH, 11778 624 Dets. generated by distrib-
used. In Table Il the timing of th&lC construction per Cl  uting 14 electrons among 14 active orbitals.
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lation of doublet state of ECSiH, on PC cluster. 10 306 296 Determinants

FIG. 7. Parallel performance of distributed data code in @@l14 calcu- ) ’ -
are generated by distributing 13 electrons among 14 active orbitals.

lation of singlet state of ECOH on PC cluster. 11 778 624 Dets are gener-
ated by distributing 14 electrons among 14 active orbitals.

cache effect. Note that in the beta-beta routine the generation

singlet calculation on KCOH uses a FCI space of of the entire single and double excitation lists is repeated on
11778624 determinants generated by distributing 14 eleceach node. This is hard to avoid if one is to exploit the data
trons over 14 active orbitals. The doublet calculation onlocality, as discussed with regard to the direct list parallel
H3;CSiH, has a 10306 296 determinant space generated biynplementatiorf:*’ However, they were unable to find a
distributing 13 electrons over 14 active orbitals. In the sin-more efficient approach within the framework of an integral
glet calculation only beta-beta and alpha-beta routines ardriven list generation scheme, so the scalability of the beta-
performed and the alpha-alpha routine is replaced by a vectdreta routine is severely limited. In the present beta-beta
(matrix) transposition step; in the doublet calculations theimplementation the list generation cost is decreased using the
alpha-alpha routine is also executed. optimized string driven algorithm. The excellent scalability

Figure 6 illustrates the parallel performance of the repli-of this beta-beta routine also illustrates that an efficient se-
cated data code. The timing of th&C computation as well quential algorithm can help the parallel performance. Simi-
as that of one typical Davidson iteration is measured andarly, the repeated list computation in the alpha-beta routine
analyzed. In the replicated data approach two collective opshould not present a big problem, as only the single excita-
erations have to be performed before and afterfiecom-  tion list is involved. Although the overall performance ben-
putation. The standard MPICH library is used for these col-efits a little from the super linear speedup in the beta-beta
lective communications. It is shown that in both calculationsroutine, the key issue here is still the reduced communication
the computation time of thelC step scales almost perfectly, cost. For example, on 16 nodes the time per ClI iteration is
illustrating the effectiveness of the dynamic load balancingabout 149 sec, and the time for communication is less than 5
scheme. The overall speedup of the doublet calculation isec.
about 12 on 16 nodes, which is reasonably good performance In the doublet calculation the beta-beta routine again
considering the cluster’s fast Ethernet connection. Howeveishows almost perfect scalability. The speedup of the alpha-
the speedup of the singlet calculation is only 8.4. Clearly, théeta routine drops a little compared to the singlet calculation
ratio of computation to communication is an important factorbut it is still reasonable. Since the alpha-beta routine here is
for parallel efficiency, as in the singlet calculation the com-organized in the combined driven approach, its actual perfor-
putational effort is nearly halved, while the communicationmance is better than that in the singlet calculation. The
remains almost the same. The communication time in thalpha-alpha routine is dominated by communication, so it
H;COH calculation takes 47.4% of the total iteration time does not perform as well as the other routines. Two possi-
running on 16 nodes, almost as much as the cost of compubilities are under investigation for future improvement of this
tation. Of course, one expects the performance to improveart. The first method is to combine the alpha-beta and
using a better MPI library or hand-tuned collective routines.alpha-alpha routine together so the gathered remote vectors
However, it is clear that the collective operations will remaincan be shared. Because the double excitation list is usually
the bottleneck on PC clusters. Besides, the replicated datgery large, the network performance may be further im-
approach is restricted by the memory capacity of a singleoroved by dynamically choosing betweeector gatherand
CPU node. block getbased on the volume of communication. Another

The parallel efficiency of the distributed data parallel method is to transpose the CI vector so one can apply the
FCI code was tested on the same PC cluster. The results fatgorithm of the beta-beta routine instead. In this way two
the singlet and doublet calculations are presented in Figs. Vector transposition operations are required, one forGhe
and 8, respectively. The singlet calculation scales almost pexrector and one for the vector. However, the storage of the
fectly; the speedup on 16 nodes is 15.7. A slight super lineatransposed vectors may increase the memory requirement
speedup is obtained in the beta-beta routine because of tiyeeatly, unless disk 1/O is involved.
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P TABLE IIl. Timing per iteration of distributed data FCI on IBM cluster. The
number of determinants in the CI calculation is 11 778 624 fg€@H and
28 41 409 225 for HO,, respectively.
24 Time per iteration
g 207 NProc HsCOH (14,14 H,0, (14,15
=
g 61 4 108.63 515.11
2 5 8 57.9 287.91
16 33.15 157.64
8 - —&—FCI(14,14)* 24 23.15 108.18
" —=—FCI(14,15)** 32 17.75 86.1
0 —

0 4 8 2 B 2024 28 R F . .
NProcs a similar CASSCH14,14 calculation was performed on an
F1G. 9. parallel perf ¢ distributed data FCl on [BM clustsi IBM SP2 using eight four-way Power3 nodes; one Cl itera-
. 9. Parallel performance or distrioute ata on clustem- : .
glet state of HCOH, 11 778 624 Dets generated by distributing 14 electronstIon took about 270 sec to complete. The ,tWO calgulatlons f”lre
among 14 active orbitalé. Singlet state of HO,, 41 409 225 Dets gener- ComMparable, as in the FCI only the active 0rb|ta_|5 are in-
ated by distributing 14 electrons among 15 active orbitals. volved andC, symmetry was used in both calculations. The
present calculations were executed on Power3ll 375-MHz
. i nodes, which are twice as fast as the Power3 200-MHz
All electron FCI calculations on the potential curve of hy4es. The FC(14,15 calculation on HO, with 41 million

ground state hlhave also been performed as a benchmark oRye(erminant basis was also performed to examine how the
the 16 node PII cluster. A small basis set 6-31G was usedficiency changes with the size of the problem. As illus-

andD,, symmetry employed. A total of 16 different geom- yateq in Fig. 9, the increase in execution time is proportional

etries were computed to obtain the potential curve. The FC{y the increase in the CI dimension, indicating good effi-
(14,18 calculation includes 126 608 256 determinants in theciency of the algorithm in large calculations.

Cl space, and it requires 6.3 GB aggregate memory, close to
the cluster’s 8-GB memory limitation. The,Ncalculation
takes 750 sec per ClI iteration, of which about 85 sec ar(\a/' CONCLUSIONS
spent on network communication and about 20 sec are lost The implementation of both replicated and distributed
due to load imbalance. There is a total of 12.6 GB datadata parallel FCI programs is presented in this paper. Data
transferred per iteration and the average network bandwidtheuse, cache performance, and communication cost are the
is about 75 Mbps, showing the effectiveness of the improvegrimary concerns in this parallel implementation. A com-
DDI communication server. The efficiency of CPU usage isbined CI driven scheme is implemented to meet these com-
measured as 83% for the entire calculation. bined requirements. In the CI driven strategy the communi-
The parallel performance of the distributed data paralletation is controlled by a string driven approach, the
code was also tested on an IBM pSeries p640 cluster. Thidamiltonian matrix is computed in integral driven scheme,
IBM cluster represents the high end hardware platform inand the matrix vector multiplication is again performed using
cluster computing. Each IBM node consists of 4 power3lla string driven approach.
processors running at 375 MHz, and each node has a dual Improved string storage and Cl address calculation
Gigabit Ethernet 64-bit PCI connection. In contrast with theschemes are proposed and implemented. Both string driven
Pentium Il processor, the IBM processor has a much largeand integral driven lists are employed, and their generation
4-MB level 2 cache. It is necessary to keep the size of thalgorithms are discussed. The list generation procedure is
buffer array basically unchanged in one set of calculations irfiurther combined with a buffer algorithm to balance the stor-
order to factor out the cache effect. Otherwise the scalabilitage overhead and the computation cost of list generation.
obtained on the IBM system would be misleading. The cal- In the replicated data parallel implementation load bal-
culations were performed on;80H (14,14 and HO, ancing is the essential concept. The dynamical load balanc-
(14,15 using up to 32 processors. As shown in Fig. 9, almosing strategy, although quite simple, effectively achieves good
the same linear scalability is obtained in both calculationswork balance and reduces the associated overhead. However,
Besides the speedup performance, the timing data in Table the parallel performance of the replicated data code is still
is redone in Table 1. Despite the slower CPU clock rate, theimited by the collective network operations, and the capac-
FCI (14,14 calculation running on the IBM cluster is4—5 ity of the program is restricted by the amount of memory
times faster than that on the PII cluster. The calculation reavailable on a single node.
quires only 33 sec per iteration on 16 IBM processors com-  In the distributed data parallel implementation the com-
pared with 149 sec on the PC cluster. It is very encouragingnunication cost is our primary concern. To make better use
that one iteration of a FC(14,14 calculation can be com- of data locality a static load-balancing scheme is employed.
pleted within merely 18 sec. It is therefore expected that th&’he communication costs in parallel FCI were analyzed, al-
parallel algorithm presented here will considerably expandowing the redundant communication and its collective op-
the potential applicability of CASSCF, making calculations eration nature to be identified. With the help of the combined
with such large or even larger active spaces routine. In Ref. €l driven scheme and an efficient list generation algorithm,
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it was possible to replace redundant communication with inPart of the calculations in this work were performed on an
expensive computation, and decouple the collectjméher  IBM workstation cluster made possible by grants from IBM
into point-to-pointgather at the same time. In addition, an in the form of a Shared University Research grant, the
optimizedgatherroutine was implemented in DDI, and the United States Department of Energy, and the United States
network performance is improved correspondingly with re-Air Force Office of Scientific Research.
duced latency and synchronization overhead.
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