RETURN ON ROLLER COASTERS:
A MODEL TO GUIDE INVESTMENTS IN THEME PARK ATTRACTIONS

Forthcoming, Marketing Science

Rutger D. van Oest
Harald J. van Heerde
Marnik G. Dekimpe

Acknowledgments: We thank seminar participants at the 2008 Vancouver Marketing Science Conference, Australian National University, Catholic University of Leuven, Maastricht University, Monash University, Singapore Management University, Tilburg University, University of California at Davis, and University of North Carolina at Chapel Hill, for their constructive comments. We also very much appreciate the comments on a draft paper by Inge Geyskens and Jan-Benedict Steenkamp. We are indebted to Olaf Vugts (Director Marketing & Development), and Rosella van Haver and Annelieke Heessen (Marketing Services Division) from the Efteling for granting us access to the data, and for their insights on the theme-park industry. We also thank René Backx and Didi Lin for help with the data preparation.
RETURN ON ROLLER COASTERS:
A MODEL TO GUIDE INVESTMENTS IN THEME PARK ATTRACTIONS

Abstract

Despite the economic significance of the theme park industry and the huge investments needed to set up new attractions, no marketing models exist to guide these investment decisions. This study addresses this gap in the literature by estimating a response model for theme park attendance. The model not only determines the contribution of each attraction to attendance, but also how this contribution is distributed within and across years. The model accommodates saturation effects, which imply that the impact of a new attraction is smaller if similar attractions are already present. It also captures reinforcement effects, meaning that a new attraction may reinforce the drawing power of similar extant attractions, especially when these were introduced recently. The model is calibrated on 25 years of weekly attendance data from the Efteling, a leading European theme park. Our ROI calculations show that it is more profitable to invest in multiple smaller attractions than in one big one. This finding is in remarkable contrast with the current “arms race” in the industry. Furthermore, even though thrill rides tend to be more effective than theme rides, there are conditions under which one should consider to switch to the latter.

Key words: Entertainment industry, Theme parks, Return on Investment, Bundling.
1. INTRODUCTION

Over the last decade, the marketing literature has become increasingly interested in the entertainment industry. While this interest has mostly centered on the motion-picture industry (see e.g., Eliashberg et al. 2006 for a comprehensive review), recent research has started to focus on the theme park industry (e.g., Milman 2001). Theme (or amusement) parks are generally outdoor venues with rides as the primary attraction. They require high capital investments, and typically charge a single entry price. They often emphasize one dominant theme around which the landscaping, rides, shows, food and personnel costumes are centered (Kemperman 2000). Well-known examples include Disney World, Disneyland, Universal Studios and Six Flags in the States, and Disneyland Paris and the Efteling (The Netherlands) in Europe.

The theme park industry is of high economic significance. Worldwide revenues in 2003 were $19.78 billion, which were estimated to increase to $24.71 billion by 2008 (Price-waterhouseCoopers 2004-2008). Revenues and visitor numbers have grown steadily in the US in the past two decades (IAAPA 2009). In 2006, total attendance at the world’s Top 25 parks amounted to 186.5 million visitors (Rubin 2007). Table 1 gives a more extensive overview.

[Insert Table 1 about here]

The theme park industry requires considerable capital investments. First, huge outlays are needed to enter the market with a new park. Disneyland Paris, for example, cost almost $4 billion to build (Spencer 1995). Once in business, considerable additional funds are needed to build new rides to attract visitors to the park. An often-heard industry rule is that one has to expand the theme park every year with one new attraction (Dietvorst 1995). On average, close to 20% of the turnover is spent on new and better rides (Kemperman 2000). Reasonable anecdotal evidence exists on the incremental drawing power of new attractions. In 1991, for example,
Universal Studios reported a 52%-attendance increase, which it attributed to its new ride inspired by the popular movie Back to the Future (Formica and Olsen 1998).

The industry is increasingly concerned with the escalating scale of the investments required to add new rides. For example, Universal Studios’ Adventures of Spider Man is estimated to have cost $105 million, Disney World’s Expedition Everest cost $110 million, and the Test-Track ride in Epcot, Orlando, even $130 million (Hyman 2006). Not only are new rides becoming more and more expensive, managers also fear they no longer give a similar boost to visitor numbers, and start to question their Return on Investment (Vugts and van Haver 2008).

At the same time, there is a growing recognition that marketing should demonstrate the financial Returns of its Investments (see e.g., Ambler 2003), as also reflected in the recent research priorities of the Marketing Science Institute (2006, 2008). Despite the economic significance of the theme park industry and the exorbitant amounts spent on new attractions, there are no marketing models available to support the investment decisions.

The objective of this paper is to present a model to guide investments in theme park attractions. The model determines the Return on Investment of attractions based on a response model for their impact on theme park attendance. One core challenge for the response model is that the over-time effect of a new theme park attraction may be complex. Attractions may have a drawing power that extends well beyond their year of introduction. Still, as the attraction grows older, its novelty is likely to gradually wear out. The drawing power of a given attraction may also vary within a given year, as visitor numbers are quite sensitive to seasonal fluctuations.

Another challenge arises from the fact that theme park attractions are part of a larger bundle of interacting attractions. The direct impact of the new attraction may be smaller if similar attractions are already present, reflecting a saturation effect. Conversely, existing attractions may
receive a boost from the new attraction, reflecting a reinforcement effect. For example, a new thrill ride may rejuvenate the drawing power of extant thrill rides. These potential saturation and reinforcement effects also require a formal modeling approach.

In the next sections, we review the literature, develop the conceptual framework and present the model. Next, we apply the model to a unique data set of 25 years of weekly visitor data from the Efteling, one of Europe’s leading theme parks. We disentangle the relative contribution of each of its major attractions, and derive the associated Return on Investment. We also show how our model can lead to different future investment decisions under various start configurations of the theme park. We finish with a discussion of managerial implications.

2. LITERATURE REVIEW

Our work can be situated in two literature streams. First, it adds to the growing literature on how marketing science can be applied to the entertainment industry. While there are support systems for marketing decisions in the movie industry (see e.g., Eliashberg et al. 2006), there are—to the best of our knowledge—no models that guide investment decisions in theme park attractions. This is surprising, as the industry has great economic importance and characteristics that differ considerably from the movie industry. Core quantitative marketing outlets such as Marketing Science, Management Science, the Journal of Marketing, and the Journal of Marketing Research have not published research on the theme park industry.2 Within the leisure sciences, some studies have looked at the profitability of theme parks as a whole (e.g., Liu 2008, Roth 1994), but not at the impact of individual attractions. Other research has looked at how tourists choose their theme park destination (e.g., Kemperman et al. 2000, Stemerding et al. 1999), how they choose among the different attractions (Darnell and Johnson 2001, Kemperman...
et al. 2002), and how theme parks can optimally manage visitor flows (Ahmadi 1997, Rajaram and Ahmadi 2003). None of these studies focused, however, on quantifying the effect of attractions on attendance, and using this to guide investments in theme park attractions.

Second, theme parks are “bundles” consisting of multiple attractions. The practice of product bundling has received ample attention from both microeconomists (e.g., McAfee et al. 1989) and marketing researchers (e.g., Stremersch and Tellis 2002, Foubert and Gijsbrechts 2007). In the terminology of Adams and Yellen (1976), theme parks typically reflect pure bundling, as only the bundle (i.e., access to all attractions) can be bought, while the separate components of the bundle (i.e., access to only one of the attractions) cannot. However, prior empirical research has mostly considered bundles whose composition does not change over time, and which consist of a limited (typically two) number of components (see e.g., Harlam et al. 1995, Venkatesh and Mahajan 1997). Theme parks, in contrast, consist of multiple attractions, and are regularly augmented with new attractions.

3. MODEL

3.1. Model Preliminaries

To guide investments in theme park attractions, we need a model for the impact of new attractions on theme park attendance. A key requirement is that the model should work with the available data (see Abraham and Lodish 1987, p. 103, for a similar premise). These are typically aggregate visitor numbers per time period (e.g., week). Due to their high costs, new attractions tend to be introduced quite infrequently (e.g., once per one or two years), and stay in the park for many years. Hence, to cover multiple attractions, a long time span is needed (multiple decades), especially to assess the long-term effects of attractions on attendance. Given this requirement, aggregate data are much more likely to be available than individual-level data.
Our model derives from aggregate data the (latent) contributions of extant and new attractions to park attendance. We achieve this by imposing a certain structure on their contributions. To illustrate the problem at hand, we present in Figure 1 the focal theme park’s attendance numbers, along with the introduction time of its main attractions. The key question is whether, and to what extent, each of these attractions contributes to the observed attendance fluctuations. If so, the question arises whether this impact is restricted to the year of introduction, or whether it lasts for multiple years. Similarly, is this impact uniform within each year, or is the impact highest shortly after the introduction, or rather in the middle of the year, corresponding to the high season? Our model accommodates each of these issues while controlling for other factors that could affect the number of visitors.

[Insert Figures 1 and 2 about here]

3.2. Conceptual Model

Our conceptual model is displayed in Figure 2. The equation numbers are included for later reference. In line with the tourism literature (see e.g., Formica and Olsen 1998, Kemperman 2000, Milman 2001, PricewaterhouseCoopers 2004-2008), we postulate that the five main drivers of theme park attendance are: (i) the park’s attractions, (ii) competition, (iii) seasonality, (iv) price and advertising, and (v) overall trends in the economic, political and socio-demographic environment. Our modeling focus is on capturing the effects of the attractions in the park, as these represent a park’s core selling proposition. As a case in point, Kemperman (2000, p. 18) concludes that the rides and activities in the theme park “largely determine the tourist’s motivation and choice for a park.” Even though the other factors are not the focus of our model development, we control for their effects to have a stronger test of our focal constructs.
The total drawing power of the attractions consists of the combined impact of the different attractions in the park. In the spirit of the customer lifespan literature (Gupta and Lehmann 2005, p. 177-178), we model the contribution of an attraction \(j \) as the product of two components: (i) the distribution of the attraction's impact over time, i.e. how much of the impact is realized in a given year and week, and (ii) the magnitude of its lifespan impact.

3.2.1. Distribution of Impact of New Attractions

The impact of new attractions may vary both within and across years (Kemperman 2000). This over-time distribution can take on many forms, as illustrated in Figure 3. *Within a year*, the impact could be most prominent in the first weeks of introduction (upper left panel of Fig. 3) due to the press coverage such a new attraction typically receives. On the other hand, theme park attendance tends to be highly seasonal, peaking in summer. Accordingly, the impact of new attractions on theme park attendance is also likely to be higher during this period (as shown in the upper right panel of Fig. 3), as there is a larger pool of potential visitors.

[Insert Figure 3 about here]

The impact may also vary *across years*. Indeed, the impact of a new attraction may not only manifest itself in the year directly following its opening (the top row of Fig. 3), but may be spread over several years as the novelty wears out (Richins and Bloch 1986). Obviously, the speed of this wear-out may be fast (row 2 of Fig. 3) or gradual (row 3 of Fig. 3).

3.2.2. Lifespan Impact of Attractions

Our conceptual model postulates that the total impact of a new attraction depends on the monetary investment (e.g., Cohen et al. 1997) and the type (e.g., thrill or theme) of the attraction (Formica and Olsen 1998). The latter distinction represents the multi-segment strategy followed
by many theme parks: they try to appeal not only to thrill-seeking youngsters, but also to more senior adults and families with small children.

Figure 2 shows that attractions may also interact with other attractions via saturation and reinforcement effects. Both of these effects are well grounded in the individual-choice literature. The saturation effect implies that the more attractions of a certain type (e.g., thrill rides) are available in the park, the less effective the next attraction of the same type will be. This is consistent with the assortment literature, which finds that adding items similar to existing ones does not necessarily improve consumer perceptions or sales (Broniarczyk et al. 1998). The saturation effect is also reflected in McAlister's (1979) model of attribute satiation, where the marginal utility of an attribute decreases in the attribute (see also Timmermans 1990).

The reinforcement effect implies that new attractions of a certain type may boost (reinforce) the effectiveness of extant attractions of the same type. As suggested by memory research (Solomon 2006, p. 102-104), a new attraction of a certain type (e.g., a new thrill ride) may reactivate extant attractions of the same type (extant thrill rides) in consumers’ memory. Moreover, studies on attribute alignability support the idea that attributes which are common across options are more salient to consumers, who subsequently base their preferences more on these common aspects (Van Ittersum et al. 2007, Zhang and Markman 2001). According to Brown and Krishna (2004), consumers search for alignable attributes in choice situations. This suggests that the new attraction may not only activate the memory of existing similar attractions, but may also increase their appeal. Consequently, we need to model the impact of a new attraction of a certain type on the ability of extant attractions of that type to attract additional visitors to the park. We expect this effect to be positive, consistent with a reinforcement effect.
The interplay between the different factors is further illustrated in Fig. 4. In the top panel, the black area shows the direct impact of Attraction A, which clearly varies both within each year and across years. With a two-year lag, Attraction B is introduced, which is of the same type and as expensive as A. A similar over-time pattern is obtained (grey area in the middle panel). However, because of the saturation effect, the peaks for Attraction B are lower than for A, even though the initial investment is the same. Moreover, the introduction of B gives a boost to (reinforces) the drawing power of A. This indirect effect is depicted in the top panel through the white areas (on top of the black areas). Combined across both attractions, the total impact for the theme park becomes the sum of three components (bottom panel): the direct impact of Attraction A (black area), the direct impact of Attraction B (grey area), and the indirect effect of B on A (white area). The latter two only come into play once B is introduced.

[Insert Figure 4 about here]

3.3. Model Equations

Attendance equation. We now present the model specification consistent with our conceptual framework in Figure 2. We model weekly (rather than yearly) data to be able to capture within-year effects. In the tradition of many aggregate response models (see e.g., Hanssens et al. 2001), our dependent variable is the logarithm of weekly attendance:

\[
\ln(ATT_{s,t}) = \sum_{j=1}^{J} \theta_{j,s} I_{j,s,t} + X'_{s,t} \beta' + u_{s,t},
\]

where the index \(s\) indicates the year (the period in which the theme park is open, e.g., from April till October), and the index \(t\) denotes the week *within* a specific year. \(I_{j,s,t}\) is a step dummy variable for attraction \(j\) \((j=1, \ldots, J)\): 1 if it is present at year \(s\), week \(t\), and 0 otherwise. Prior to its opening, the attraction does not contribute to attendance, and after that its contribution is \(\theta_{j,s}\) in
year s and week t. $X'_{s,t}\beta$ captures the effect on attendance of variables other than attractions (Fig. 2): competition, seasonality, price and advertising, trends, and an intercept. The disturbance term $u_{s,t}$ captures autocorrelation between consecutive weeks within the same year:

$$u_{s,t} = \rho u_{s,t-1} + \epsilon_{s,t}, \epsilon_{s,t} \sim \text{i.i.d.} \ N(0, \sigma^2_\epsilon).$$

A positive correlation could be due to, e.g., unmodelled weather dimensions such as wind or fog.

The contribution to attendance of attraction j in week (s,t), i.e. $\theta_{j,s,t}$, is operationalized as the product of (i) the attraction's impact aggregated over its lifespan, denoted $\text{AttrContrLifespan}_{j,s,t}$, and (ii) the share of this total impact materializing in year s and week t, denoted $\text{Share}_{j,s,t}$, yielding

$$\theta_{j,s,t} = \text{AttrContrLifespan}_{j,s,t} \cdot \text{Share}_{j,s,t}. \quad (2)$$

Lifespan impact. The attraction's lifespan contribution is linked to the size of its investment via a multiplicative specification (Cohen et al. 1997):

$$\text{AttrContrLifespan}_{j,s,t} = \lambda \cdot \text{INVESTMENT}_{j,s,t} \exp(\omega_{j,s,t}), \quad (3)$$

where $\text{INVESTMENT}_{j,s,t}$ is the amount invested in attraction j, parameter λ is an intercept, and the error term $\omega_{j,s,t} \sim \text{i.i.d.} \ N(0, \sigma^2_\omega)$ captures random effects for attraction j in year s and week t.

Parameter $\eta_{j,s,t}$ is the elasticity of an attraction's contribution to its investment, and it may be driven by the type of the attraction, saturation, and reinforcement effects. We use a parameter process function (Foekens et al. 1999, Gatignon 1993), specified as

$$\eta_{j,s,t} = \exp\left(\alpha_1 + \sum_{i=1}^{M-1} \alpha_i \text{TYPE}_{ij} + \alpha_2 \text{SATURATION}_j + \alpha_3 \text{REINFORCEMENT}_{j,s,t} + \xi_{j,s,t}\right), \quad (4)$$

where the dummy variable TYPE_{ij} equals 1 if attraction j is of type $i \in \{1, \ldots, M\}$. The saturation variable captures the saturation effect of all prior attractions of the same type as the focal attraction j, and is defined as the sum of all previous investments in the same type:
(5) \[\text{SATURATION}_j = \sum_{k \in \{1, \ldots, j - 1 \text{ if } \text{TYPE}_k = 1 \text{ if } \text{TYPE}_j = 1 \}} \text{INVESTMENT}_k. \]

Similarly, the reinforcement variable is the sum of all investments in subsequent attractions of the same type as attraction \(j \) up to year \(s \) and week \(t \):

(6) \[\text{REINFORCEMENT}_{j,s,t} = \sum_{k \in \{j + 1, \ldots, K, \text{TYPE}_k = 1 \text{ if } \text{TYPE}_j = 1 \}} \text{INVESTMENT}_k, \]

where \(K_{j,t} \) is the number of attractions in the park in year \(s \) and week \(t \). Consistent with negative saturation effects and positive reinforcement effects, we expect \(\alpha_3 < 0 \) and \(\alpha_4 > 0 \). The error term \(\xi_{j,s,t} \sim \text{i.i.d. } N(0, \sigma^2) \) is a second random component for attraction \(j \) in year \(s \) and week \(t \).

Both SATURATION and REINFORCEMENT are predetermined exogenous variables at a given evaluation moment in year \(s \), week \(t \), as Figure 5 illustrates. When we conduct out-of-sample forecasting (section 5.3), we do so under the assumption of no further additions. When considering what-if scenarios (section 6) we derive the forecasts conditional on the investment amounts and the type of attractions introduced up to the future time of evaluation \((s_{\text{fut}}, t_{\text{fut}}) \). As these attributes are known to the theme park’s management (who can define future attractions in different what-if scenarios), we can compute the reinforcement variable over the period between \((s_j, t_j) \) and \((s_{\text{fut}}, t_{\text{fut}}) \). There are no additional unknowns involved in this calculation.

[Insert Figure 5 about here]

Distribution over time. To capture the within-year and across-year variation (section 3.2.1), we specify \(\text{Share}_{j,s,t} \) in Eq. (2) as:

(7) \[\text{Share}_{j,s,t} = \frac{\pi_{j,s}}{\pi_{j,t}} \cdot \frac{F(t; \gamma, \delta) - F(t - 1; \gamma, \delta)}{F(T_i; \gamma, \delta)}, \]

\[\text{across-year share} \quad \text{within-year share} \]
where F is the CDF from a gamma distribution with shape parameter $\gamma > 0$ and scale parameter $\delta > 0$: $F(t; \gamma, \delta) = \int_0^t \frac{\delta^\gamma \tau^{\gamma-1} \exp(-\delta \tau)}{\Gamma(\gamma)} d\tau$. The within-year share in week t is the gamma density mass falling inside week t, i.e. from time $t - 1$ till time t. All within-year shares lie between 0 and 1, and they sum to 1 within each year s consisting of T_s weeks.\(^3\) The gamma distribution is flexible, and allows for non-monotonic and asymmetric patterns (Law and Kelton 1991). The graphs in the upper left (and right) panels of Figure 3, for example, correspond to values for γ and δ of 2 (11) and .25 (.75), respectively.

We capture the across-year variation by

\[
\pi_{j,s} = \begin{cases}
\frac{\exp(\kappa(s - s_j))}{\sum_{\tilde{s}=s_j}^{\infty} \exp(\kappa(\tilde{s} - s_j))} & \text{if } s \geq s_j, \\
0 & \text{if } s < s_j
\end{cases}
\]

where s_j is the year in which attraction j is introduced. The parameter κ determines how the impact of an attraction evolves over the years after introduction. We expect that $\kappa < 0$, i.e. that the impact decays over time due to the wear-out effects alluded to in section 3.2.1. In rows one, two, and three of Figure 3, κ was set at -10, -.50 and -.05, respectively. If $\kappa > 0$, the impact increases over time. The shares $\pi_{j,s,t}$ sum to one over all years s and all weeks t, as both the within-year and the across-year shares in (7) sum to one.

Equation (7) represents a longitudinal mixture of shifted gamma distributions, where each mixture component captures the within-year pattern in a different year.\(^4\) The year of introduction

\(^3\) Summing over t yields as numerator $[F(1; \gamma, \delta) - F(0; \gamma, \delta)] + \ldots + [F(T_s; \gamma, \delta) - F(T_s - 1; \gamma, \delta)] = F(T_s; \gamma, \delta) - F(0; \gamma, \delta) = F(T_s; \gamma, \delta)$. As the denominator is $F(T_s; \gamma, \delta)$, the within-year shares sum to 1.

\(^4\) Our specification (7) has some similarities with Functional Data Analysis (FDA). FDA approximates discrete-measured longitudinal data by smooth curves that are linear combinations of basis functions (Ramsay and Silverman 2006, p.56). For example, Sood et al. (2009) start from multiple observed diffusion curves, and use FDA as a data reduction technique to infer common patterns. Our approach resembles FDA in the sense that equation (7) uses the
of an attraction is covered by the first component, the first year after introduction is captured by
the second component which has been shifted by one year, and so on. Working with shifted
mixture components limits the number of parameters one has to estimate (as each component has
the same shape and scale parameters). The online appendix outlines our model estimation with
Simulated Maximum Likelihood (Train 2003).

4. DATA DESCRIPTION

4.1. Description of the Research Setting

We apply our model to data from the Efteling, a major theme park in the south of the
Netherlands, currently attracting over three million visitors per year. In 1972, the Efteling
received the Pomme d'Or (Golden Apple) for best European theme park, and in 1992 it collected
the IAAPA Applause Award for the best theme park in the world. In 2005, the Efteling received
the THEA Classic Award for its entire oeuvre. The Efteling not only attracts visitors from the
Netherlands, but also from Belgium, Germany and other countries. Almost all visitors stay in the
park for only one day. The set-up of the Efteling is similar to US counterparts such as
Disneyland and Universal Studios: an entrant pays one admission fee that allows him/her to visit
all attractions as many times as he/she likes. The park is open from April till October.\(^5\) Our data
set covers the period 1981-2005, with in total 732 weekly observations.

The original theme of the Efteling is based on fairy tales (Van Assendelft de Coningh
1995). In 1952, the Efteling officially opened its fairy tales forest with three-dimensional and
motioned characters of famous fairy tales. Only in the eighties, the Efteling started investing in

\(^5\) Over the last few years, the Efteling is open a few weeks in winter. We decided to omit the attendance data for
these weeks from model estimation since these observations are a-typical, in that only part of the park is open.
thrill attractions to also attract consumers outside its traditional target group of families with young children. The first in the series of thrill attractions was the Python, a roller coaster inaugurated in 1981 that was unrivalled in Europe at that time. Although the attraction did not fit the fairy tales character of the Efteling, the number of visitors increased by 30% in its opening year. In the subsequent 24 years, the Efteling has invested heavily in both types of attractions (“theme” and “thrill”), as shown in Table 2. Our categorization into “thrill” or “theme” has been closely coordinated with the park’s management. We focus on the main attractions in the park, and not on minor extensions (e.g., a new drink stand). The attractions do not replace existing ones, and no attractions have shut down during our observation period.

[Insert Table 2 about here]

The $M = 2$ attraction types and the inflation-corrected investment amounts (expressed relative to the base year 2000) are used to operationalize the TYPE ($0 =$ thrill, $1 =$ theme) and INVESTMENT variables from Equations (3) and (4). For confidentiality reasons, we cannot reveal the exact investment of each individual attraction, but the amounts varied between 1 and 15 million euros, and include both design and construction costs. On average, attractions opened in the nineties and the 2000s were more expensive than earlier introductions. The introduction frequency dropped from once a year before 1988 to once every two to four years after that.

4.2. Covariates

While estimating the effects of new attractions, we need to control for other factors (covariates) that may also affect theme park attendance, as shown in Figure 2 and Table 3. These covariates, together with an intercept, are captured by the vector $X_{\iota,j}$ in Equation (1). To capture competition, we include step dummies for the entry of three potential competitors within a radius of 500 kilometers: Disneyland Paris (France), Walibi-Sixflags (the Netherlands) and Warner
Bros. Movie World (Germany). A step dummy specification implies that a certain percentage of attendance may be lost to competition. This assumption is consistent with the constant draw assumption made in multinomial logit models for theme park choice (e.g., Kemperman et al. 2000, Stemerding et al. 1999) and in a recent game-theoretic model of theme park competition (Yang et al. 2009).

[Insert Table 3 about here]

For seasonality, we include dummies for low and high season (shoulder season is the base case), for school and national holidays, and several weather-related variables. In so doing, we control for various sources of seasonal variation mentioned in the tourism literature (Kemperman 2000). We use a flexible specification for the trend factors to capture the wide array of economical, political and socio-economical trends (see e.g., Formica and Olsen 1998, pp. 301-306, Milman 2001) that may influence the overall popularity of the theme park industry. In line with, among others, Jain and Vilcassim (1991) and Van Everdingen, Fok and Stremersch (2009), we include a linear, quadratic and logarithmic term to ensure sufficient flexibility.

We do not include direct measures of the ticket price and advertising support, nor do we include dummy variables for the years in which the Efteling received international awards. Ticket price went up almost linearly, and hence was too collinear with the trend variable (correlation = .93). Advertising information was only available from 1986 onwards (as opposed to 1981 for the other variables), and at an annual level of aggregation (while the attendance data are available at the weekly level). Moreover, these twenty observations were again very collinear with the trend terms (correlation = .92). As we only want to control for the

6 Our data set includes posted ticket prices, which are the same for anyone between 4 and 60 years. In an unreported analysis, we added the price variable as a covariate to the model. It results in a positive, yet insignificant price coefficient ($p=.22$), while all other effects are robust. Furthermore, ticket price is not significantly related to the introduction of new attractions: we regressed the annual growth in ticket price on an introduction dummy ($p=.22$), and in a separate regression on the investment amount ($p=.12$).
confounding effect of price and advertising to obtain more reliable estimates for our focal constructs (i.e., the impact of the attractions), we believe that this “control function” will be adequately captured through our flexible trend specification. Finally, preliminary testing revealed that the award dummies for the years 1992 and 2005 were both insignificant.

5. RESULTS
We first present the parameter estimates. We use their values to estimate the additional numbers of visitors attributable to the park's attractions, and the associated Returns on Investment. We also provide a comparison of our proposed model with several alternative specifications.

5.1. Parameter Estimates
The proposed model provides a good fit to the data, as the R^2 of the base Equation (1) for log-attendance is .75. The parameter estimates are given in Table 4. Most coefficients of the covariates are significant at 1%, and they have the expected signs. The high season period ($\beta_6 = .375$) correlates with increased theme park attendance (+45% as $\exp(.375)=1.45$), as do holiday weeks ($\beta_7 = .314; +37\%$), national holidays ($\beta_8 = .225; +25\%$), and the season’s last week ($\beta_9 = .169; +18\%$). Temperature has an inverted U-shaped effect on attendance: linear term $\beta_{11} = 1.178$; quadratic term $\beta_{12} = -2.64$; the optimal temperature is 22 centigrades (= 72 degrees Fahrenheit). Attendance is lower in rainy weather ($\beta_{10} = -0.322; -3\%$ for every centimeter of rainfall) and in the low season ($\beta_5 = -.103; -10\%$). For the three competing theme parks, only the closest park, the Walibi-Sixflags park, has a marginally significant negative effect on the Efteling ($\beta_3 = -.097; -9\%$). Finally, there is positive first-order autocorrelation ($\rho = .293$). In an unreported analysis, we found that second-order correlation is much smaller (.08) and insignificant at 5%.
The parameter λ is the intercept in the lifespan impact equation (3). Since its estimate (3.776) is positive and significant, attractions have a positive effect on attendance.\footnote{The significance of λ cannot be tested via a regular z-test statistic because parameters related to attractions (α_1, α_2, α_3, α_4, γ, δ, κ) disappear from the model under the null hypothesis $\lambda = 0$ (Davies problem; Davies 1987). Instead, we use information criteria, which clearly favor the full model: BIC = -32.35 vs. +38.74 for model with $\lambda = 0$; AIC3 = -129.43 vs. -22.39 for model with $\lambda = 0$.} We refrain from interpreting the exact value of λ and the other parameters from equations (3), (4), (7), (8), because visual summaries are more insightful (see Figures 7 and 8 later in this paper). The coefficient for type of attraction indicates that, all else equal, a thrill attraction is more effective in drawing additional visitors than an equally-expensive themed attraction ($\alpha_2 = -.836$ for the TYPE = Theme dummy). However, as we expected, the attraction’s impact does not only depend on the type and the amount invested, but also on its interaction with other attractions. The presence of extant attractions of the same type makes the new introduction less effective, as the saturation coefficient ($\alpha_3 = -.125$) is negative and significant at 1%. On the other hand, a new attraction boosts the effectiveness of previous introductions of the same type: the reinforcement coefficient ($\alpha_4 = .028$) is positive and significant at the 5% level.

The decay pattern of the impact of new introductions is shown in Figure 6.\footnote{The “stepwise” nature of the graph is due to the fact that we work with the discrete (weekly) difference $F(t) - F(t-1)$ in Equation (7), rather than with the underlying (continuous) density (used in Figures 3 & 4). Each mixture component is truncated at the end of the year, which has been accounted for by the denominator in Eq. (7).} The within-year mode is week 14 (relative to the opening of the park season in April), implying that the impact on visitors peaks in the high summer season. More than fifty percent of the within-year effect is concentrated in eight weeks of the year, centered around that mode. This information should be highly relevant for staffing decisions, e.g. to hire temporary labor during those peak weeks (Aragon and Kleiner 2003). Second, the decay coefficient κ implies that on average 35%
of the total across-year impact of a new attraction occurs in its first year, while 90% has materialized within the first five years after the introduction. Hence, new attractions not only increase attendance in the year of introduction, but also in subsequent years.

[Insert Figure 6 about here]

5.2 Impact of Individual Attractions on Theme Park Attendance

From the parameter estimates, we derive the number of additional park visitors for each attraction in the park accumulated from its introduction till 30 years later to capture the full reach of the attraction's impact. Essentially, we calculate the difference in expected attendance under two scenarios: including and excluding the focal attraction (more details in the online appendix). Figure 7 shows the additional number of visitors for each attraction, both in terms of its direct effect (i.e., without reinforcement of extant attractions of the same type), and in terms of its indirect effect due to reinforcement.10

[Insert Figure 7 and Table 5 about here]

There are clear saturation effects: while new attractions tend to be increasingly expensive, they become less effective over time. In some instances, strong reinforcement effects are present. For example, the direct impact of the Bobsleigh Run on park attendance is estimated at 356,000 visitors. This extra attendance is more than doubled to 776,000 visitors when accounting for the boost that the Bobsleigh Run provides to other, previously introduced, thrill rides. In the four years preceding the opening of the Bobsleigh Run, three thrill attractions had been added to the park, providing the Bobsleigh Run with ample opportunities to double its direct

9 Although some gaps between two new attractions are just one year, our model is able to disentangle the overlapping effects of different attractions well. This is evident from a simulation exercise (discussed in the online appendix) showing that we can retrieve imposed model parameters well.

10 As the model’s parameter estimates are inherently uncertain, the implied estimates of extra attendance and ROI are uncertain as well. To this end, we report in Figure 7 the means across a sample of 2000 draws of the model parameters from their asymptotic multivariate normal distribution. To avoid clutter, the standard errors are not shown in Figure 6, but they are available on request. In the subsequent ROI analyses, we do report standard errors.
effectiveness. In contrast, the Pegasus (a timber roller coaster) and the Panda Vision (a 4D movie theatre) hardly generated any reinforcement effects. Their overall impact is almost completely determined by their direct effects: in the 5-year periods preceding their introduction, no major attractions of the same type had been opened, resulting in few opportunities for reinforcement.

To evaluate attractions, we should not only consider the number of extra visitors, but also the investment that was required. To that extent, we derive their ROI, i.e. the discounted revenue expressed as a percentage of the underlying investment. A value smaller than 100% implies a loss, while a number exceeding 100% means that the investment is profitable. We use an annual discount rate of 12% (Gupta et al. 2004), and assume that each visitor is worth the park entrance fee times a factor (100/60), reflecting an industry rule of thumb that 60% of the total revenues comes from entrance fees, and 40% from catering and merchandising (Kemperman 2000). This spending ratio has, according to the management of the Efteling, not changed substantially over time. For illustrative purposes, we focus on the same three attractions as before: the Bobsleigh Run, the Pegasus and the Panda Vision, for which the results are summarized in Table 5. The first two have very attractive ROIs of 236% and 237%, respectively. However, Panda Vision does not recover its costs, as its ROI is 78%. Of the 14 attractions considered in our empirical analyses, 10 were successful in the sense that their ROI exceeded 100%. Across all attractions introduced in the observation period 1981-2005, the average ROI is 113% when only direct effects are considered, and 142% when also the indirect effects due to reinforcement are included. This again underscores the importance of accounting for these indirect effects.

5.3 Robustness Checks

 Decay Pattern. In order to test the decay pattern of the proposed model, we compare it with two alternatives. Alternative model 1 replaces the within-year gamma distributions in (7) by
uniform distributions, implying a stepwise decay pattern without within-season variation. Alternative model 2 keeps the gamma specification for the within-year variation, but captures the across-year variation by non-monotonic decay patterns through yearly dummy variables up to a cut-off year after which the impact of the attraction is assumed zero. The cut-off year was varied from 1 to 15. A cutoff of three years provides the best BIC (alternative model 2a), while a cutoff value of 8 years gives the best AIC3 (alternative model 2b).

Table 6 contains the model comparison results. In-sample, we report the log-likelihood value and the BIC and AIC3 information criteria. For out-of-sample validation, we re-estimated all models up to 1998, when the Bird Rok was introduced, and predict attendance levels in 2002, the year in which the last attraction (Panda Vision) was added. We report the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE).

[Insert Table 6 about here]

The proposed model performs better than the alternative models in terms of both in-sample information criteria and out-of-sample prediction. Hence, it is important to capture the within-year effect by a pulsing pattern (model 0) instead of by a constant within-year pattern (model 1). To capture the across-year effect there is no need for a non-monotonic specification (models 2a and 2b); a more parsimonious monotonic decay as in focal model 0 (Eq. 8) suffices.

Saturation and reinforcement. We have also tested whether there are not only saturation and reinforcement effects within types (theme or thrill) but also across types, but the Likelihood Ratio test (LR=.71, df= 2, p =.70) indicated this extension was not required. A second LR test shows that our operationalization of saturation and reinforcement variables (linearly aggregated investments) is not improved upon when working with geometrically aggregated investments,
giving more weight to attractions that are introduced closer in time (LR=1.10, df = 2, p = .58).

For parsimony reasons, we opt to stay with the simpler linear specification.

Error correlations. In our model specification, the disturbances $u_{s,t}$ (Eq. 1) are assumed to be independent of the attraction-specific random terms $\omega_{j,s,t}$ (Eq. 3) and $\xi_{j,s,t}$ (Eq. 4). To check this, we computed the correlations between their simulated values (a similar empirical assessment was used in Chandrashekaran and Sinha 1995, p. 446). We found these correlations to be very close to zero. In addition, $\omega_{j,s,t}$ and $\xi_{j,s,t}$ are assumed to be independent of each other.

We tested a model in which (i) the $\omega_{j,s,t}$ are correlated across attractions j with correlation coefficient $\omega_{j,s,t}$, (ii) the $\xi_{j,s,t}$ are correlated with correlation coefficient $\xi_{j,s,t}$, and (iii) $\omega_{j,s,t}$ and $\xi_{j,s,t}$ are correlated with correlation coefficient $\omega_{j,s,t}$, without including autocorrelations in $\omega_{j,s,t}$ and $\xi_{j,s,t}$. The improvement in fit was not significant ($p=.14$). Next, we tested for first-order autocorrelation in $\omega_{j,s,t}$ and $\xi_{j,s,t}$. Again, the improvement in fit was not significant ($p=.36$).

Finally, we estimated a model in which we added time-invariant random effects ω_j and ξ_j. The associated variances turned out to be extremely small, and much smaller than the variances of $\omega_{j,s,t}$ and $\xi_{j,s,t}$. We therefore retained Equations (3) and (4) as the focal model.

6. USING THE MODEL TO EVALUATE NEW ATTRACTIONS

Our model cannot only be used to evaluate extant attractions (section 5.2), but also hypothetical new attractions. We consider the following experiment in order to extract some general guidelines for profitable investments. We assume that the park has a budget of €12 million (M) for investments in a planning period of four years, labeled year 1 to year 4. To capture the full reach of the attractions, we consider a period of 30 years beyond year 4. The budget can be used in ten different strategies (a-j) shown in Figure 8: one big attraction of 12M,
two medium-priced attractions of 6M each, or four inexpensive attractions of 3M each, where each attraction is either theme or thrill. As such, we also consider strategies that may involve multiple attractions in multiple years. To avoid too much extrapolation, we have kept these investment amounts within the range of 1 to 15 million euros observed in the estimation sample. Each year that the theme park does not spend the available budget, it earns 12% over the remaining amount, consistent with the adopted discount rate.

The ten strategies are investigated for three hypothetical scenarios, described by the attractions already available in the park. Scenario A is the “plain” scenario in which the two types theme and thrill are equally saturated (past investment in both types is 18M) and in which there are no opportunities to take advantage of reinforcement effects (as all previous introductions occurred very long ago and are therefore “sunk”). Scenario B also eliminates the reinforcement potential, but now theme attractions are less saturated than thrills (past investments of 12M vs. 24M). In scenario C, theme and thrill are equally saturated (for both types the total past investments amount to 18M), but theme now has reinforcement potential. For theme, only 6M (from the total of 18M) was invested long ago (“sunk”), while 12M was invested one year ago, in year 0, and can therefore be reinforced by new theme attractions.

[Insert Figure 8 about here]

Figure 8 shows the ROI estimates for the ten investment options in each of the three scenarios. For all scenarios, we obtained the result that it is more profitable to introduce the attractions as early on as possible (e.g., better to invest in year 1 than in year 2), so these are the only investment strategies we show. The reported numbers account for parameter uncertainty. For each scenario, the strategy with the highest (average) ROI is in black, and the percentages
indicate how often each of the strategies yielded the highest ROI in 2,000 simulation runs.

Several insights emerge from this exercise:

- **All else equal, investing in thrill attractions is more effective than investing in themed ones** (see e.g., scenario A). Theme park managers around the world seem to share this belief. In recent years, new roller coaster rides were added in Disney’s Epcot (Mission: Space), Disney World’s Animal Kingdom (Expedition Everest) and Universal Studios (e.g., Revenge of the Mummy Rides), to name a few.

- **Under certain conditions, theme attractions become more effective than thrills.** This holds if thrill has become saturated due to a large presence of this type (scenario B), or if theme has a lot of reinforcement potential due to recent theme introductions (scenario C). In line with that observation, PricewaterhouseCoopers (2004-2008, p. 497) projects that more and more parks will move away from their almost exclusive focus on thrill rides and add attractions that also appeal to a more family-oriented audience. Six Flags’ new owners, for example, recognize that many of their parks “were one-trick ponies, thrill palaces for teens without enough other attractions to appeal to young families” (Business Week 2006).

- **It is more efficient to invest in multiple smaller attractions than in one big attraction.** At first sight, this finding may appear in contrast with the “arms race” that currently seems to take place in the theme park industry. Indeed, several recent mega-attractions have received quite some press coverage. However, our finding is consistent with the emerging view that also new rides that are smaller and relatively cheap may lure visitors looking for something new (see e.g. Schneider 2008). As a case in point, Legoland California was able to achieve a record growth of 16 percent in 2006 because of the popularity of its relatively inexpensive ($10M) Pirate Shore addition (Rubin 2007). A similar observation was made (albeit in a
different setting) by Pauwels et al. (2004, p. 154), who concluded that “managers need not always incur the high development and launch costs that are associated with major product innovations,” and may as well opt for smaller, but more frequent, innovations.

7. CONCLUSION

This paper contributes to the growing literature of models to guide decisions in the entertainment industry. While the marketing literature offers several models to support decisions for the motion-picture industry and other areas (e.g., Wierenga 2008), the theme park industry has different characteristics requiring a different modeling approach. To guide investment decisions in theme park attractions, we estimated a model that disentangles the contribution of individual attractions to total theme park attendance.

In our empirical application we found that the over-time contribution is captured by a slowly extinguishing pulsing pattern, accounting for stronger effects in high seasons. Since more than 50% of the within-year effect is concentrated in eight weeks of the year, these are the weeks that management should adjust staffing levels to cope with increased demand. On average, attractions obtain 35% of their total impact in the year of introduction, while 90% materializes in the first five years following their introduction.

Our results also indicate that attractions indeed do not operate in isolation, but interact with other attractions in the park’s portfolio via (negative) saturation and (positive) reinforcement effects. When planning a new attraction, one should not only consider what rides are already in the park, but also when these were introduced. Indeed, to fully capitalize on the potential reinforcement effects, one should not let too much time elapse between consecutive introductions of the same type. However, at some point, the negative saturation effect will dampen the direct effect to such an extent that the addition of attractions of another type becomes more appealing. A failure to recognize this has, as indicated before, been identified as one of the
key mistakes made by Six Flags. Our modeling approach may be useful to avoid such costly mistakes, and to help management make the most appropriate trade-offs.

We estimated our model on data from the Efteling, a mature park with a combination of theme rides and thrill rides, not unlike the Disney parks around the world (yet at a smaller scale). Directionally, our results are in line with several developments in the industry, which adds to the face validity of our results. We expect that similar effects hold for other parks that are similarly diverse and mature. While we do not claim that the same parameter estimates will apply to other theme parks, we believe that the same underlying mechanisms are at work, especially since these mechanisms are based on well-documented individual-level phenomena such as novelty wear-off, attribute satiation and attribute alignment.

Obviously, it would be useful to replicate our study for other theme parks. These might differ in terms of their size and location (US, Asia, …), or in their types of attractions (e.g., a separate category of water attractions). To facilitate the diffusion of our model, the online appendix provides a detailed description of the steps needed to implement the model, and an artificial data set to test the implementation. In practical situations, we recommend to first estimate the model without error terms $\omega_{j,s,t}$ in equation (3) and $\xi_{j,s,t}$ in equation (4), in which case standard Maximum Likelihood suffices (instead of Simulated Maximum Likelihood).

Other areas for future research remain. First, we could use an attribute-based model to represent the variety of the available attractions (Hoch et al. 1999). Second, our model does not impose assumptions on how repeat and first-time visitors might contribute to attendance. A simulation study by Bodapati and Gupta (2004) shows that it is very difficult to recover heterogeneity patterns from aggregate data, even for frequently-bought consumer goods with many repeat purchases. These problems are likely to be amplified in a theme park setting, since
there is an extreme amount of variability in inter-purchase times, with an average repeat cycle of more than two years for most parks (www.entrepreneur.com). Nevertheless, future research could add assumptions to infer the relative contributions of first-time versus repeat visitors.

Third, it would be interesting to directly incorporate marketing-mix variables such as price and advertising spending. Fourth, our ROI calculations could be refined by also considering maintenance costs (which may vary across attractions) or by allowing for a more intricate price (revenue) structure.

We believe that our modeling approach may also be relevant in other settings. City councils, for example, may have to choose between different investment options to increase the number of tourists in their city. Should they build another concert hall or add a spectacular attraction such as a giant Ferris Wheel? Similarly, what piece of art should museum directors invest in to improve the overall appeal of their collection? Or what combination of stores should a shopping mall offer? The same notions of saturation and reinforcement potential from our modeling approach may be at work in these settings.
REFERENCES

Table 1: Key Players in the Amusement Park Industry

<table>
<thead>
<tr>
<th>Rank</th>
<th>Europe</th>
<th>Attendance (000)</th>
<th>United States</th>
<th>Attendance (000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disneyland Paris (France)</td>
<td>10,600</td>
<td>Magic Kingdom at Walt Disney World (FL)</td>
<td>16,640</td>
</tr>
<tr>
<td>2</td>
<td>Blackpool Pleasure Beach (UK)</td>
<td>6,000</td>
<td>Disneyland (CA)</td>
<td>14,730</td>
</tr>
<tr>
<td>3</td>
<td>Tivoli Gardens (Denmark)</td>
<td>4,396</td>
<td>Epcot at Walt Disney World (FL)</td>
<td>10,460</td>
</tr>
<tr>
<td>4</td>
<td>Europa Park (Germany)</td>
<td>3,950</td>
<td>MGM Studios at Walt Disney World (FL)</td>
<td>9,100</td>
</tr>
<tr>
<td>5</td>
<td>Port Aventura (Spain)</td>
<td>3,500</td>
<td>Disney’s Animal Kingdom at Walt Disney World (FL)</td>
<td>8,910</td>
</tr>
<tr>
<td>6</td>
<td>Efteling (Netherlands)</td>
<td>3,200</td>
<td>Universal Studios (FL)</td>
<td>6,000</td>
</tr>
<tr>
<td>7</td>
<td>Gardaland (Italy)</td>
<td>3,100</td>
<td>Disney’s California Adventure (CA)</td>
<td>5,950</td>
</tr>
<tr>
<td>8</td>
<td>Liseberg (Sweden)</td>
<td>2,950</td>
<td>Seaworld Florida (FL)</td>
<td>5,740</td>
</tr>
<tr>
<td>9</td>
<td>Bakken (Denmark)</td>
<td>2,700</td>
<td>Island of Adventure (FL)</td>
<td>5,300</td>
</tr>
<tr>
<td>10</td>
<td>Alton Towers (UK)</td>
<td>2,400</td>
<td>Universal Studios Hollywood (CA)</td>
<td>4,700</td>
</tr>
</tbody>
</table>

Source: TEA & Economics Research Associates (www.parkworld-online.com)

Table 2: Attractions introduced in the observation period 1981-2005

<table>
<thead>
<tr>
<th>Name</th>
<th>Year of introduction</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>1981</td>
<td>Roller coaster with four loops (was largest roller coaster in continental Europe)</td>
<td>Thrill</td>
</tr>
<tr>
<td>Half Moon Ship</td>
<td>1982</td>
<td>Swinging pirate ship (mentioned in Guinness Book of Records as largest in the world)</td>
<td>Thrill</td>
</tr>
<tr>
<td>Pirana</td>
<td>1983</td>
<td>Wild water rafting in a circular boat (first concept was Thunder River in Sixflags Astroworld in 1980; unique to Europe at time of intro)</td>
<td>Thrill</td>
</tr>
<tr>
<td>Carnaval Festival</td>
<td>1984</td>
<td>Show of figures that shows how people party in different countries (inspired by the It's a Small World attractions from Disney parks)</td>
<td>Theme</td>
</tr>
<tr>
<td>Bobsleigh Run</td>
<td>1985</td>
<td>Roller coaster shaped as a bobsleigh run (configuration was and is unique in Europe)</td>
<td>Thrill</td>
</tr>
<tr>
<td>Fata Morgana</td>
<td>1986</td>
<td>Boat ride through the fairy tales of 1001 nights (second Arabic-theme dark ride in Europe, #1 discontinued in 2001)</td>
<td>Theme</td>
</tr>
<tr>
<td>Pagoda</td>
<td>1987</td>
<td>Gently flying temple in Thai style</td>
<td>Theme</td>
</tr>
<tr>
<td>Monsieur Cannibale</td>
<td>1988</td>
<td>Quick merry-go-ride with turning boiling pots</td>
<td>Thrill</td>
</tr>
<tr>
<td>Laaf People</td>
<td>1990</td>
<td>Ride on monorail to watch houses with dwarves (first attraction of its type in the Netherlands, Belgium, Germany)</td>
<td>Theme</td>
</tr>
<tr>
<td>Pegasus</td>
<td>1991</td>
<td>Timber old-style roller coaster (first attraction of its type in the Netherlands, Belgium, Germany)</td>
<td>Thrill</td>
</tr>
<tr>
<td>Dream Flight</td>
<td>1993</td>
<td>Ride through fantasy world with elves and dwarves</td>
<td>Theme</td>
</tr>
<tr>
<td>Villa Volta</td>
<td>1996</td>
<td>Seemingly rotating house with bandit storyline (THEA Outstanding Achievement Award, first modern madhouse)</td>
<td>Theme</td>
</tr>
<tr>
<td>Bird Rok</td>
<td>1998</td>
<td>Indoor roller coaster with bird theme</td>
<td>Thrill</td>
</tr>
<tr>
<td>Panda Vision</td>
<td>2002</td>
<td>4D movie with World Life Fund theme (fourth dimension for physical effects such as rain, wind, and vibration)</td>
<td>Theme</td>
</tr>
</tbody>
</table>
Table 3: Covariates in the model to explain theme park attendance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Expected sign</th>
<th>Mean<sup>1</sup></th>
<th>Std</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disneyland</td>
<td>Dummy: 1 after opening of Disneyland Paris in 1992, 0 otherwise.</td>
<td>−: the entry of a potential competitor in France may result in less visitors.</td>
<td>.57</td>
<td>.49</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Walibi-Sixflags</td>
<td>Dummy: 1 after opening of Walibi-Sixflags in 1994, 0 otherwise.</td>
<td>−: the entry of a potential competitor in the Netherlands may result in less visitors.</td>
<td>.50</td>
<td>.50</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Movie World</td>
<td>Dummy: 1 after opening of Warner Bros. Movie World in 1996, 0 otherwise.</td>
<td>−: the entry of a potential competitor in Germany may result in less visitors.</td>
<td>.41</td>
<td>.49</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Seasonality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low season</td>
<td>Dummy: 1 in weeks that the Efteling management categorizes as low season</td>
<td>− [Note that we omit from the model the dummy for the middle, or shoulder season]</td>
<td>.39</td>
<td>.49</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>High season</td>
<td>Dummy: 1 in weeks that the Efteling management categorizes as high season</td>
<td>+ [Note that we omit from the model the dummy for the middle, or shoulder season]</td>
<td>.24</td>
<td>.43</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>School Holiday</td>
<td>Dummy: 1 in weeks coinciding with a school holiday outside the high season, 0 otherwise.</td>
<td>+: school children (and their parents) are one of the primary target groups of the Efteling.</td>
<td>.07</td>
<td>.25</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>National Holiday</td>
<td>Dummy: 1 in weeks containing a national holiday [Easter, Queen's Day, Ascension Day, Whit], 0 otherwise.</td>
<td>+: a national holiday is often used for a one-day visit to a theme park.</td>
<td>.20</td>
<td>.40</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Last week</td>
<td>Dummy: 1 in the last week of the season, 0 otherwise.</td>
<td>+: Many theme park aficionados visit the theme park one more time before the park closes for winter.</td>
<td>.03</td>
<td>.18</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Weekly millimeters of precipitation reported by the Royal Netherlands</td>
<td>−: it becomes less appealing to be in a primarily outdoor theme park when it rains.</td>
<td>16.16</td>
<td>16.86</td>
<td>.00</td>
<td>97.40</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature = Average weekly temperature (in centigrades) reported by the</td>
<td>+ main effect: warmer weather makes an outdoor theme park visit more enjoyable.</td>
<td>18.81</td>
<td>4.40</td>
<td>7.00</td>
<td>31.70</td>
</tr>
<tr>
<td>Temperature<sup>2</sup></td>
<td>Royal Netherlands Meteorological Institute.</td>
<td>− quadratic effect: it is less attractive to be outside when it is too warm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ The descriptives are based on the sample used for model estimation. This covers all weeks the theme park is open in the period 1981-2005. In total there are 732 weekly observations.
Table 4: Parameter estimates and associated standard errors

<table>
<thead>
<tr>
<th>Model Component</th>
<th>Description</th>
<th>Symbol</th>
<th>Estimate</th>
<th>(Std. Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance Equation</td>
<td>Intercept</td>
<td>β_1</td>
<td>-.653**</td>
<td>(.283)</td>
</tr>
<tr>
<td>[Equation 1]</td>
<td>Disneyland Paris</td>
<td>β_2</td>
<td>.089</td>
<td>(.059)</td>
</tr>
<tr>
<td></td>
<td>Walibi-Sixflags</td>
<td>β_3</td>
<td>-.097*</td>
<td>(.057)</td>
</tr>
<tr>
<td></td>
<td>Movie World</td>
<td>β_4</td>
<td>-.048</td>
<td>(.054)</td>
</tr>
<tr>
<td></td>
<td>Low season</td>
<td>β_5</td>
<td>-.103***</td>
<td>(.033)</td>
</tr>
<tr>
<td></td>
<td>High season</td>
<td>β_6</td>
<td>.375***</td>
<td>(.037)</td>
</tr>
<tr>
<td></td>
<td>School holiday</td>
<td>β_7</td>
<td>.314***</td>
<td>(.034)</td>
</tr>
<tr>
<td></td>
<td>National holiday</td>
<td>β_8</td>
<td>.225***</td>
<td>(.026)</td>
</tr>
<tr>
<td></td>
<td>Last week</td>
<td>β_9</td>
<td>.169***</td>
<td>(.048)</td>
</tr>
<tr>
<td></td>
<td>Precipitation</td>
<td>β_{10}</td>
<td>-.032***</td>
<td>(.005)</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>β_{11}</td>
<td>1.178***</td>
<td>(.135)</td>
</tr>
<tr>
<td></td>
<td>Temperature2</td>
<td>β_{12}</td>
<td>-.264***</td>
<td>(.035)</td>
</tr>
<tr>
<td></td>
<td>Trend</td>
<td>β_{13}</td>
<td>1.662***</td>
<td>(.334)</td>
</tr>
<tr>
<td></td>
<td>Trend2</td>
<td>β_{14}</td>
<td>-.392***</td>
<td>(.071)</td>
</tr>
<tr>
<td>Attraction Equation</td>
<td>Intercept of process function</td>
<td>α_1</td>
<td>.311</td>
<td>(.208)</td>
</tr>
<tr>
<td>[Equations 3 & 4]</td>
<td>Type</td>
<td>α_2</td>
<td>-.836***</td>
<td>(.324)</td>
</tr>
<tr>
<td></td>
<td>Saturation</td>
<td>α_3</td>
<td>-.125***</td>
<td>(.045)</td>
</tr>
<tr>
<td></td>
<td>Reinforcement</td>
<td>α_4</td>
<td>.028**</td>
<td>(.013)</td>
</tr>
<tr>
<td></td>
<td>Shape-within</td>
<td>γ</td>
<td>7.639***</td>
<td>(1.296)</td>
</tr>
<tr>
<td></td>
<td>Scale-within</td>
<td>δ</td>
<td>.488***</td>
<td>(.084)</td>
</tr>
<tr>
<td>Decay pattern</td>
<td>Decay-across</td>
<td>κ</td>
<td>-.417***</td>
<td>(.104)</td>
</tr>
<tr>
<td>[Equations 7 & 8]</td>
<td>Std. deviation</td>
<td>σ_ε</td>
<td>.209</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autocorrelation</td>
<td>ρ</td>
<td>.293</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. deviation</td>
<td>σ_ω</td>
<td>.067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. deviation</td>
<td>σ_ζ</td>
<td>.023</td>
<td></td>
</tr>
</tbody>
</table>

Model Fit

- R-Square: .75
- Log Likelihood: 105.22

* significant at 10% (two-sided); ** significant at 5% (two-sided); *** significant at 1% (two-sided); +significant based on BIC and AIC3 (Davies problem: see footnote 6).
Table 5: Return-on-Investment of attractions (standard errors in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>Bobsleigh Run</th>
<th>Pegasus</th>
<th>Panda Vision</th>
<th>Overall 1981 - 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of introduction</td>
<td>1985</td>
<td>1991</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Type of attraction</td>
<td>Thrill</td>
<td>Thrill</td>
<td>Theme</td>
<td>Theme & thrill</td>
</tr>
<tr>
<td>ROI – direct</td>
<td>108%</td>
<td>209%</td>
<td>78%</td>
<td>113%</td>
</tr>
<tr>
<td></td>
<td>(17%)</td>
<td>(20%)</td>
<td>(11%)</td>
<td>(13%)</td>
</tr>
<tr>
<td>ROI – combined</td>
<td>236%</td>
<td>237%</td>
<td>78%</td>
<td>142%</td>
</tr>
<tr>
<td></td>
<td>(68%)</td>
<td>(31%)</td>
<td>(11%)</td>
<td>(23%)</td>
</tr>
</tbody>
</table>

Table 6: Performance of proposed model and alternative decay patterns

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>In-sample</th>
<th>Out-of-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Proposed model: monotonic pattern, varying within year</td>
<td>105.22</td>
<td>-32.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-129.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.482</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.068</td>
</tr>
<tr>
<td>1</td>
<td>Monotonic pattern, constant within years</td>
<td>63.50</td>
<td>37.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-51.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.611</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.221</td>
</tr>
<tr>
<td>2a</td>
<td>Non-monotonic 3-year pattern, varying within year</td>
<td>99.68</td>
<td>-14.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-115.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.652</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.177</td>
</tr>
<tr>
<td>2b</td>
<td>Non-monotonic 8-year pattern, varying within year</td>
<td>107.84</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-116.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.122</td>
</tr>
</tbody>
</table>

Note: the best value in each column is underlined. Within the class of nonmonotonic patterns, the 3-year model provides the best BIC, while the 8-year model provides the best AIC3 value.
Figure 1: Weekly attendance numbers at the Efteling theme park
(asterix indicates year with new attraction)
Figure 2: Conceptual model for drivers of theme park attendance

Attendance

\[\text{[eq. 1]} \]

Competition \hspace{1cm} Seasonality \hspace{1cm} Attraction \ j \ \ (j=1,2,\ldots) \hspace{1cm} Trend \hspace{1cm} Price & advertising

\[\text{[eq. 2]} \]

Lifespan impact

\[\text{[eq. 3 & 4]} \]

Distribution over time

\[\text{[eq. 7]} \hspace{1cm} \text{[eq. 8]} \]

Within year \hspace{2cm} Across years

Amount invested \hspace{2cm} Type of attraction \hspace{2cm} Other attractions

\[\text{[eq. 5]} \hspace{1cm} \text{[eq. 6]} \]

Attractions introduced prior to attraction \ j \ (saturation) \hspace{2cm} Attractions introduced after attraction \ j \ but before evaluation moment (reinforcement)
Figure 3: Potential shapes of the over-time impact of an attraction, within and across years

Figure 4: Saturation, reinforcement, direct and indirect effects

1. direct impact of attraction A (black area)
2. attraction B opens two years after A
3. direct impact of B (grey area, lower peaks than A due to saturation)
4. indirect effect of B on A (white area, reinforcement attributable to B)
5. total impact = direct A + direct B + indirect B on A
Figure 5: Saturation and reinforcement illustrated on a time line

SATURATION calculated over period prior to \((s_j, t_j)\)
\([\text{attractions } 1, \ldots, j-1]\)

REINFORCEMENT calculated over period between \((s_j, t_j)\) and \((s, t)\):
\([\text{attractions } j+1, \ldots, K_{s,t}]\)

\((s_j, t_j)\): time of introduction of attraction \(j\)

\((s, t)\): time of evaluation of attraction \(j\)'s effect

Figure 6: The estimated time-varying impact of a new attraction on theme park attendance

Figure 7: Lifespan Impact of the Attractions on Attendance
Figure 8: Return-on-Investment (in %) for ten investment strategies in three scenarios

<table>
<thead>
<tr>
<th>Investment strategies</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>12M</td>
<td>12M</td>
<td>6M</td>
<td>6M</td>
<td>6M</td>
<td>6M</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
</tr>
<tr>
<td>theme</td>
<td></td>
</tr>
<tr>
<td>thrill</td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>-</td>
<td>-</td>
<td>6M</td>
<td>6M</td>
<td>6M</td>
<td>6M</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
</tr>
<tr>
<td>theme</td>
<td></td>
</tr>
<tr>
<td>thrill</td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
</tr>
<tr>
<td>theme</td>
<td></td>
</tr>
<tr>
<td>thrill</td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
<td>3M</td>
</tr>
<tr>
<td>theme</td>
<td></td>
</tr>
<tr>
<td>thrill</td>
<td></td>
</tr>
</tbody>
</table>

Scenario A: Sunk investments in theme (18M) and thrill attractions (18M)

Scenario B: Sunk investments in theme (12M) and thrill attractions (24M)

Scenario C: Sunk (6M) and last-year (12M) investments in theme attractions; sunk investment (18M) in thrill attractions

Note. For each strategy, a budget of €12 million (M) is available for investments in the 4-year planning period; This budget can be spent on either one big 12M attraction, two medium-sized 6M attractions, or four consecutive small 3M attractions of either type (theme or thrill). For each scenario, the strategy with the highest average ROI is in black. The percentages indicate how often each of the strategies yielded the highest ROI in 2,000 simulation runs.