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Abstract
Alkylating agents represent an important class of anticancer drugs. The occurrence and emergence of tumor resistance 

to the treatment with alkylating agents denotes a severe problem in the clinics. A detailed understanding of the 

mechanisms of activity of alkylating drugs is essential in order to overcome drug resistance. In particular, the role of non-

coding microRNAs concerning alkylating drug activity and resistance in various cancers is highlighted in this review. Both 

synthetic and natural alkylating agents, which are approved for cancer therapy, are discussed concerning their interplay 

with microRNAs. 
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INTRODUCTION
Alkylating agents represent an important tool for the daily fight against cancer. Interestingly, their 
introduction into clinical application based on chemical warfare. Like a knife that can kill in the hands of 
an assassin and heal in the hands of a surgeon, the potential of nitrogen and sulfur mustards as anticancer 
agents was identified after incidents with poison gas (reduction of white blood cells) during World War II and 
dates back to observations after poison gas attacks during World War I[1,2]. Rational chemical modifications 
led to less lethal anticancer drug candidates such as melphalan, chlorambucil, and cyclophosphamide (all 
of them are nitrogen mustards). Alkylation of bionucleophiles (proteins, nucleic acids) mainly occurs at N, 
O, and S sites with free electron pairs. In most cases DNA was identified as the main target of alkylating 
agents and both mono-functional (reaction with only one DNA strand) and bifunctional alkylating agents 
(reaction with two strands leading to DNA crosslinks) are known[2]. Pertinent drug resistance strategies of 
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cancers in order to cope with alkylating drugs include elevated glutathione levels, enhanced DNA repair and 
modified DNA damage signaling, as well as expression of multidrug resistance proteins such as membrane 
transporters[2]. The prodrug temozolomide is a highlight of research concerning alkylating agents because it 
can penetrate the blood-brain-barrier and is clinically applied for the therapy of glioblastoma[3]. Meanwhile, 
nature has also provided very potent alkylating agents with promising anticancer activities such as 
mitomycins, cyclopropyl-indoles, and illudins[4-6]. Mitomycin C is applied for the treatment of various solid 
tumors[4]. Trabectedin is the latest natural alkylating agent that has been approved for the therapy of soft 
tissue sarcoma and platinum-resistant ovarian cancer[7]. 

MicroRNAs (miRNAs) are small RNA molecules of 22-23 nucleotides and regulate numerous genes involved 
in cell differentiation, cell proliferation, and cell death[8]. Mature miRNAs usually bind to the 3’-untranslated 
region of target messenger RNAs (mRNAs) and one miRNA is able to bind to various mRNAs[9-11]. MiRNAs 
have become valuable tools for the diagnosis and prognosis of cancer diseases due to abnormal expression 
profiles in cancers[12,13]. In addition, miRNAs regulate metastasis formation (epithelial-to-mesenchymal 
transition) and survival of cancer stem-like cells[14,15]. Concerning cancer research, tumor suppressor 
miRNAs and oncogenic miRNAs (oncomirs) are of particular interest and played crucial roles for the 
sensitivity and resistance of various tumors to applied drugs[16]. Prominent miRNAs with great relevance to 
cancer disease are represented by the tumor suppressor let-7 family and the oncomir miR-21[17,18].

This review intends to give an overview of clinically approved alkylating agents and their interactions with 
miRNAs in cancer diseases concerning drug activity and resistance.

SYNTHETIC ALKYLATING AGENTS AND THEIR INTERACTIONS WITH MIRNAS
Synthetic alkylating agents are widely applied for the therapy of solid tumors and of leukemia/lymphoma 
diseases. Relevant synthetic alkylating agents that are dealt with in this review can be subdivided into 
the following compound classes: mustards (e.g., nitrogen mustards such as mechlorethamine, melphalan, 
chlorambucil, bendamustine, cyclophosphamide, estramustine), diazomethane forming prodrugs (e.g., 
dacarbazine, temozolomide), and N-nitrosoureas (e.g., BCNU/carmustine). The influence of miRNAs on the 
activity of these alkylating drugs is discussed below. 

NITROGEN MUSTARDS, MIRNAS AND CANCER
As mentioned above, anticancer active nitrogen mustards were developed since 1942 from highly toxic 
poison gas applied or produced in both World Wars of the 20th century. In order to reduce the systemic 
toxicity of nitrogen mustard poison gas and of initially applied mustard drugs like mechlorethamine, anilin 
derivatives such as chlorambucil and melphalan were designed with reduced activity due to their aromatic 
amine system [Figure 1]. Soon later, bendamustine and the prodrug cyclophosphamide were developed 
as potent anticancer drugs [Figure 1][19]. In addition, the alkylating estrogen-conjugate estramustine 
was disclosed [Figure 1][19]. Recent efforts in the field of nitrogen mustard-based anticancer research to 
increase selectivity and reduce side effects included DNA-targeting strategies, brain-targeting strategies, 
antibody-directed enzyme prodrug therapy and gene-directed enzyme prodrug therapy strategies, and 
nitrogen mustard prodrugs activated by glutathione transferase[19]. The alkylation mode of action of these 
2-chloroethylamino derivatives includes an intramolecular reaction to an aziridium intermediate that 
readily reacts with bionucleophiles[19]. Aside cytotoxic effects on non-malignant cells, genotoxic mutagenic 
effects were identified for nitrogen mustards as well. 

Chlorambucil has been the standard treatment for chronic lymphocytic leukemia (CLL) for decades 
and the drug is still recommended as a mainstay for the currently widely applied antibody-based 
chemoimmunotherapy for CLL[20]. Chemoresistance of CLL is often mediated by the p53-signaling pathway 
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which plays a crucial role for the cellular response to DNA damage[21]. The tumor suppressor microRNA 
miR-34a is connected with p53-signaling and low expression of miR-34a led to chemoresistance in CLL[22]. A 
considerable number of PCLBCL-LT (primary cutaneous diffuse large B-cell lymphomas, leg-type) patients 
did not respond to chlorambucil first-line therapy and upregulated expression of the oncogenic miR-17-92 
cluster seems responsible leading to suppression of PTEN (phosphatase and TENsin homolog)[23]. A miR-210 
targeting/inhibiting chlorambucil conjugate was synthesized, which suppressed a cancer relevant hypoxic 
mechanism and was active against hypoxic triple-negative breast cancer in mice[24]. A list of miRNAs 
associated with chlorambucil activity is provided in Table 1.

Melphalan is a close analog of chlorambucil and has been applied for the treatment of multiple myeloma 
(MM) since the 1960’s[25]. From MM patients treated with melphalan circulating exosomal let-7b and miR-
18a were identified as prognostic factors (i.e., improved survival)[26]. Suppression of the oncogenes Myc, 
Ras and CCND1 (cyclin D1) by let-7b may play a role as well as inhibition of the HIF1α-pathway [hypoxia-
inducible factor (HIF)] by miR-18a[26]. IL-6-mediated downregulation of the tumor suppressor miR-
15a/16 expression increased resistance of myeloma cells to melphalan treatment[27]. The oncogenic miR-
221-222 family suppressed p53 upregulated modulator of apoptosis (PUMA) in MM cells leading to drug 
resistance[28]. Inhibition of miR-221 by a 13 mer LNA-i-miR-221 inhibitor broke melphalan resistance in MM 
by modulation of PUMA (upregulation) and ATP binding cassette C1 (ABCC1) transporter (downregulation)[29]. In 
addition, it was suggested that suppression of miR-451 can enhance the activity of melphalan in multiple 
myeloma via downregulation of multidrug resistance gene 1 (MDR1)[30]. A list of miRNAs involved in 
melphalan activity in myeloma is given in Table 2.

Cyclophosphamide is one of the most successful anticancer drugs which is still widely applied for the 
therapy of many cancer diseases 60 years now after its development in the late 1950’s[31]. The drug is applied 
for the treatment of breast cancer, childhood cancers, and lymphoma[31]. Cyclophosphamide is a prodrug, 
which can be activated in a chemical or metabolic way. Enzymatic oxidation of cyclophosphamide generates 
cytotoxic phosphoramide mustard molecules leading to interstrand and intrastrand crosslinks of DNA as 
well as toxic acrolein which is responsible for the side effects of cyclophosphamide[32]. 
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Figure 1. Structures of the N -mustard alkylating agents melphalan, chlorambucil, cyclophosphamide and estramustine



Clinical sensitivity to cyclophosphamide is strongly correlated with the ability of cancer cells to induce 
apoptosis upon DNA damage[33]. Due to its significance in cancer therapy the relations between miRNAs 
and cyclophosphamide is well studied, in particular, in lymphoma[34,35]. Upregulation of circulating 
oncogenic miR-125b and miR-130a was determined in B-cell lymphoma samples from patients treated 
with cyclophosphamide-based chemotherapy[36]. In diffuse large B-cell lymphoma (DLBCL, the most 
common non-Hodgkin lymphoma type) treated with R-CHOP (rituximab, cyclophosphamide, adriamycin, 
vincristine, and prednisone), increased miR-181a expression prolonged progression free survival (PFS) by 
suppression of FOXP1 and O6-methylguanine DNA methyltransferase (MGMT) while increased miR-18a 
levels led to shorter overall survival (OS) and high miR-222 expression to shorter PFS[37]. MiR-93 (targets: 
p21, BCL2L11), miR-221 and miR-222 (target: p27) were upregulated in DLBCL patients with poor outcomes 
after cyclophosphamide-based therapies[38]. Knockdown of the well-known oncomir miR-21 sensitized 
DLBCL cells to CHOP treatment by upregulation of PTEN[39]. Shorter OS was observed from DLBCL 
patients with high miR-21 expression in the tumor tissue, while high miR-21 levels in the serum promoted 
relapse free survival[40]. Downregulated miR-199a/b also shortened progression free survival time[40]. In 
addition, CHOP or R-CHOP treated DLBCL patients with upregulated miR-200c expression displayed 
shorter OS than patients with suppressed miR-200c[41]. Induced miR-155 expression was connected with 
R-CHOP resistance in DLBCL patients although miR-155 sensitized patients to AKT (protein kinase B, ak 
thymoma) signaling probably by targeting p85α and SHIP1[42]. In contrast to that, upregulated expression 
of miR-129-5p in DLBCL patients treated with CHOP or R-CHOP led to much longer median survival 
than in patients with downregulated miR-129-5p[43]. The tumor suppressor miR-146a was downregulated 
in R-CHOP-treated DBCL patients who displayed drug resistance[44]. Suppressed expression of the tumor 
suppressors miR-146b-5p and miR-320d led to shorter progression free survival in CHOP-treated DLBCL 
patients[45]. Higher serum levels of miR-33a and miR-455-3p indicated better response while high levels 
of miR-224 (target: CD59), miR-520d-3p and miR-1236 were connected with worse R-CHOP response in 
DLBCL patients[35,46]. Suppressed miR-224 expression in the tumor tissue also indicated poor survival[39]. In 
addition, a higher R-CHOP response rate and longer survival was observed from DLBCL patients with 7q 
gain, which was attributed to the upregulated expression of miR-25, miR-96, miR-182, and miR-589[47]. Lists 
of miRNAs involved in cyclophosphamide activity in lymphoma are given in Tables 3 and 4.

MicroRNAs also seem to play a role for drug resistance in breast cancer patients receiving cyclophosphamide 
as part of the TFAC therapy (paclitaxel, 5-f luorouracil, adriamycin, cyclophosphamide)[48]. The tumor 
suppressor miR-9 bound to the mRNA of human epidermal growth factor 2 (HER2) and increased the 
response to cyclophosphamide[49]. Low expression of let-7, miR-10b, miR-34, miR-155, miR-200c, miR-205, 

Table 1. MiRNAs with effects on the anticancer activity of chlorambucil

MiRNA Target Function Expression in cancers/tissues
miR-34a p53 Tumor suppressor Suppressed in resistant CLL

miR-17-92 cluster PTEN Oncomir Upregulated in resistant B-cell lymphoma 

miR-210 GPD1L Oncomir Upregulated in triple-negative breast cancer

Table 2. MiRNAs with effects on the anticancer activity of melphalan

MiRNA Target(s) Function Expression in cancers/tissues
let-7b Myc, Ras, CCND1 Tumor suppressor Exosomal let-7b upregulated in sensitive MM

miR-15a/16 - Tumor suppressor Suppressed in resistant myeloma

miR-18a HIF1α Tumor suppressor Exosomal miR-18a upregulated in sensitive MM

miR-221-222 family PUMA, ABCC1 Oncomir Upregulated in resistant MM

miR-451 MDR1 Oncomir Suppressed in resistant MM

CLL: chronic lymphocytic leukemia; GPD1L: glycerol-3-phosphate dehydrogenase 1L; PTEN: phosphatase and TENsin homolog

ABCC1: ATP-binding cassette C1; CCND1: cyclin D1; HIF1α: hypoxia-inducible facter 1-α; MDR1: multidrug resistance gene 1; MM: multiple 
myeloma; PUMA: p53 upregulated modulator of apoptosis
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miR-451, and miR-3200 as well as high expression of miR-21, miR-195, and miR-221 were observed after 
cyclophosphamide treatment[50,51]. In particular, expression of the tumor suppressor miR-205 sensitized 
breast cancer cells to TAC treatment (docetaxel, doxorubicin, cyclophosphamide) by suppression of vascular 
endothelial growth factor A and fibroblast growth factor 2[52]. In contrast to that, miR-663 overexpression 
was associated with resistance to cyclophosphamide in MDA-MB-231/ADM breast cancer cells (cells 
resistant to adriamycin) by suppression of heparin sulfate proteoglycan 2[53]. The MDA-MB-231 cell line is 
a widely applied model for triple-negative breast cancer (TNBC, i.e., no or reduced expression of estrogen 
receptor, HER2/neu and progesterone receptor), which is a very problematic form of breast cancer showing 
chemotherapy resistance and poor prognosis. Samples from cyclophosphamide-treated TNBC patients 
with good response to chemotherapy exhibited higher miR-200b-3p (possible targets: PLCB1, MYCN, 
CCND2, RERG) and miR-190a (possible targets: BCL11A, CALCR, FOXP2, HOXC5) as well as lower 
miR-512-5p (possible targets: BCL2L2, POLD3, c-Myc) expression when compared with TNBC patients 
displaying weak chemotherapy response[54]. The microRNAs miR-30a, miR-9-3p, miR-770 and miR-143-5p 
were also identified as markers for chemotherapy response by TNBC patients. Chemotherapy-responding 
TNBC patients revealed upregulated miR-30a (affected transcriptional regulation in cancer) and miR-9-3p 
(affected mTOR/mammalian target of rapamycin and TGF/transforming growth factor-β signaling) as well 

Table 3. Effects of oncomirs on the anti-lymphoma activity of cyclophosphamide

MiRNA Expression (targets)
miR-18 Upregulated in patients with shorter OS

miR-21 Upregulated in tumor cells and tissues leading to shorter OS (PTEN)

miR-93 Upregulated in resistant patients (p21, BCL2L11)

miR-125b Upregulated in patients treated with R-CHOP

miR-130a Upregulated in patients treated with R-CHOP

miR-155 Upregulated in R-CHOP-resistant patients (p85α, SHIP1)

miR-200c Upregulated in patients with shorter survival

miR-221 Upregulated in resistant patients (p27)

miR-222 Upregulated in resistant patients with shorter PFS (p27)

miR-224 Expression in serum connected with worse R-CHOP response

miR-520d-3p Expression connected with worse R-CHOP response

miR-1236 Expression connected with worse R-CHOP response

Table 4. Effects of tumor suppressing miRNAs on the anti-lymphoma activity of cyclophosphamide

MiRNA Expression (targets)
miR-21 Upregulation in serum promotes survival

miR-25 Expression connected with longer survival in 7q gain patients

miR-33a Expression connected with better R-CHOP response

miR-96 Expression connected with longer survival in 7q gain patients

miR-129-5p Upregulated in patients with longer median survival

miR-146a Suppressed in R-CHOP-resistant patients

miR-146b-5p Suppressed in patients with shorter PFS

miR-181a Upregulated in patients with prolonged PFS (FOXP1, MGMT)

miR-182 Expression connected with longer survival in 7q gain patients

miR-199a/b Suppression connected with shorter PFS

miR-224 Suppression in tumor tissue connected with poor survival

miR-320d Suppressed in patients with shorter PFS

miR-455-3p Expression connected with better R-CHOP response

miR-589 Expression connected with longer survival in 7q gain patients

OS: overall survival; BCL2L11: Bcl2-like protein 11; PTEN: phosphatase and tensin homolog; R-CHOP: rituximab plus cyclophosphamide, 
hydroxydaunorubicin (doxorubicin), oncovin (vincristine), prednisone; SHIP1: SH2 domain-containing inositol phosphatase 1; PFS: 
progression free survival

FOXP1: forkhead box protein P1; MGMT: O6-methylguanine DNA methyltransferase; R-CHOP: rituximab plus cyclophosphamide, 
hydroxydaunorubicin (doxorubicin), oncovin (vincristine), prednisone; PFS: progression free survival
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as suppressed miR-770-5p (affected B and T cell receptor signaling) and miR-143-5p (affected B and T cell 
receptor signaling as well as mTOR signaling)[55]. A list of miRNAs involved in cyclophosphamide activity in 
breast cancer is given in Table 5.

The relations between miRNAs and cyclophosphamide were also investigated in further cancer diseases. 
VAC treatment (vindesine, doxorubicin, cyclophosphamide) is applied as a second-line treatment of small 
cell lung cancer. The structurally simple HDAC inhibitor valproic acid increased the activity of VAC 
treatment both in vitro and in vivo via induction of miR-589 and suppression of miR-575 expression[56]. In 
addition, overexpression of the oncomirs miR-27b and miR-298 led to cyclophosphamide resistance in Panc-
1 pancreatic cancer cells by inhibition of vitamin D receptor and cytochrome P3A4 (CYP3A4)[57]. It became 
evident that CYP3A4 plays a crucial role for the activation of cyclophosphamide in these cancer cells. A list 
of miRNAs involved in cyclophosphamide activity in various cancers is given in Table 6.

Estramustine phosphate is applied for the treatment of advanced prostate cancer and combines the DNA-
damaging N-mustard scaffold with a tubulin polymerization inhibiting steroid (estradiol-17β-phosphate) 
released upon metabolization of the drug[58]. In prostate cancer cells, estramustine phosphate induced 
apoptosis via suppression of the oncomir miR-31[59]. In addition, downregulation of the tumor suppressor 
miR-4319, which suppresses HER2 expression, was associated with poor chemotherapy response in 
prostate cancer patients and induced miR-4319 expression sensitized prostate cancer cells to estramustine 
treatment[60]. A list of microRNAs involved in estramustine phosphate anticancer activity is given in Table 7.

DACARBAZINE AND TEMOZOLOMIDE, MIRNAS AND CANCER
Dacarbazine and temozolomide [Figure 2] are valuable anticancer drugs for the treatment of melanoma and 
of brain tumors such as glioblastomas (GBMs)[61,62]. Their mode of action implies the generation of highly 
toxic DNA-alkylating diazomethane molecules that kill the cancer cells[63]. 

Table 5. MiRNAs with effects on the anti-breast cancer activity of cyclophosphamide

MiRNA Target(s) Function Expression
let-7 - Tumor suppressor Low expression upon CP treatment 

miR-9/miR-9-3p HER2, mTOR and TGF-β signaling Tumor suppressor Expression increased response to CP

miR-10b - Tumor suppressor Low expression upon CP treatment

miR-21 PTEN Oncomir High expression upon CP treatment

miR-30a transcriptional regulation Tumor suppressor Upregulation connected with better response

miR-34 - Tumor suppressor Low expression upon CP treatment

miR-143-5p B and T cell receptor and mTOR signaling Oncomir Suppression connected with better response

miR-190a BCL11A, CALCR, FOXP2, HOXC5 Tumor suppressor High expression correlated with better response

miR-195 - Oncomir High expression upon CP treatment

miR-200b-3p PLCB1, MYCN, CCND2, RERG Tumor suppressor High expression correlated with better response

miR-200c - Tumor suppressor Low expression upon CP treatment

miR-205 VEGFA, FGF2 Tumor suppressor Low expression upon CP treatment, expression 
sensitizes to TAC treatment

miR-221 PUMA, ABCC1 Oncomir High expression upon CP treatment

miR-451 - Tumor suppressor Low expression upon CP treatment

miR-512-5p BCL2L2, POLD3, c-Myc Oncomir Suppression correlated with better response

miR-663 HSPG2 Oncomir Expression connected with resistance of cancer cells

miR-770-5p B and T cell receptor signaling Oncomir Suppression connected with better response

miR-3200 - Tumor suppressor Low expression upon CP treatment

ABCC1: ATP-bonding cassette C1; BCL11A: B-cell lymphoma/leukemia 11A; BCL2L2: Bcl-2-like protein 2; CALCR: calcitonin receptor; 
CCND2: cyclin D2; CP: cyclophosphamide; FGF2: fibroblast growth factor 2; FOXP2: forkhead-box-protein P2; HER2: human epidermal 
growth factor receptor 2; HSPG2: heparin sulfate proteoglycan 2; mTOR: mammalian target of rapamycin; MYCN: gene coding for N-Myc; 
POLD3: DNA polymerase delta 3; PTEN: phosphatase and TENsin homolog; PUMA: p53 upregulated modulator of apoptosis; RERG: RAS-
like estrogen-regulated growth inhibitor; TAC: docetaxel, doxorubicin, cyclophosphamide; TGF-β: transforming growth factor β; VEGFA: 
vascular endothelial growth factor A
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Growth inhibition of melanoma cells by dacarbazine was mediated by induction of the expression of miR-
200 family miRNAs (miR-141, miR-200a/b/c) which regulate apoptosis[64]. Dacarbazine is also widely 
applied for the treatment of lymphomas as part of the ABVD therapy (adriamycin, bleomycin, vinblastine, 
dacarbazine). Complete response to ABVD therapy was achieved by classical Hodgkin lymphoma patients 
with reduced miR-494 and miR-1973 plasma levels[65]. A list of miRNAs involved in dacarbazine activity in 
various cancers is given in Table 8.

The development of temozolomide as an anticancer drug started in the 1980’s and is a nice example of the 
productive interplay between chemists, pharmacists and clinicians during the development process[63]. 
Temozolomide is a prodrug and decomposes in aqueous solution. Initially CO2 is released from the 
molecule whereupon diazomethane is formed that reacts with bionucleophiles[63]. The interplay between 
temozolomide and miRNAs in cancer was thoroughly studied over the last years. Initial studies revealed that 
temozolomide-induced apoptosis was inhibited by upregulated miR-21 accompanied by decreased Bax/Bcl-
2 ratio and caspase-3 activity in GBM cells[66,67]. Treatment of GBM cells with temozolomide led to increased 
miR-21 expression and GBM cells were sensitized to temozolomide by downregulation of miR-21 and 
miR-17[68-70]. In particular, antisense miR-21 formulated with PLGA [poly(lactic-co-glycolic acid)] 
nanoparticle carriers increased the anticancer activity of temozolomide against GBM cells[71]. Temozolomide-
resistant GBM cells also exhibited increased miR-10a*, miR-195 (also in cancer stem cells of GMB tumors 
via mothers against decapentaplegic homolog 2 targeting), and miR-455-3p expression[72,73]. However, in 
melanoma cells, miR-195 functioned as a tumor suppressor by suppression of prohibitin 1[74]. In addition, 
chemoresistance to temozolomide was associated with upregulation of miR-9 (targeting/patched homolog 
1) in CD133-positive GBM cells and of Bcl-2-interacting mediator of cell death - targeting miR-138[75-77]. 
Downregulation of the tumor suppressor miR-16 increased Bcl-2 activity and led to temozolomide resistance 
in glioma cells[78]. Suppressed miR-29c expression associated with upregulated reversionless 3-like (REV3L) 
led to temozolomide resistance in glioma cells[79]. In addition, miR-29c enhanced temozolomide activity by 
indirect suppression of MGMT[80]. MiR-30a expression also enhanced temozolomide activity against U251 
GBM cells by inhibition of autophagy and suppression of beclin 1[81]. Upregulation of the tumor suppressor 
miR-136 led to higher temozolomide activity in glioma cells by suppression of astrocyte elevated gene 1 
(AEG-1)[82]. Similarly, induced miR-143 expression increased temozolomide activity against GBM cells via 
neuroblastoma rat sarcoma oncogene targeting[83]. The oncomir miR-93 led to temozolomide resistance 
of glioma cells by upregulation of p21[84]. MiR-125b-2 induced temozolomide resistance in glioblastoma 

Table 6. MiRNAs with effects on the activity of cyclophosphamide in miscellaneous cancers

MiRNA Target Function Expression in cancers/tissues
miR-27b CYP3A4, VDR Oncomir Overexpression in resistant pancreas cancer cells

miR-298 CYP3A4, VDR Oncomir Overexpression in resistant pancreas cancer cells

miR-575 Invasion Oncomir Suppression led to sensitive lung cancer cells

miR-589 EMT Tumor suppressor High expression led to sensitive lung cancer cells

Figure 2. Structures of the alkylating agents dacarbazine and temozolomide

CYP3A4: cytochrome P3A4; EMT: epithelial-to-mesenchymal transition; VDR: vitamin D receptor
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stem cells was associated with downregulation of Bax and upregulation of Bcl-2[85]. Downregulation of the 
oncomirs miR-221/miR-222 refurnished p53 signaling pathway and promoted apoptosis of GBM cells treated 
with temozolomide[86]. MiR-141-3p is another p53-targeting oncomir leading to temozolomide resistance 
in glioma cells[87]. MAP kinase/extracellular-signal regulated kinase (ERK) signaling was induced by the 
oncomir miR-299-5p, which targeted golgi phosphoprotein 3 and, thus, led to temozolomide resistance in 
GBM cells[88]. Temozolomide resistance in GBM basing on active GSK3β was overcome by upregulated miR-
101[89]. Further to this, miR-128 mediated temozolomide-induced cell death in glioma cells via inhibition 
of mTOR signaling and suppression of insulin-like growth factor 1, phosphoinositide-3-kinase regulatory 
subunit 1, rapamycin-insensitive companion of mTOR and mTOR[90]. High expression of miR-130a 
sensitized glioma cells to temozolomide via apurinic/apyrimidinic endonuclease 1 suppression and was 
upregulated in GBM patients with better response to temozolomide[91]. A direct influence on temozolomide 
resistance was elucidated for miR-181d and miR-603, which suppressed the DNA repair enzyme MGMT 
leading to greater sensitivity to temozolomide[92]. In addition, miR-142-3p promoted temozolomide activity 
in GBM cells by suppression of MGMT[93]. MiR-648 and miR-767-3p were identified as further MGMT 
targeting/suppressing miRNAs, which enhanced the anticancer activity of temozolomide in T98G GBM 
cells[94]. MiR-182 expression also increased temozolomide activity in GBM cells by apoptosis promotion 
via c-Met, HIF2A and BCL2L12 suppression[95]. However, expression of miR-132 caused temozolomide 
resistance in GBM cells (U78MG) via downregulation of tumor suppressor candidate 3[96]. Temozolomide-
resistant GBM cells and tissues exhibited suppressed miR-370-3p expression levels, which is a tumor 
suppressor responsible for downregulated MGMT expression and blocked DNA repair[97]. In contrast to 
that, expression of the oncomir miR-423-5p led to temozolomide resistance in glioma cells by targeting 
ING-4[98]. Glioblastoma samples from patients treated with temozolomide revealed upregulated miR-629-
3p expression (targeting genes involved in translation and RNA processing) in case of good responders 
with prolonged OS[99]. The tumor suppressor miR-1268 also sensitized glioma cells (T98G) to temozolomide 
treatment[100]. In addition, miR-1294 suppressed targeting protein for Xenopus kinesin-like protein 2 in 
glioma cells leading to enhanced temozolomide activity[101]. Some miRNAs are special “Janus-type” cases 
here. Although miR-181b/c are reported as tumor suppressors in GBM, reduced expression of these miRNAs 
was associated with better temozolomide response[102]. And although miR-221 and miR-222 suppress MGMT, 
their upregulation led to weaker responses to temozolomide[103]. In a cancer type dependent way, miR-195 
acted either as a tumor suppressor (melanoma) or as an oncomir (GBM, see above). Last but not least, the 
combination of temozolomide with miRNA-regulating drugs appears promising. For instance, curcumin (a 
polyphenol isolated from turmeric, Curcuma longa) was able to sensitize GBM cells (C6) to temozolomide 
via suppression of miR-10b[104]. Lists of miRNAs involved in temozolomide anticancer activity are given in 
Tables 9 and 10.

N -nitrosoureas, miRNAs and cancer
Anticancer active N-nitrosoureas were developed in the course of a screening program initiated by the 
National Cancer Institute. Starting from the hit compound 1-methyl-3-nitro-1-nitrosoguanidine further 

Table 7. MiRNAs with effects on the anticancer activity of estramustine phosphate

MiRNA Target Function Expression in cancers/tissues
miR-31 Apoptosis Oncomir Suppression in prostate cancer led to apoptosis 

miR-4319 HER2 Tumor suppressor Suppression in prostate cancer patients led to resistance 

Table 8. MiRNAs with effects on the anticancer activity of dacarbazine

MiRNA Target Function Expression in cancers/tissues
miR-141 Apoptosis Tumor suppressor Expression sensitized melanoma cells

miR-200a/b/c Apoptosis Tumor suppressor Expression sensitized melanoma cells

miR-494 - Oncomir Suppression led to complete response in lymphoma patients

miR-1973 - Oncomir Suppression led to complete response in lymphoma patients

HER2: human epidermal growth factor receptor 2
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analogs were prepared leading to 1-methyl-1-nitrosourea which was active against intracerebrally implanted 
murine leukemia[105]. Further fine-tuning of this compound finally led to carmustine/BCNU (bis-
chloroethylnitrosourea, Figure 3) which entered clinical trials in 1964 and was approved by the FDA in 
1977 for the treatment of brain tumors (BCNU passes the blood-brain-barrier because of its lipophilicity), 
lymphomas and myeloma[106]. A newer study recommends the application of BCNU for the treatment of 
recurrent GBM[107]. BCNU is a prodrug, which decomposes to afford alkylating chloroethyl moieties that 
can form DNA interstrand crosslinks[108]. Carbamoylation of nucleoprotein lysine residues via isocyanate 
intermediates can also play a role for the anticancer mode of action of BCNU[109]. 

Expression analysis of BCNU-treated glioma cells led to dysregulation of let-7b (tumor suppressor), miR-
125b-2 (oncomir), miR-133a-1 (tumor suppressor/oncomir), and miR-183 (oncomir)[110]. It was also shown 
that miR-21 expression induced BCNU-resistance in glioma cells via downregulation of Spry2 (sprout 
homolog 2)[111]. Although miR-181d was identified as a tumor suppressor and temozolomide-sensitizing 
factor (see above), GBM patients with implanted BCNU wafers displayed prolonged overall and progression-
free survival in case of suppressed miR-181d expression[112]. In addition, high expression of the oncomir 
miR-221 suppressed PTEN and led to PI3K/Akt activation and resistance to BCNU[113]. A list of miRNAs 
involved in BCNU anticancer activity is given in Table 11.  

NATURAL ALKYLATING AGENTS AND THEIR INTERACTIONS WITH MIRNAS
Natural alkylating agents were investigated for anticancer activity since the 1950’s[114,115]. Meanwhile, natural 
alkylating agents are widely applied for the therapy of various cancer diseases. The alkaloids mitomycin C 
and trabectedin were approved for the therapy of cancer [Figure 4]. The influence of miRNAs on the activity 
of these natural alkylating drugs is discussed below. 

MITOMYCINS, MIRNAS AND CANCER
Mitomycins are bacterial indole alkaloids. The first mitomycins A and B were isolated in 1956 before 
mitomycin C was obtained as blue-violet crystals from Streptomyces caespitosus by Japanese groups in 
1958[116,117]. Mitomycin C turned out to be the most anticancer active derivative of this group of mitomycins 

Table 9. Tumor suppressing miRNAs with effects on the anticancer activity of temozolomide

MiRNA Target(s) Expression in cancers/tissues
miR-16 Bcl-2 Suppression in GBM led to resistance

miR-29c MGMT, REV3L Suppression in glioma led to resistance

miR-30a Beclin 1 High expression sensitized glioma cells

miR-101 GSK3β High expression sensitized GBMs

miR-128 IGF1, PIK3R1, RICTOR, mTOR Expression sensitized glioma cells

miR-130a APE1 High expression sensitized glioma cells

miR-136 AEG-1 High expression sensitized glioma cells

miR-142-3p MGMT Expression sensitized GBM

miR-143 N-RAS High expression sensitized GBM

miR-181d MGMT Expression sensitized GBM

miR-182 c-MET, HIF2A, BCL2L12 High expression sensitized GBM

miR-195 PHB1 Expression sensitized melanoma

miR-370-3p MGMT Suppression in resistant GBM

miR-603 MGMT High expression sensitized GBM

miR-629-3p Translation High expression in GBM prolonged OS

miR-1268 Expression sensitized glioma cells

miR-1294 TPX2 Expression sensitized glioma cells

AEG-1: astrocyte elevated gene-1; APE1: apurinic/apyrimidinic endonuclease 1; Bcl-2: B-cell lymphoma 2; GSK3β: glycogen synthase kinase 
3β; IGF1: insulin-like growth factor 1; MGMT: O6-methylguanine-DNA methyltransferase; mTOR: mammalian target of rapamycin; N-RAS: 
neuroblastoma rat sarcoma oncogene; PHB1: prohibitin 1; PIK3R1: phosphoinositide-3-kinase regulatory subunit 1; REV3L: reversionless 
3-like; RICTOR: rapamycin-insensitive companion of mTOR; TPX2: targeting protein for Xenopus kinesin-like protein 2
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and entered clinical trials in Japan shortly after its discovery[118]. Currently, it is applied for the treatment of 
localized bladder cancer, anal cancer, head-and-neck cancer, and breast cancer (palliative 2nd or 3rd line 
treatment)[119]. Mitomycin C is a prodrug and activated mitomycin C forms DNA crosslinks that are highly 
lethal to cancer cells[120]. Activation of mitomycin C occurs via reduction of the benzoquinone scaffold 
to a hydroquinone (a reaction catalyzed by enzymes such as DT-diaphorase). Subsequent elimination of 
methanol forms a reactive aziridine system, which reacts with DNA via aziridine ring opening. Elimination 
of carbamate enables a second alkylating step leading to DNA crosslinking[120]. 

Transfection of HT-29 colon cancer cells with let-7-1 suppressed COP9 signalosome expression and increased 
mitomycin C activity[121]. Expression of the tumor suppressor miR-31 enhanced the tumor growth inhibition 
of urothelial bladder cancer by mitomycin C both in vitro and in vivo[122]. MiR-31 inhibited integrin α5 directly 
and suppressed Akt and ERK signaling[122]. In addition, miR-34a expression sensitized medulloblastoma to 
mitomycin C treatment by downregulation of melanoma antigen A and upregulation of p53[123]. In contrast 
to that, inhibition of miR-191-5p expression led to higher mitomycin C activity against breast cancer cells 
via induction of apoptosis, SRY-box 4, and p53[124]. A slight increase in mitomycin C resistance was observed 
for Snail-expressing mesenchymal MCF-7 breast cancer cells, which displayed suppressed miR-200 family 
expression[125]. Mitomycin C was shown to induce senescence in human mesenchymal stem cells via 
upregulation of the tumor suppressor aminoacyl-tRNA synthetase-interacting multifunctional protein 3/
p18, and suppression of AIMP3/p18 was observed for miR-543 and miR-590-3p[126]. This mechanism may also 
play a role for the anticancer activity of mitomycin C. Oxaliplatin-resistant HCT-116/l-OHP colon cancer cells 

Table 10. Oncomirs with effects on the anticancer activity of temozolomide

MiRNA Target(s) Expression in cancers/tissues
miR-9 PTCH1 High expression in resistant GBM

miR-10* - High expression in resistant GBM

miR-10b - Suppression sensitized GBM cells

miR-17 ATG7 Suppression sensitized GBM cells

miR-21 Bax/Bcl2 Suppression sensitized GBM cells

miR-93 p21 Expression correlated with resistance in glioma cells

miR-125b-2 Bax Expression correlated with glioblastoma stem cell resistance

miR-132 TUSC3 Expression correlated with resistance in GBM cells

miR-138 BIM High expression in resistant GBM

miR-141-3p p53 Expression correlated with resistance in glioma cells

miR-195 - High expression in resistant GBM 

miR-221 p53 Suppression promotes apoptosis in GBM cells

miR-222 p53 Suppression promotes apoptosis in GBM cells

miR-299-5p GOLPH3 Expression correlated with resistance in GBM cells

miR-423-5p ING-4 Expression correlated with resistance in glioma cells

miR-455-3p SMAD2 High expression in resistant GBM

Figure 3. Structure of the N-nitrosourea alkylating drug carmustine/BCNU

ATG7: autophagy-related protein 7; Bax: Bcl-2-associated X protein; Bcl-2: B-cell lymphoma 2; BIM: BCL-2-interacting mediator of cell 
death; GOLPH3: golgi phosphoprotein 3; ING-4: inhibitor of growth protein 4; PTCH1: patched homolog 1; SMAD2: mothers against 
decapentaplegic homolog 2; TUSC3: tumor suppressor candidate 3
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transfected with miR-1915 mimics revealed enhanced mitomycin C sensitivity by suppression of Bcl-2[127]. A 
list of miRNAs involved in mitomycin C anticancer activity is given in Table 12.

Since mitomycin C is a DNA-damaging drug, its long-term genotoxic effects and the inheritable aberration 
of miRNA expression induced by mitomycin C were investigated. Indeed, the treatment of HeLa cells with 
mitomycin C exhibited upregulated inherited expression of oncomirs such as miR-19b-3p, miR-21-3p, miR-
30a-3p, miR-30e-3p, and miR-182-5p as well as suppressed inherited expression of the tumor suppressors 
miR-23b-3p, miR-29b-3p, miR-99a-5p, miR-99b-5p, miR-100-5p, miR-148a-3p, miR-193a-3p, ,iR-340-5p, and 
miR-365-3p[128]. It is possible that new tumors can form basing on the long-term effects of mitomycin C and 
the observed aberrant miRNA expression.

TRABECTEDIN, MIRNAS AND CANCER
Trabectedin (ecteinascidin 743, Yondelis®) is a rather new natural alkylating agent that belongs to the class 
of tetrahydroisoquinoline alkaloids. It was isolated from the Caribbean tunicate Ecteinascidia turbinata, 
which is only the host of the trabectedin-producing symbiont Endoecteinascidia frumentensis[129]. The high 
anticancer activity of trabectedin led to its clinical approval for the treatment of soft tissue sarcoma[129]. The 
unique DNA-damaging mechanism of trabectedin includes binding to nitrogen-N2 of guanine DNA bases 
in the minor groove. This DNA-trabectedin adduct interacts with DNA repair proteins of the transcription-
coupled nucleotide excision repair DNA-repair system which causes cell death via the formation of double-
strand breaks mainly in homologous recombination-deficient cells[129]. This mechanism is almost unique 
among known alkylating agents and only illudins have revealed a similar mode of action[130]. Trabectedin 
also blocked the transcriptional activity of fused in sarcoma-C/EBP-homologous protein (FUS-CHOP)[131]. 
The difference in miRNA expression between trabectedin-sensitive and trabectedin-resistant myxoid 
liposarcoma cells (402-91 sensitive and 402-91/ET trabectedin-resistant cells) was investigated and the 
resistant cells showed two-fold higher miR-21 expression (target: PDCD4/programmed cell death 4) as well 

Table 11. MiRNAs with effects on the anticancer activity of BCNU

MiRNA Target Function Expression in cancers/tissues
let-7b - Tumor suppressor Dysregulated in glioma cells upon BCNU treatment

miR-21 Spry2 Oncomir Expression in glioma cells induced resistance 

miR-125b-2 - Oncomir Dysregulated in glioma cells upon BCNU treatment

miR-133-1 - Oncomir/tumor suppressor Dysregulated in glioma cells upon BCNU treatment

miR-181d - Oncomir Suppression led to prolonged survival of GBM patients

miR-183 - Oncomir Dysregulated in glioma cells upon BCNU treatment

miR-221 PTEN Oncomir High expression in GBM induced resistance 

Figure 4. Structures of the natural alkylating agents mitomycin C and trabectedin

PTEN: phosphatase and TENsin homolog; Spry2: sprouty homolog 2
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as three-fold lower let-7e expression (targets: CCND1, E2F5, SEMA4C)[132]. The oncomir miR-7 was also 
upregulated while the tumor suppressors miR-98, miR-130a and miR-192 were suppressed in the resistant 
402-91/ET cells[132]. The miRNAs miR-7, miR-21 and miR-130a probably act via FUS-CHOP since these 
miRNAs have CHOP-binding motifs[132]. In cholangiocarcinoma, trabectedin treatment led to upregulation 
of the oncomir miR-494-3p[133]. In addition, the tumor suppressors let-7c and miR-214-3p were suppressed[133]. 
Interestingly, trabectedin downregulated the oncomirs miR-21-3p, miR-21-5p, and miR-331-3p (oncomir in 
HCC), and upregulated the tumor suppressors miR-375 (tumor suppressor in colon and pancreatic cancer) 
and miR-4284 (tumor suppressor in glioblastoma), which may be a reason for the relatively high activity of 
trabectedin in this cancer model[133]. A list of miRNAs involved in trabectedin anticancer activity is given in 
Table 13.

CONCLUSION
Alkylating drugs still play a crucial role for the therapy of various cancer diseases. While some examples 
are only applied for the treatment of special tumors (e.g., estramustine for the treatment of prostate cancer), 
other drugs (e.g., cyclophosphamide) are widely applied. The anticancer activity of these alkylating agents is 
regulated by various cellular factors. Aside proteins, small RNA molecules called miRNAs revealed a crucial 
role for the outcome of therapies based on alkylating drugs. Vice versa, alkylating drugs can also regulate 
miRNA expression leading to enhanced sensitivity of the affected cancer. Thus, a detailed understanding 
of the interplay between alkylating drugs and miRNAs is crucial for the development of new and improved 
cancer therapies. In particular, combination therapies with alkylating agents should be carefully checked in 

Table 12. MiRNAs with effects on the anticancer activity of mitomycin C

MiRNA Target Function Expression in cancers/tissues
let-7-1 CSN Tumor suppressor Transfection sensitized colon cancer cells

miR-31 ITGA5 Tumor suppressor Expression sensitized urothelial bladder cancer

miR-34a MAGE-A, p53 Tumor suppressor Expression sensitized medulloblastoma

miR-191-5p SOX4 Oncomir Suppression sensitized breast cancer

miR-200 Zeb1, Zeb2, Slug Tumor suppressor Suppression correlated with resistance of breast cancer cells

miR-543 AIMP3/p18 Oncomir Expression in mesenchymal stem cells blocked senescence 

miR-590-3p AIMP3/p18 Oncomir Expression in mesenchymal stem cells blocked senescence 

miR-1915 Bcl-2 Tumor suppressor Transfection sensitized colon cancer cells

AIMP3: aminoacyl-tRNA synthetase-interacting multifunctional protein 3; Bcl-2: B-cell lymphoma 2; CSN: COP9 signalosome; ITGA5: 
integrin α5; MAGE-A: melanoma antigen A; Slug: Snail homolog; Zeb1/2: zinc finger E-box homeobox 1/2; SOX4: SRY-box 4

Table 13. MiRNAs with effects on the anticancer activity of trabectedin

MiRNA Target Function Expression in cancers/tissues
let-7c - Tumor suppressor Suppression in cholangiocarcinoma upon trabectedin treatment 

let-7e CCND1, E2F5, SEMA4C Tumor suppressor Suppression in 402-91/ET cells led to resistance 

miR-7 FUS-CHOP Oncomir Upregulation in 402-91/ET cells led to resistance 

miR-21 PDCD4 Oncomir Upregulation in 402-91/ET cells led to resistance, suppression in 
cholangiocarcinoma upon trabectedin treatment

miR-98 - Tumor suppressor Suppression in 402-91/ET cells led to resistance 

miR-130a FUS-CHOP Tumor suppressor Suppression in 402-91/ET cells led to resistance 

miR-192 - Tumor suppressor Suppression in 402-91/ET cells led to resistance 

miR-214-3p TWIST Tumor suppressor Suppression in cholangiocarcinoma upon trabectedin treatment

miR-331-3p EMT Oncomir Suppression in cholangiocarcinoma upon trabectedin treatment 

miR-375 PI3K/Akt Tumor suppressor Upregulation in cholangiocarcinoma upon trabectedin treatment 

miR-494-3p - Oncomir Upregulation in cholangiocarcinoma upon trabectedin treatment

miR-4284 - Tumor suppressor Upregulation in cholangiocarcinoma upon trabectedin treatment

CCND1: cyclin D1; E2F5: E2F transcription factor 5; EMT: epithelial-to-mesenchymal transition; FUS-CHOP: fused in sarcoma-C/EBP-
homologous protein; PDCD4: programmed cell death 4; PI3K/Akt: phosphatidylinositol-4,5-bisphosphate 3-kinase/ak thymoma; 
SEMA4C: semaphoring-4C; TWIST: twist transcription factor
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view of the corresponding miRNAs involved in alkylating drug response and resistance, and the co-drugs 
for combination therapies with these alkylating agents should be selected accordingly. Prolonged survival 
and improved quality of life would be possible and conceivable prospects for many cancer patients.
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