A Verifiably Encrypted Signature Scheme with Strong Unforgeability

Jianhong Zhang
College of sciences North China University of Technology
Shijingshan District, Beijing, China
State Key Laboratory of Information Security,
Institute of Software of Chinese Academy of Sciences, Beijing, 100039, China
jhzhangs@163.com

ABSTRACT
A verifiably encrypted signature can convince the verifier that a given cipher-text is the encryption of a signature on a given message. It is often used as a building block to construct optimistic fair exchange. In this paper, first we define a stronger unforgeable model, then give a variant of Cha-Cheon’s signature [8] and construct a verifiably encrypted signature based on this variant scheme. Finally, the scheme is proven to secure in random oracle model. In comparison with Gu et.al’s verifiably encrypted signature scheme, our scheme is more efficient with respect to the size of signature and computation cost of signature.

Categories and Subject Descriptors
E.3 [DATA ENCRYPTION]: Public key cryptosystems

General Terms
Security

Keywords
Verifiably encryption, proof, security analysis

1. INTRODUCTION
With Internet rapidly developing, electronic commerce plays an important role in business transactions and is conducting business communications over networks and through computer. It usually involves two distrusted parties exchanging items with each other, for instance a payment via an electronic check for a digital CD over the Internet. When a commercial transaction is conducted in such distributed environments, it is difficult to assess the counter-party's trustworthiness. An urgent problem to be solved is how to realize fair exchange. Fair exchange is the problem of exchanging data in a way that guarantees that either all participants obtain what they want, or none do [9].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

The rest of the paper is organized as follows. In section 2, we review some preliminaries requirement throughout the paper. In section 3, we first give a variant of Cha-Cheon signature scheme, then propose a novel verifiably encrypted scheme based on the variant. In section 4, we analyze the security of our scheme and show that it is secure in random oracle model. Finally, we draw this paper.
2. PRELIMINARIES

In the section, we first briefly describe bilinear Parings and some related mathematical problems, which form the basis of security for our scheme.

Let \((G_1, +)\) and \((G_2, \cdot)\) be two cyclic groups of order \(q\). Let \(e : G_1 \times G_1 \rightarrow G_2\) be a map which the following properties\([1, 2, 8, 9]\):

- **Bilinear:** \(\forall P, Q \in G_1, \text{ and } a, b \in Z_q, e(aP, bP) = e(P, P)^{ab}\)
- **Non-degeneracy:** There exists \(P, Q \in G_1\) such that \(e(P, Q) \neq 1\), in other words, the map doesn't send all pair in \(G_1 \times G_1\) to the identity in \(G_2\).
- **Computable:** There is an efficient algorithm to compute \(e(P, Q)\) for any \(P, Q \in G_1\).

Such a bilinear map is called an admissible bilinear pairing. The Weil Parings and Tate Parings of elliptic curves are able to construct an efficient admissible pairings.

The security of our proposed scheme is related to the computational Diffie-Hellman problem (CDHP), which is given below.

Definition 1: (Computational Diffie-Hellman Problem) Let \(a, b \in \mathbb{Z}_q\) at random and \(P \in G_1\) at random. Given \((P, aP, bP)\), compute \(abP \in G_1\).

The success probability of any probabilistic polynomial-time algorithm \(A\) in solving CDH problem in \(G_1\) is defined to be

\[
\text{Succ}_{A, G_1}^{\text{CDH}} = \Pr[A(P, aP, bP) = abP : a, b \in \mathbb{Z}_q]
\]

The CDH assumption states that for every probabilistic polynomial-time algorithm \(A\), \(\text{Succ}_{A, G_1}^{\text{CDH}}\) is negligible.

Definition 2: A verifiably encrypted signature scheme consists of the following algorithms: KeyGen, Sign, Verify, AdjKenGen, VESig Generate, VESig Verify and Adjudicate. The algorithms are described below.

- **Key Generation, Signing, Verification.** As in standard signature schemes.
- **Adjudicator Key.** Generate a public-private key pair \((Q_A, s_A)\) for the adjudicator.
- **VESig Generation.** Give a private key \(D\), a message \(M\), and an adjudicator's public key \(Q_A\), compute a verifiably encrypted signature \(\delta\) on \(M\).
- **VESig Verification.** Given a public key \(Q\), a message \(M\), an adjudicator's public key \(Q_A\) and a verifiably encrypted signature \(\delta\), verify that \(\delta\) is a valid verifiably encrypted signature on \(M\) under public key \(Q\).
- **Adjudication.** Given an adjudicator's key pairs \((Q_A, s_A)\), a public key \(Q\), and a verifiably encrypted signature \(\delta\) on some message \(M\), extract and output \(\delta_k\), an ordinary signature on \(M\) under public key \(Q\).

A secure verifiably encrypted signature scheme should satisfy the following properties:

- **Strong Unforgeability:** It is difficult to forge a valid verifiably encrypted signature in polynomial time. The advantage in existentially forging a verifiably encrypted signature of an algorithm \(F\), given access to a verifiably-encrypted-signature creation oracle \(S\) and an adjudication oracle \(A\), along with a hash oracle, is

\[
\text{Adv}_{VS_F}^{\text{SF}} = \Pr[\text{VESigV erify}(PK, APK, M, w) = 1 \mid (PK, SK) \overset{\text{R}}{\leftarrow} \text{KeyGen}, (APK, ASK) \overset{\text{R}}{\leftarrow} \text{AdjKeyGen}, (M, w) \overset{\text{R}}{\leftarrow} F_{S,A}(PK, APK)]
\]

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles, and of the forger. The forger is additionally limited in where its forgery on \((M, w)\) is not among the message-signature pairs generated during the previous query phase.

Strong unforgeability ensures the adversary cannot even produce a new signature for a previously signed message. In other words, suppose an adversary obtains a message-signature \((M, w)\) along with other message-signature pairs of his choice. The signature system is strongly unforgeable if the adversary cannot produce a new signature \(\tilde{w}\) on \(M\).

- **Opacity:** Given a verifiably encrypted signature, it is difficult to extract the ordinary signature on the same message from the verifiably encrypted signature time without the help of the Adjudicator. The advantage in extracting a verifiably encrypted signature of an algorithm \(\varepsilon\), given access to a verifiably-encrypted-signature creation oracle \(S\) and an adjudication oracle \(A\), along with a hash oracle, is

\[
\text{Adv}_{VS_F}^{\text{SF}} = \Pr[\text{VESigV erify}(PK, APK, M, w) = 1 \mid (PK, SK) \overset{\text{R}}{\leftarrow} \text{KeyGen}, (APK, ASK) \overset{\text{R}}{\leftarrow} \text{AdjKeyGen}, (M, w) \overset{\text{R}}{\leftarrow} \varepsilon_{S,A}(PK, APK)]
\]

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles, and of the forger. The extraction must be nontrivial: the adversary must not have queried the adjudication oracle \(A\) at \(M\).

3. OUR PROPOSED SCHEME

In the section, we will propose a novel ID-based verifiably encryption signature scheme. We assume that \((G_1, +)\) and \((G_2, \cdot)\) be two cyclic groups of order \(q\), \(P\) be a generator of \(G_1\), \(e : G_1 \times G_1 \rightarrow G_2\) be an admissible bilinear pairing.

The detail procedure is as follows:

3.1 Setup

Given \((G_1, G_2, q, e, P)\), randomly choose a number \(s \in Z_q^*\) and set \(P_{pub} = sP\). The adjudicator randomly chooses \(s_A\) as his private key and compute his public key \(Q_A = s_A P\).

Then choose two hash functions \(H_1 : \{0, 1\}^* \rightarrow G_1^*\) and \(H_2 : \{0, 1\}^* \rightarrow Z_q^*\). The system parameters \(\Omega = (G_1, G_2, q, e, P, P_{pub}, H_1, H_2)\).

3.2 Extract:

Given an identity \(ID_X \in \{0, 1\}^*\) of a user, compute \(Q_X = H_1(ID_X) \in G_1, D_X = s_Q X\). PKG uses this algorithm to extract the user's private key \(D_X\), and gives \(D_X\) to the user by a secure channel.
3.3 Sign phase (variant of Cha-Cheon signature scheme)

Given a private key D_X of a user and message m, pick $r, r_2 \in \mathbb{Z}_q$ at random, and compute

$$U = rQ_{ID_X}, U_2 = r_2 P$$

$$h = H_2(m || U_2, U)$$

$$V = (r + h)D_X$$

then, (U, U_2, V) is the signature on the message m, where the above notation $|$ denotes concatenation the messages. Obviously, the signature is a variant of Cha-Cheon’s signature which is proven to be secure under random oracle model.

In essence, the above signature is a Cha-Cheon signature on the message $m || U_2$. Thus, the our proposed variant of Cha-Cheon signature scheme is equivalent to the Cha-Cheon signature scheme and also secure under the random oracle model.

3.4 Verify phase:

Given a signature (U, U_2, V) of an identity ID_X for a message m, compute

$$h = H_2(m || U_2, U)$$

and subsequently the security of the scheme.

The correctness of our proposed VES (Verifiably Encryption Signature) verification equation is justified as follows:

$$e(P, V) = e(P_{Pub}, U + hQ_{ID_X})e(U_2, Q_A)$$

3.6 VE-Verify

Given a verifiably encrypted signature (W, U, U_2) of a message m, a verifier first computes

$$h = H_2(m || U_2, U)$$

and accepts the signature if and only if

$$e(P, W) = e(P_{Pub}, U + hQ_{ID_X})e(U_2, Q_A)$$

3.7 Adjudication:

Given a verifiably encrypted signature (W, U, U_2) on a message m, the adjudicator can extract as follows: he computes $V' = W - s_A U_2$. Then (U, V', U_2) is the extracted signature on the message m.

4. ANALYSIS

In this section, we first justify the validity of the scheme and subsequently the security of the scheme.

4.1 Correction

The correctness of our proposed VES (Verifiably Encryption Signature) verification equation is justified as follows:

$$e(P, W) = e(P, V + r_2 Q_A)$$

$$= e(P, (r + h)D_X) \cdot e(r_2 P, Q_A)$$

$$= e(P_{Pub}, U + hQ_{ID_X})e(U_2, Q_A)$$

The above equality implies the verification of Verifiably Encryption Signature (U_2, r, V) is true. The verification of the signature extracted from the given VES (U_2, r, V) in the adjudication phase holds as shown below.

$$h = H_2(m || U_2, U)$$

$$e(P, V') = e(P, W - s_A U_2)$$

$$= e(P_{Pub}, U + hQ_{ID_X}) \cdot e(U_2, Q_A) \cdot e(s_A P, -U_2)$$

The above equality means that the extracted signature (U_2, U, V') from the verifiably encryption signature (U_2, U_2) by the adjudicator satisfies the verification of Verifying phase 3.4. Hence our proposed VES scheme is valid.

4.2 Security Analysis

In the subsection, we will analyze the security of our proposed scheme and show the scheme is secure against existential forgery and extraction in random oracle model.

Theorem 1. Let G_1 and G_2 be cyclic groups of prime order p with a computable bilinear map $e : G_1 \times G_1 \rightarrow G_2$, P be a generator of group G_1. Suppose that the our proposed variant of Cha-Cheon’s signature scheme is (t', q_h, q_s, t)–secure against existential forgery. Then the our proposed verifiably encrypted signature scheme is $(t, q_{H_1}, q_{H_2}, t_H, q_{VS}, q_A, e)$–secure against existential forgery, where

$$t \leq t' - (q_{VS} + q_A + 1)q_{G_1}$$

Proof. Suppose that there exists a verifiably-encrypted-signature forger algorithm V_f, then we can construct a forger algorithm F for the proposed variant of Cha-Cheon’s signature scheme. (Note that: the proposed variant of Cha-Cheon’s signature is proven secure in random oracle model).

The proposed variant of Cha-Cheon’s signature forger F is given a public key ID_X, and has access to a signing oracle for ID_X and two hash oracles. It simulates the challenger and runs interacts with V_f as follows:

- Setup: A challenger C runs Setup of the proposed variant of Cha-Cheon’s signature scheme, and gives the corresponding system parameters $(G_1, G_2, q, e, P, P_{Pub}, H_1, H_2)$ to F. And algorithm F chooses a $s_A \in \mathbb{Z}_q$ at random and computes $P_A = s_A P$. Let (s_A, P_A) serve as the adjudicator’s key pairs. Let $(G_1, G_2, q, e, P, P_{Pub}, H_1, H_2, (s_A, P_A))$ be input of V_f.

- $H_1(\cdot), H_2(\cdot), E(\cdot)$ - Oracle: When algorithm V_f requests a $H_1(\cdot), (H_2(\cdot), E(\cdot))$ query, F makes a query to its own hash oracle $H_1(\cdot), (H_2(\cdot), E(\cdot))$, receiving some value, with which it responds to V_f’s query.

- VESSig Oracle: When algorithm V_f requests a signature on some string M_i under the user with the identity ID_X and the adjudicator’s public P_A, algorithm F queries its signing oracle with input (ID_X, M_i) and obtains the reply (U_i, U_{2i}, V_i). Then F computes as follows:

 1. Compute $W_i = V_i + s_A U_2$.

 2. Output the verifiably encryption signature (W_i, U_i, U_{2i}).

Finally, the algorithm F returns (W_i, U_i, U_{2i}) on the string M_i to V_f.
Adjudication Oracle: Algorithm V_f requests adjudication for (U_1, U_2, W_i), a verifiably encrypted signature on a message M_i under the user with the identity ID, where $i \neq X$ and adjudicator key PA. Algorithm F checks that the verifiably encrypted signature is valid, then computes as follows:

$$V'_i = W_i - s_A U_2,$$

Output: Finally, if V_f outputs a valid and nontrivial verifiably encrypted signature (U^*, U_2^*, W^*) on a message M^* in non-negligible probability, F sets $V^* = W^* - s_A U_2$, which is a valid variant of Cha-Cheon's signature on the message M^*.

It remains only to analyze the success probability and running time of F. Algorithm F succeeds when V_f does, that is, with probability at least ϵ. F's running time is the same as V's running time plus the time it takes to respond to q_H, q_M, q_S hash queries, q_V verifiably-encrypted signature queries, and q_A adjudication queries, and the time to transform W^*'s final verifiably-encrypted signature forgery into a variant of Cha-Cheon's signature forgery. Hash queries impose no overhead. Each verifiably-encrypted signature query requires F to only perform one point multiplications in G_1. Each adjudication query requires F to perform one point multiplication in G_1. The output phase also requires one point multiplication. We assume that the point multiplication in G_1 takes time c_{G_1}. Hence, the total running time is at most $t + (q_V + q_A + 1)c_{G_1}$.

Theorem 2. Let G_1 and G_2 be cyclic groups of prime order p with a computable bilinear map $e : G_1 \times G_1 \rightarrow G_2$, P be a generator of group G_1. Q_A is the adjudicator's public key. Suppose that the CDH problem isn't solved in a polynomial time, then our verifiably encrypted signature is secure against extraction.

Proof. Due to page limitation, the proof is omitted. Please refer to the full version of the paper for detail.

4.3 Efficiency

In the following, we compare our verifiably encrypted signature with Gu et al.'s scheme from the viewpoint of computation overhead and the size of signature. Let C_p denote the pairing operation, C_p the point scalar multiplication on G_1, C_{Ad} the point addition on G_1, C_M the multiplication on G_2. $|n|$ denotes the length of n. Note that the computation of the pairing and point scalar multiplication are more time-consuming. Comparison our scheme with Gu et al.'s scheme, we know that our scheme is much more efficient than Gu et al.'s scheme, and the size of our signature is shorter than Gu et al.'s signature and consists of three elements of G_1. Where VES denotes VESignature, $VES-V$ be VESignature Verification and size be the signature length.

5. CONCLUSION

Verifiably encrypted signatures are the special extension of general signature primitive, and are often used for online contract signing to provide fair exchange. It plays an important role in the e-commerce. In this work, we first propose a variant of Cha-Cheon signature scheme and give a verifiably encrypted signature scheme based on the variant scheme. Then we prove our proposed scheme to be secure in random oracle model. It is an open problem how to construct a ID-based verifiably encrypted signature without random oracle model.

6. ACKNOWLEDGEMENT

We thanks the anonymous referees for their very valuable comments. This work is supported by China Postdoctoral Science Foundation(NO:20060390007), Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality and Program for New Century Excellent Talents in University (NCET).

7. REFERENCES

Table 1: Comparison of our scheme with the Gu et al.’s scheme

<table>
<thead>
<tr>
<th>Scheme</th>
<th>VES</th>
<th>VES-V</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our scheme</td>
<td>$1C_p$</td>
<td>$3C_p + 1C_{M} + 1C_p$</td>
<td>$3p$</td>
</tr>
<tr>
<td>Gu scheme</td>
<td>$2C_p + 7C_p$</td>
<td>$3C_p + 1C_p + 2C_{M}$</td>
<td>$1q + 3p$</td>
</tr>
</tbody>
</table>
