Associative and commutative tree representation for Boolean functions

A. Genitrini, B. Gittenberger, V. Kraus & C. Mailler

Université P. et M. Curie,
Technische Universität Wien &
Université de Versailles St-Quentin-en-Yvelines.

17th. June 2011
1. Tree representation for Boolean functions
 - Plane binary model
 - Commutative or associative models

2. Probability distributions on Boolean functions
 - Relation between complexity and probability
 - Key ideas of the proof

3. Conclusion and perspectives
Tree representation for Boolean functions
Boolean formulas

- A set of literals: \(\{x_1, \bar{x}_1, \ldots, x_n, \bar{x}_n\} \)
- A set of connectors: \(\{\land, \lor\} \)
Boolean formulas

- A set of literals: \(\{x_1, \bar{x}_1, \ldots, x_n, \bar{x}_n\} \)
- A set of connectors: \(\{\land, \lor\} \)
- Plane binary tree representation of \((((x_2 \lor \bar{x}_3) \land x_1) \land (x_1 \land \bar{x}_2)) \)
Boolean formulas

- A set of literals: \(\{x_1, \bar{x}_1, \ldots, x_n, \bar{x}_n\} \)
- A set of connectors: \(\{\land, \lor\} \)
- Plane binary tree representation of \(((x_2 \lor \bar{x}_3) \land x_1) \land (x_1 \land \bar{x}_2)\)

The set of all plane binary and labelled trees: \(\mathcal{T}_n \)
Boolean formulas

A set of literals: \(\{x_1, \bar{x}_1, \ldots, x_n, \bar{x}_n\} \)

A set of connectors: \(\{\land, \lor\} \)

Plane binary tree representation of \(((x_2 \lor \bar{x}_3) \land x_1) \land (x_1 \land \bar{x}_2) \)

The set of all plane binary and labelled trees: \(\mathcal{T}_n \)

The size of a tree corresponds to its number of leaves
Boolean functions

- Each formula represents one function
Each formula represents one function

There are infinitely many formulas for each function
Boolean functions

- Each formula represents one function
- There are **infinitely** many formulas for each function

\[(x_2 \lor \overline{x}_3) \land x_1 \land (x_1 \land \overline{x}_2) \sim x_1 \land ((x_2 \lor \overline{x}_3) \land \overline{x}_2) \sim (\overline{x}_2 \land \overline{x}_3) \land x_1\]

- The set of all Boolean functions on \(n\) variables: \(\mathcal{F}_n\)
Boolean functions

- Each formula represents one function
- There are infinitely many formulas for each function

\[
((x_2 \lor \bar{x}_3) \land x_1) \land (x_1 \land \bar{x}_2) \sim x_1 \land ((x_2 \lor \bar{x}_3) \land \bar{x}_2) \sim (\bar{x}_2 \land \bar{x}_3) \land x_1
\]

- The set of all Boolean functions on \(n \) variables: \(\mathcal{F}_n \)
- The complexity of a function is the size of its smallest trees
Probability distribution

- A a subset of T_n
- $A(m)$ the set of all formulas of size m in A

[Lefman, Savický. *Some typical properties of large And/Or boolean formulas*, 1997]
[Chauvin, Flajolet, Gardy, Gittenberger. *And/Or trees revisited*, 2004]
Probability distribution

- \mathcal{A} a subset of \mathcal{T}_n
- $\mathcal{A}(m)$ the set of all formulas of size m in \mathcal{A}
- **Limiting ratio of \mathcal{A}:**

$$\mu_n(\mathcal{A}) = \lim_{m \to \infty} \frac{\# \mathcal{A}(m)}{\# \mathcal{T}_n(m)}, \text{ if this limit exists.}$$

[Lefman, Savický. *Some typical properties of large And/Or boolean formulas*, 1997]
[Chauvin, Flajolet, Gardy, Gittenberger. *And/Or trees revisited*, 2004]
Probability distribution

- \mathcal{A} a subset of \mathcal{T}_n
- $\mathcal{A}(m)$ the set of all formulas of size m in \mathcal{A}
- **Limiting ratio of \mathcal{A}:**

\[
\mu_n(\mathcal{A}) = \lim_{m \to \infty} \frac{\# \mathcal{A}(m)}{\# \mathcal{T}_n(m)}, \text{ if this limit exists.}
\]

- Let $f \in \mathcal{F}_n$ and \mathcal{A}_f the set of all its formulas:

\[
P_n(f) = \mu_n(\mathcal{A}_f).
\]

[Lefman, Savický. *Some typical properties of large And/Or boolean formulas*, 1997]

[Chauvin, Flajolet, Gardy, Gittenberger. *And/Or trees revisited*, 2004]
Probability distribution

- \mathcal{A} a subset of \mathcal{T}_n
- $\mathcal{A}(m)$ the set of all formulas of size m in \mathcal{A}
- **Limiting ratio of \mathcal{A}:**
 \[
 \mu_n(\mathcal{A}) = \lim_{m \to \infty} \frac{\# \mathcal{A}(m)}{\# \mathcal{T}_n(m)}, \text{ if this limit exists.}
 \]
- Let $f \in \mathcal{F}_n$ and \mathcal{A}_f the set of all its formulas:
 \[
 \mathbb{P}_n(f) = \mu_n(\mathcal{A}_f).
 \]
- Using Drmota-Lalley-Woods Theorem:
 \[
 \mathbb{P}_n(\cdot) \text{ is a probability distribution on } \mathcal{F}_n.
 \]

[Lefman, Savický. *Some typical properties of large And/Or boolean formulas*, 1997]
[Chauvin, Flajolet, Gardy, Gittenberger. *And/Or trees revisited*, 2004]
Previous results

Let \(f \in \mathcal{F}_n \) be a function of complexity \(L(f) \).

And/Or plane binary trees

\[
\mathbb{P}_n(f) = \Theta \left(\frac{1}{n^{L(f)} + 1} \right), \text{ when } n \text{ tends to infinity.}
\]

[Kozik, 2008. *Subcritical pattern languages for and/or trees.*]
Previous results

Let \(f \in \mathcal{F}_n \) be a function of complexity \(L(f) \).

And/Or plane binary trees

\[
\mathbb{P}_n(f) = \Theta \left(\frac{1}{n^{L(f)} + 1} \right), \text{ when } n \text{ tends to infinity.}
\]

[Kozik, 2008. *Subcritical pattern languages for and/or trees.*]

Implication plane binary trees

\[
\mathbb{P}_n(f) = \Theta \left(\frac{1}{n^{L(f)} + 1} \right), \text{ when } n \text{ tends to infinity.}
\]

Previous results

In the Implication model, G. and Gittenberger proved that functions of quadratic complexity (in n) have a non-negligible probability, when $n \to \infty$. [AofA’10]
Previous results

In the Implication model, G. and Gittenberger proved that functions of quadratic complexity (in n) have a non-negligible probability, when $n \to \infty$. [AofA’10]

Theorem: [Lefman, Savický, 97]

And/Or plane binary trees:

Almost all functions are of polynomial complexity in n, when $n \to \infty$.

Theorem: [Shannon 42; Lupanov 62]

Uniform distribution on Boolean functions:

Almost all functions are of exponential complexity in n, when $n \to \infty$.
Previous results

In the Implication model, G. and Gittenberger proved that functions of quadratic complexity (in n) have a non-negligible probability, when $n \to \infty$. [AofA’10]

Theorem: [Lefman, Savický, 97]

And/Or plane binary trees:
Almost all functions are of polynomial complexity in n, when $n \to \infty.

Theorem: [Shannon 42; Lupanov 62]

Uniform distribution on Boolean functions:
Almost all functions are of exponential complexity in n, when $n \to \infty.

Can we define a probability distribution that is neither entirely biased on functions of low complexity nor on functions on very large complexity?
Previous results

In the Implication model, G. and Gittenberger proved that functions of quadratic complexity (in n) have a non-negligible probability, when $n \to \infty$. [AofA’10]

Theorem: [Lefman, Savický, 97]

And/Or plane binary trees:
Almost all functions are of polynomial complexity in n, when $n \to \infty.

Theorem: [Shannon 42; Lupanov 62]

Uniform distribution on Boolean functions:
Almost all functions are of exponential complexity in n, when $n \to \infty.

Can we define a probability distribution that is neither entirely biased on functions of low complexity nor on functions on very large complexity?

Remark: Formulas with symmetries have a smaller limiting ratio than others.
Natural properties of the connectors

Let us take into account some properties of the operators. What about:

- **associativity**
- **commutativity**

Gardy introduced these models in 2006 and gave the probability of the function *True* when \(n = 1 \).
Natural properties of the connectors

Let us take into account some properties of the operators. What about:

associativity or

commutativity of connectors \(And \) and \(Or \).

Gardy introduced these models in 2006 and gave the probability of the function \(True \) when \(n = 1 \).

- How does the tree structure evolve with such properties?
- Which behaviour for the new distributions on Boolean functions?
Tree models

connectors without associativity and commutativity

plane binary trees

\[
\begin{align*}
\text{tree} & \quad \text{tree} \\
\land & \quad \land \\
\lor & \quad \lor \\
x_1 & \quad x_1 \quad \bar{x}_2 \\
\bar{x}_3 & \quad \bar{x}_3
\end{align*}
\]
Tree models

Connectors without associativity and commutativity

<table>
<thead>
<tr>
<th>Plane binary trees</th>
</tr>
</thead>
</table>

Connectors with associativity and commutativity

<table>
<thead>
<tr>
<th>Plane non-binary trees</th>
</tr>
</thead>
</table>

Associative and commutative trees
Tree models

<table>
<thead>
<tr>
<th>Connectors Without Associativity and Commutativity</th>
<th>Plane Binary Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associative Connectors</td>
<td>Plane Non-Binary Trees</td>
</tr>
<tr>
<td>Commutative Connectors</td>
<td>Non-Plane Binary Trees</td>
</tr>
</tbody>
</table>

- **∧** (AND) and **∨** (OR) operations are used to represent logical functions.
- **x_1**, **x_2**, **x_3**, and **x̄_2** are variables or their negations, respectively.
- The diagrams illustrate the structure of the trees for different logical expressions.
Tree models

<table>
<thead>
<tr>
<th>Connectors without associativity and commutativity</th>
<th>Plane binary trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associative connectors</td>
<td>Plane non-binary trees</td>
</tr>
<tr>
<td>Commutative connectors</td>
<td>Non-plane binary trees</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\land \\
\lor \\
x_1 \\
\overline{x_2} \\
\land \\
\land \\
x_2 \\
\overline{x_3} \\
\end{array}
\]
<table>
<thead>
<tr>
<th>connectors without associativity and commutativity</th>
<th>plane binary trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>associative connectors</td>
<td>plane non-binary trees</td>
</tr>
<tr>
<td>commutative connectors</td>
<td>non-plane binary trees</td>
</tr>
<tr>
<td>associative commutative connectors</td>
<td>non-plane non-binary trees</td>
</tr>
</tbody>
</table>

Tree models

\[
x_2 \lor x_3 \\
\lor x_1 \lor x_1 \lor \bar{x}_2 \\
\lor \bar{x}_2 \lor \bar{x}_3
\]

\[
\lor x_1 \lor x_1 \lor \bar{x}_2 \\
\lor x_2 \lor \bar{x}_3
\]
Tree models

<table>
<thead>
<tr>
<th>Connectors without associativity and commutativity</th>
<th>Plane binary trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associative connectors</td>
<td>Plane non-binary trees</td>
</tr>
<tr>
<td>Commutative connectors</td>
<td>Non-plane binary trees</td>
</tr>
<tr>
<td>Associative commutative connectors</td>
<td>Non-plane non-binary trees</td>
</tr>
</tbody>
</table>

Remark: The commutative models increase the limiting ratio of symmetric formulas.
Probability distributions on Boolean functions
Let $f \in \mathcal{F}_n$ be a Boolean function.

In the distinct models (with or without associativity or commutativity),
- the complexity $L(f)$ is invariant
Results

Let $f \in \mathcal{F}_n$ be a Boolean function.

In the distinct models (with or without associativity or commutativity),
- the complexity $L(f)$ is invariant
- the probability of f exists
Results

Let \(f \in \mathcal{F}_n \) be a Boolean function.

In the distinct models (with or without associativity or commutativity),
- the complexity \(L(f) \) is invariant
- the probability of \(f \) exists

Theorem

Let us fix one of the four tree models, then

\[
\mathbb{P}_n(f) = \frac{\lambda_f}{n^{L(f)+1}} + O \left(\frac{1}{n^{L(f)+2}} \right), \text{ when } n \text{ tends to infinity.}
\]

The constant \(\lambda_f \) is not the same from one model to another.
Results

Let \(f \in \mathcal{F}_n \) be a Boolean function.

In the distinct models (with or without associativity or commutativity),
- the complexity \(L(f) \) is invariant
- the probability of \(f \) exists

Theorem

Let us fix one of the four tree models, then

\[
\mathbb{P}_n(f) = \frac{\lambda_f}{n^{L(f)}+1} + O\left(\frac{1}{n^{L(f)+2}}\right), \text{ when } n \text{ tends to infinity.}
\]

The constant \(\lambda_f \) is not the same from one model to another.

Corollary: Most trees computing \(f \) have a simple structure.
Key ideas [Kozik; Fournier et al]

1. Definition of simple family of trees for f
Key ideas [Kozik; Fournier et al]

1. Definition of **simple family** of trees for f

2. All other trees for f:
 i. some “non-necessary” restrictions in their structures
 ii. their quantity is negligible
Key ideas [Kozik; Fournier et al]

1. Definition of **simple family** of trees for \(f \)
2. All other trees for \(f \):
 i. some “non-necessary” restrictions in their structures
 ii. their quantity is negligible
3. **Theorem:** Almost all trees computing the function \(f \) are obtained by plugging a special subtree in a minimal tree of \(f \).
The associative and commutative model

\[\overline{x_1} \lor x_1 \land \overline{x_2} \lor x_2 \land \overline{x_3} \lor x_3 \]

\[\overline{x_1} \lor x_1 \land \overline{x_2} \lor x_2 \land \overline{x_3} \lor x_3 \]

Ge Gi Kr Ma (UPMC, TUW, UVSQ)

Associative and commutative trees

17th. June 2011 14 / 20
The associative and commutative model

\[\mathcal{T} \lor = \mathcal{X} \mid \lor MSET \geq 2(\mathcal{T} \land) \]
The associative and commutative model

\[T^\vee = \mathcal{X} \mid \vee \text{MSET}^{\geq 2}(T^\wedge) \]

\[T^\vee(z) = 2nz + \exp \left(\sum_{i \geq 1} \frac{T^\wedge(z^i)}{i} \right) - 1 - T^\wedge(z), \]
The associative and commutative model

\[T^\lor = \mathcal{X} | \lor MSET \geq 2(T^\land) \]

\[T^\lor(z) = 2nz + \exp \left(\sum_{i \geq 1} \frac{T^\lor(z^i)}{i} \right) - 1 - T^\lor(z), \]
The associative and commutative model

\[T^\lor = x \lor MSET_{\geq 2}(T^\land) \]

\[T^\lor(z) = 2nz + \exp \left(\sum_{i \geq 1} \frac{T^\lor(z^i)}{i} \right) - 1 - T^\lor(z), \]

\[T(z) = 2T^\lor(z) - 2nz. \]
Main lemma

Let \mathcal{V} be a fixed subset of literals and A a tree whose leaves are labelled by \mathcal{V}:
Main lemma

Let \mathcal{V} be a fixed subset of literals and A a tree whose leaves are labelled by \mathcal{V}:
Main lemma

Let \mathcal{V} be a fixed subset of literals and A a tree whose leaves are labelled by \mathcal{V}:

$$\mu_n(\mathcal{F}_A) = \Theta \left(\frac{1}{n^{|A|}} \right), \text{ when } n \text{ tends to infinity.}$$

The proof is adapted from Kozik’s proof on plane binary trees.
Valid expansions

Let f be the function computed by $x_1 \land (x_2 \lor x_3)$: $L(f) = 3$.

\[\begin{array}{c}
\land \\
\lor \\
\land \\
\land \\
x_1 \\
x_2 \\
\bar{x}_3
\end{array} \]
Valid expansions

Let f be the function computed by $x_1 \land (x_2 \lor x_3)$: $L(f) = 3$.

\[x_1 \land (x_2 \lor x_3) \]
Let f be the function computed by $x_1 \land (x_2 \lor x_3)$: $L(f) = 3$. Four types of valid expansions applied on minimal trees of f give:

\[\mathbb{P}_n(f) \gtrsim_{n \to \infty} \frac{\lambda_f}{n^4}. \]
Let f be the function computed by $x_1 \land (x_2 \lor x_3)$: $L(f) = 3$.

Four types of valid expansions applied on minimal trees of f give:

$$\mathbb{P}_n(f) \gtrsim_{n \to \infty} \frac{\lambda_f}{n^4}.$$

All other trees computing f belong to families containing at least 5 restrictions.
Conclusion and perspectives
Conclusion

Without closed forms for the generating functions of the families of trees we consider, we have obtained the same kind of results than with plane binary trees.
Conclusion

Without closed forms for the generating functions of the families of trees we consider, we have obtained the same kind of results than with plane binary trees.

Although the commutative models give more importance to symmetric formulas, it is not sufficient for modifying the asymptotic order of the probability of fixed functions.
Conclusion

Without closed forms for the generating functions of the families of trees we consider, we have obtained the same kind of results than with plane binary trees.

Although the commutative models give more importance to symmetric formulas, it is not sufficient for modifying the asymptotic order of the probability of fixed functions.

According to these results on probabilities on fixed functions, we conjecture to have the same behaviour: Almost all functions are of low complexity.
To obtain other kind of probability distributions:

- Changing the size notion for associative model,
To obtain other kind of probability distributions:

- Changing the size notion for associative model,
- Using direct acyclic graphs instead of trees.