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Abstract
Estrogens play important roles in the development and progression of multiple
tumor types. Accumulating evidence points to the significance of estrogen action
not only in tumors of hormonally regulated tissues such as the breast,
endometrium and ovary, but also in the development of colorectal cancer (CRC).
The effects of estrogens in physiological and pathophysiological conditions are
mediated by the nuclear estrogen receptors α and β, as well as the membrane-
bound G protein-coupled estrogen receptor (GPER). The roles of GPER in CRC
development and progression, however, remain poorly understood. Studies on
the functions of GPER in the colon have shown that this estrogen receptor
regulates colonic motility as well as immune responses in CRC-associated
diseases, such as Crohn’s disease and ulcerative colitis. GPER is also involved in
cell cycle regulation, endoplasmic reticulum stress, proliferation, apoptosis,
vascularization, cell migration, and the regulation of fatty acid and estrogen
metabolism in CRC cells. Thus, multiple lines of evidence suggest that GPER may
play an important role in colorectal carcinogenesis. In this review, we present the
current state of knowledge regarding the contribution of GPER to colon function
and CRC.
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Core tip: G protein-coupled estrogen receptor (GPER) is a membrane-bound estrogen
receptor that participates in the rapid non-genomic actions of estrogens involving
numerous downstream signaling pathways. GPER is expressed in the gastrointestinal
tract and is engaged in physiological and pathophysiological processes in the colon. This
review aims to assess the significance of GPER expression and estrogenic signaling in
colorectal carcinogenesis.
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INTRODUCTION
The roles of estrogen (17β-estradiol) and its receptors in gastrointestinal (GI) diseases
are complex. The lower incidence rate of colon cancer in women compared to men
suggests a protective role for the female sex hormone estrogen[1,2]. However, because
estrogen  has  at  least  three  receptors,  contradictory  pro-  and  anti-tumorigenic
mechanisms have been observed depending on the receptor-mediated mechanisms
examined. The effects of estrogens are mediated by receptors including the nuclear
estrogen receptors (i.e., ERα and ERβ)[3] and the G protein-coupled estrogen receptor
(GPER, previously known as GPR30)[4].  GPER is a seven-transmembrane receptor
cloned from the ER-positive MCF-7 cell line[5], among other sources[6-11]. As opposed to
nuclear estrogen receptors that are primarily responsible for the genomic actions of
estrogens, GPER initiates many rapid non-genomic actions of estrogen involving
secondary messengers, which can also ultimately lead to secondary gene expression
changes[4,12,13].  GPER activity is  not  only stimulated by 17β-estradiol,  but  also by
numerous  xeno-  and phyto-estrogens  (e.g.,  bisphenols  and genistein),  clinically
relevant  anti-hormonal  therapeutic  agents  (e.g.,  tamoxifen  and fulvestrant)  and
synthetic GPER-selective ligands (e.g., G-1, G15 and G36) as summarized in Table 1[4].
GPER expression and activity, the latter often defined employing GPER-selective
ligands,  have  been  linked  to  many  aspects  of  normal  physiology  and  patho-
physiology[14-16].

Experimental evidence strongly suggests that estrogen, and therefore its receptors,
plays important roles in neoplastic transformation of the colon[17,18]. One challenge in
understanding  these  roles  is  the  often-contradictory  results  regarding  estrogen
receptors and their roles in GI diseases. Although estrogen is generally thought to be
anti-inflammatory, and inflammation typically contributes to carcinogenesis, the roles
of  individual  estrogen  receptors  are  complex,  which  may  result  in  conflicting
observations. Among the various estrogen receptors, ERβ, in particular, has been
suggested to act as a tumor suppressor in colorectal cancer (CRC) and serves as a
prognostic factor for CRC progression. Stevanato Filho et al[18] observed significantly
lower ERβ levels in CRC patients with clinical stage III and IV disease compared to
patients  with  stage  I  and  II  disease.  The  absence  of  ERβ  in  CRC is  thus  a  poor
prognostic factor associated with higher mortality [hazard ratio = 3.0, 95% confidence
interval (CI) = 1.2-7.5]. However, in contrast to its established tumor-protective role,
Cho et al[17] used ER-deficient mice to show that, in addition to ERβ, ERα is also crucial
for enterocyte growth and differentiation. Both nuclear estrogen receptors appear to
be important modulators of colon neoplastic transformation as ERβ or ERα deficiency
was associated with tumor progression and abnormal mucosal histology in an APC-
dependent tumorigenesis model employing C57BL/6-Min/+ mice[17]. However, in
addition to the nuclear estrogen receptors, accumulating evidence suggests that GPER
is also involved in many aspects of CRC cell pathophysiology. In this review, we
summarize  the  evidence  for  GPER expression  and  function  in  the  colon  and  in
colorectal carcinogenesis.

GPER MODULATES COLONIC MOTILITY
Colonic motility regulates the frequency and timing of  defecation as well  as  the
consistency of stools, with the main symptoms of colon movement disorders being
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Table 1  G protein-coupled estrogen receptor ligands

Agonist Type

Estrogen (17β-estradiol) Natural steroid

Bisphenol A Synthetic xenoestrogen

Genistein Natural phytoestrogen

Tamoxifen Synthetic therapeutic

Fulvestrant (ICI 182.780) Synthetic therapeutic

G-1 Synthetic selective ligand

Antagonist Type

G15 Synthetic selective ligand

G36 Synthetic selective ligand

constipation  and diarrhea.  A large  retrospective  study demonstrated  a  positive
association between chronic constipation and a higher prevalence, as well as risk, of
benign neoplasm and CRC[19]. Moreover, incidence rate ratio analyses have shown
that an increased risk of both benign and malignant colorectal neoplasms appears to
be  directly  related  to  the  severity  of  constipation.  Additional  evidence  linked
constipation, defined as fewer than three bowel movements per week, with an overall
2.4-fold increase in CRC development[20]. Interestingly, although women overall have
a slightly lower risk of developing CRC than men, women with constipation appear
to be more prone to CRC development (odds ratio = 2.7, 95%CI = 1.5-5.0) compared to
men with constipation (odds ratio = 1.7, 95%CI = 0.6-4.9). Mechanistically, although
colon  motor  dysfunction  may  increase  exposure  of  the  GI  tract  to  carcinogens,
evidence suggests that colonic transit time also influences bacterial metabolism and
mucosal turnover, both of which may affect CRC development[21].

Two independent studies have revealed that  GPER activity influences colonic
motility in vivo[22,23]. Li et al[22] demonstrated that GPER activity affects colonic motility
in multiple phases of the estrous cycle in female mice. Colonic transit time, which was
significantly longer during the proestrus and estrus phases (vs diestrus phase), was
reduced by selective GPER inhibition with the GPER antagonist G15[24,25]. Similarly, in
ovariectomized mice, acute estrogen treatment increased colonic transit time, and was
reversed by co-administration of  G15.  Ex vivo,  GPER activation with the  GPER-
selective agonist G-1[26] inhibited circular muscle strip contraction in a nitric oxide
(NO)-dependent  manner,  and stimulated  NO production  in  cultured  myenteric
nitrergic  neurons,  which  together  act  to  reduce  colonic  motor  function.  Further
supporting this mechanism, Zielińska et al[23] and Li et al[22], demonstrated, using the
colonic bead expulsion test,  that GPER stimulation by G-1 or estrogen treatment
prolongs colonic transit time in both male and female mice. The inhibitory effect of
GPER activation on the number of fecal pellets excreted was further confirmed in vivo
employing a mouse model  of  hypermotility.  The potential  mechanism by which
GPER affects colonic motility appears to involve inhibition of muscle contractility, as
determined by electrical  field-  and bethanechol-stimulated longitudinal  smooth
muscle contractions[23].

Further indirect evidence highlighting the importance of GPER in the regulation of
colonic motor function is derived from studies of irritable bowel syndrome (IBS)
patients[27,28].  Alterations  in  GPER mRNA and protein  expression  in  the  colonic
mucosa, as well as serum estrogen levels, were reported in samples from IBS patients
with constipation (IBS-C) or  diarrhea (IBS-D)[27].  An increased number of  GPER-
positive colonic mast cells in IBS-D patients compared to either healthy control or IBS-
C patients has also been observed[28]. GPER-positive cell staining in the colonic mucosa
also  correlated  with  increased  abdominal  pain  severity  in  IBS-D  patients  and
increased expression of GPER in the cytoplasm of mast cells, which are associated
with abdominal bloating frequency and dysmotility-like dyspeptic symptom severity
and frequency in IBS patients. These results suggest a possible role for GPER in mast
cells  and  immune  function  at  large,  which  play  an  important  role  in  intestinal
function and disease[29].

GPER IN IMMUNE REGULATION AND COLONIC
INFLAMMATION
Crohn’s disease (CD) and ulcerative colitis (UC), the two most commonly diagnosed
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types  of  inflammatory  bowel  disease  (IBD),  are  characterized  by  chronic  colon
inflammation and are associated with a higher risk of CRC development[27]. A meta-
analysis performed by Flores et al. reported that patients with histologic inflammation
are more prone to colorectal dysplasia and/or cancer development (odds ratio = 2.6,
95%CI = 1.5-4.5)  compared to patients without mucosal  inflammation[30].  For UC
patients,  the increased risk of CRC development appears to be related to disease
duration[31]. A meta-analysis by von Roon et al[32] further revealed that patients with
CD  experience  a  higher  relative  risk  of  CRC  development,  related  to  both  the
anatomic localization of disease and patient age. CD patients with disease affecting
ileocolic and colon segments experience relative risks of 4.6 (95%CI = 2.1-10.3) and
13.4  (95%CI  =  5.7-13.2)  for  the  development  of  ileocolic  and  colorectal  cancer,
respectively. Furthermore, population-based studies have shown that the presence of
CD before  the  age  of  25  and  30  correlates  with  very  high  relative  risks  of  CRC
development (21.5, 95%CI = 11.4-40.4 and 9.5, 95%CI = 3.1-23.2, before the age of 25
and 30, respectively)[32].

Immunomodulatory roles for estrogen and its receptors in the pathogenesis of IBD
have been documented[17,33-36],  but  the specific  mechanisms and roles  of  GPER in
modulating immune responses remain unclear. In addition to the nuclear estrogen
receptors,  GPER is  expressed at  both the mRNA and protein levels  in  intestinal
samples obtained from both IBD patient subtypes (i.e., CD and UC)[37]. In patients with
CD, GPER protein content was increased in non-inflamed colon areas compared to the
control group but lower in inflamed colon tissue compared to non-inflamed colon,
suggesting the possibility of a complex protective role for GPER in colitis[37]. To date,
although there is no direct evidence showing GPER regulates immune responses in
CRC  or  the  CRC  microenvironment,  several  studies  show  that  GPER  is  indeed
expressed in multiple immune cells, including monocytes/macrophages, neutrophils,
B and T cells[38-44]. Accumulating evidence suggests that GPER modulates cytokine and
cytokine receptor expression in immune cells,  cancer cells  and cancer-associated
fibroblasts (CAFs). In breast cancer, estrogen signaling through GPER regulates CAF-
mediated  progression  of  breast  cancer  and  is  associated  with  several  signaling
pathways leading to the modulation of gene expression[45-48]. Pro-tumorigenic effects of
GPER activation result from receptor tyrosine kinase [e.g., insulin-like growth factor
receptor  I  and  epidermal  growth  factor  receptor  (EGFR)]  modulation  and
downstream effector proteins such as AKT and extracellular signal-regulated kinase
(ERK)[47].  GPER-mediated ERK activation in breast  CAFs leads to changes in the
expression of the proto-oncogenes c-Fos, cyclin D1 and connective tissue growth factor
(CTGF)[45,46,48], which play an important role in many cancers including CRC[49].

GPER also plays an important role in the regulation of interleukin (IL)-1β and IL-1R
expression in CAFs and breast  cancer  cells,  leading to a  gene expression profile
associated with  cancer  cell  invasiveness[50].  GPER’s  immunomodulatory  activity
occurs not only in CAFs, but also in several immune cell types. In lipopolysaccharide
(LPS)-stimulated primary human macrophages, GPER activation leads to inhibition of
tumor necrosis factor-α (TNF-α), IL-6, IL-12 and C-C motif ligand (CCL) 5 secretion[38].
A similar effect was observed in the murine macrophage cell line RAW 264.7, where
G-1  treatment  inhibited  TNF-α  secretion  from  LPS-stimulated  cells.  The  anti-
inflammatory properties of GPER activation were confirmed in an animal model of
multiple sclerosis (experimental autoimmune encephalomyelitis), where G-1 therapy
reduced the severity of symptoms and the number of nervous system-infiltrating
macrophages[38]. The ability of GPER to inhibit LPS-induced IL-6 expression in murine
macrophages was shown to occur via NF-κB signaling[51]. Together, these data suggest
a potentially central role for GPER in regulating inflammation during IBD.

GPER activity in macrophages may also be important in tumor development and
progression within the GI tract. The importance of tumor-associated macrophages
(TAMs), specifically in pancreatic cancer has been recently highlighted[41]. In a murine
model of pancreatic cancer, treatment with tamoxifen, which acts as a GPER agonist
(see Table 1), reduced the percentage of tissue macrophages as well as the polarization
of TAMs to the M2 phenotype. In macrophage-like murine RAW 264.7 cells, GPER
regulated  focal  adhesions,  cell-extracellular  matrix  attachment  and  invasion[41].
Macrophages are associated with the development and progression of colitis and
neoplastic transformation of the colon. Whereas M1 macrophages are elevated in
intestinal samples from IBD patients where they promote inflammation, during CRC
progression, increased M2/M1 ratios appear to correlate with increased liver me-
tastasis[52-54]. Overall, these complex actions of GPER suggest a “protective” role in
CRC development and progression.

IL-6 is  an important mediator of  cancer cell  function and tumor development;
however, conflicting data exist as to the role of GPER in its regulation. Bisphenol A
(BPA), a non-selective ER/GPER agonist (Table 1) induces proliferation, migration
and invasion of laryngeal cancer cells, as a result of increased IL-6 mRNA expression,
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potentially via GPER activation[55]. Furthermore, treatment with the GPER-selective
inhibitor  G15  and/or  siRNA  targeting  of  GPER  attenuated  cell  proliferation,
migration and IL-6 expression of laryngeal cancer cells. These processes involved
signal transducer and activator of transcription 3 (STAT3) activation by GPER/IL-6
signaling as assessed by siRNA targeting of IL-6 or GPER[55]. As STAT3 is known to
regulate both pro- and anti-inflammatory cytokine production, the exact role of GPER
in these complex processes needs to be further investigated. It should be noted that
BPA action may also depend on both the cell type and the nuclear estrogen receptor
status of cells[56]. In contrast to these results, in a more “typical” anti-inflammatory
estrogen response, GPER inhibited IL-6 expression via NF-κB inhibition, leading to
reduced migration of triple negative MDA-MB-231 breast cancer cells[57]. As a result,
in MDA-MB-231 xenograft tumors, GPER activation inhibited both angiogenesis and
metastasis. GPER-mediated inhibition of IL-6 production was also demonstrated in
TNFα-stimulated breast cancer cells and osteosarcoma cells where GPER inhibited IL-
6 expression, suppressing migration and invasion[58,59]. Overall, these results suggest
the effects of GPER expression and activity may be tumor type- and context-specific.

Accumulating evidence reveals that GPER is a crucial immunoregulatory factor not
only  in  macrophages,  but  also  in  granulocytes,  which  significantly  impact  IBD
progression. GPER modulates multiple mediators of the immune response in fish
acidophilic  granulocytes[40],  including IL-1β  and IL-10,  as  well  as  prostaglandin-
endoperoxide  synthase  2  and  prostaglandin  D2  synthase  expression,  through
activation  of  the  cAMP/PKA/CREB signaling  pathway.  These  mechanisms  are
important  in IBD[60]  and thus should be further examined.  In a  murine model  of
castration-resistant prostate cancer, tumor neutrophil influx was observed following
G-1  therapy  and  was  associated  with  extensive  tumor  necrosis,  suggesting  a
previously unrecognized role for GPER in men[61].

Multiple reports have highlighted that GPER also stimulates anti-inflammatory
immune responses through the modulation of T cell function and cytokine expression,
representing a potential therapeutic target for certain autoimmune diseases. In one
study of autoimmune encephalomyelitis, splenocytes cultured from G-1-treated mice
and stimulated with antigen, yielded lower IFN-γ, TNF-α, IL-17, CCL4 and CCL5
protein levels in supernatants compared to splenocytes from vehicle-treated mice[38].
In other studies, GPER activation increased production of IL-10 (an anti-inflammatory
cytokine  that  inhibits  several  immune  cell  types)  in  CD4+  T  cells  under  Th17
polarizing conditions, generating hybrid autoregulatory T cell populations[39]. This
effect was abolished by GPER and ERK inhibitors, but not by p38 or Jun N-terminal
kinase inhibitors,  suggesting that GPER regulates IL-10 production through ERK
signaling.  GPER’s  anti-inflammatory  action  may  be  mediated  through  specific
immune cell types as a higher frequency of IL-10-producing CD4+ (but not CD8+) T
cells is observed in mouse splenocytes following GPER activation[62]. Moreover, G-1-
treated mice showed a significantly higher population of IL-10-producing GPER+

CD4+ T cells, consistent with the ability of GPER to regulate IL-10 production.
In additional T cell studies employing a mouse model of asthma, G-1 reduced the

level  of  Th2  cytokines,  such  as  IL-5  and  IL-13,  in  bronchoalveolar  lavage  fluid,
suggesting negative regulation of acute asthma through IL-10-producing T cells[62]. In
IBD,  several  intestinal  T  cell  populations  are  dysregulated,  with  the  extent  of
dysregulation correlating to disease severity. In clinical samples obtained from IBD
patients with active disease, higher and lower levels of CD4+ T cells and CD8+ T cells,
respectively, are present compared to healthy controls and IBD patients with inactive
disease[63]. However, in CRC tumors, only an increased percentage of CD4+ T cells, but
not  CD8+  T  cells  was  observed[64].  The  significance  of  regulatory  T  cells  in  in-
flammation and CRC progression, together with the anti-inflammatory properties of
GPER, indicates that GPER activation in CD4+ T cells may be a promising target to
modulate  colon immune responses.  However,  although GPER activity  in  T cells
generally appears to promote anti-inflammatory responses,  which would have a
positive impact in inflammatory diseases, such responses may have a potentially
negative impact in cancer, where immune monitoring is critical. Taken together, these
results suggest that as an important regulator of colon inflammation and immune
responses in CRC, GPER action may also be important in the context of long-term
immune response deregulation, which is critical in CRC development associated with
IBD.

THE ROLES OF GPER IN CRC CELL PROLIFERATION AND
APOPTOSIS
Accumulating evidence indicates  important  roles  for  estrogen and its  receptors,
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including GPER, as revealed by selective ligands such as G-1, in the regulation of
cancer cell growth, survival and function[65].  GPER appears to regulate cancer cell
proliferation and survival not only in estrogen-associated cancers such as breast[66],
ovarian[67]  or endometrial[68,69],  but also in other cancer types not traditionally as-
sociated with estrogen (e.g., lung and CRC)[47,70-77]. Several cellular mechanisms are
regulated by GPER in cancer cells, including cell cycle, endoplasmic reticulum stress
and apoptosis. In both HCT-116 and SW-480 CRC cells, GPER activation by G-1 led to
cell cycle arrest and inhibition of proliferation[74]. The higher proportion of HCT-116
cells  in  the  apoptotic  sub-G1  phase,  as  well  as  lower  mitochondrial  membrane
polarity,  following  GPER  activation,  suggests  that  GPER  activation  promotes
apoptosis in CRC cells. Consistent with this, G-1 treatment induced up-regulation of
pro-apoptotic factors such as Bcl-2-associated X protein, cyclin-dependent kinase
inhibitor  1  (p21),  and cleaved caspase-3,  with down-regulation of  anti-apoptotic
factors, such as B-cell lymphoma 2 (Bcl-2) and procaspase-3.

Cancer  cell  growth  arrest  and  apoptosis  are  also  regulated  by  endoplasmic
reticulum stress  signals  (reviewed by Sano and Reed[78]).  Among several  factors
modulating endoplasmic reticulum stress, protein expression of ATF4 and 6, XBP-1
and CHOP increased upon G-1 treatment of HCT-116 cells[74]  (Figure 1). Elevated
reactive oxygen species (ROS) and ERK1/2 phosphorylation, resulting from GPER-
mediated signaling,  also contributed to growth arrest  of  HCT-116 cells[74].  These
pathways are particularly important in chronic inflammation, where immune cell-
released ROS and cytokines activate the NF-κB pathway. GPER mediates inhibition of
IκBα, which leads to phosphorylation of NFκB/p65 and nuclear translocation, as well
as GSK-3β phosphorylation (Figure 1). Constitutive NF-κB activity in cancer cells
drives  neoplastic  transformation  and  tumor  progression,  affecting  cancer  cell
proliferation and survival[79-81]  as  well  as  tumor angiogenesis[82],  metabolism[83,84],
immune response[85] and metastatic potential of cancer cells[82].

GPER may also be a regulator of genetic transmission during cell division in CRC
cells.  In  HT-29 cells,  BPA up-regulated mRNA levels  of  CDCA8 (also  known as
Borealin), a crucial member of the chromosomal passenger complex that mediates
several events during mitosis[86] (Figure 1). Although BPA is classically thought to
function through the nuclear estrogen receptors, particularly ERα, it also binds and
activates GPER (Table 1)[4]. Since HT-29 cells express only GPER and ERβ, the effects
of BPA on CDCA8 expression are likely mediated, at least in part, by GPER[86]. GPER
also  regulates  ataxia  telangiectasia  mutated  (ATM),  an  important  protein  in
carcinogenesis, through regulation of the cell cycle and DNA repair (reviewed by
Branzei and Foiani[87]). In a human breast cancer study, ATM phosphorylation was
positively correlated with lymph node metastasis[88].  However, in CRC and colon
adenomas, increased ATM promoter methylation was observed compared to control
tissue[89].  Estrogen,  acting through GPER,  represses  ATM  expression under  both
normoxic and hypoxic conditions in HT-29 cells[70], with the effect of estrogen on ATM
expression being stronger under hypoxic conditions, suggesting an effect of oxygen
levels on estrogen’s effects.

Hypoxia  plays  an  important  role  in  tumor  progression,  affecting  tumor  vas-
cularization, epithelial-mesenchymal transition and metastasis as well as chemo- and
radio-resistance[90]. Under hypoxic conditions, the pathways activated by hypoxia-
inducible  factor  (HIF)  control  numerous  cellular  proteins,  including  vascular
endothelial growth factor (VEGF), driving tumor growth. GPER mediates estrogen’s
suppression or enhancement of HIF-1α and VEGFA expression under normoxic and
hypoxic conditions, respectively[70]. Furthermore, GPER mediates opposing functions
in HT-29 and DLD1 CRC cells,  dependent on oxygen levels,  with GPER agonists
suppressing proliferation under normoxic conditions, but increasing proliferation
under hypoxic conditions.

The  production  and  presence  of  local  estrogens  may  be  important  in  the
development and progression of  CRC. The ability  of  GPER to regulate  CRC cell
proliferation may thus represent a mechanism through which the known effects of
estrogen on CRC are mediated. In vitro and in vivo studies have shown that estrogen
promotes CRC in part through the dysregulation of enzymes involved in estrogen
metabolism. Specifically, in post-menopausal women and men with CRC, compared
to age-matched control groups, higher colonic activity of the enzyme steroid sulfatase
(STS), which converts circulating sulfated estrogens to the active forms, has been
observed[91]. Furthermore, increased protein and mRNA levels of 17β-hydroxysteroid
dehydrogenase (HSD17) B7 and B12 (responsible for the conversion of estrone to
estrogen) are present in human CRC tissue samples, whereas mRNA and protein
levels of the enzyme catalyzing conversion of estrogen to estrone (i.e., HSD17B2) are
decreased.  Experimental  evidence  strongly  suggests  that  supplementation  with
estrogen or STS overexpression increases CRC cell proliferation in vitro and in vivo.
The  latter  was  demonstrated  using  a  murine  CRC  xenograft  model  with  STS-

WJG https://www.wjgnet.com August 14, 2019 Volume 25 Issue 30

Jacenik D et al. GPER in colon function and cancer

4097



Figure 1

Figure 1  Signaling pathways modulated by G protein-coupled estrogen receptor in colorectal cancer cells. ATF4: Activating transcription factor 4; ATF6:
Activating transcription factor 6; ATM: Ataxia telangiectasia mutated; CDCA8: Cell division cycle A8; CHOP: C/EBP-homologous protein; CTGF: Connective tissue
growth factor; E1: Estrone; E1S: Estrone sulfate; EGFR: Epithelial growth factor receptor; ERK 1/2: Extracellular signal-regulated kinase 1/2; FASN: Fatty acid
synthase; GPER: G protein-coupled estrogen receptor; HB-EGF: Heparin-binding epidermal growth factor; HIF-1α: Hypoxia-inducible factor-1α; IκBα: NFκB inhibitor α;
MMP: Matrix metalloproteinase; NFκB/p65: Nuclear factor κ-light-chain-enhancer of activated B cells; OATP4A1: Organic anion transporter polypeptide 4A1; P:
Phosphorylation; RAF: Rapidly accelerated fibrosarcoma, serine-threonine kinase; RAS: Rat sarcoma, small GTPase; ROS: Reactive oxygen species; SHC: Adapter
protein containing SRC homology 2 domain; SRC: Non-receptor tyrosine kinase; STS: Steroid sulfatase; SULT1E1: Sulfotransferase family 1E member 1; VEGFA:
Vascular endothelial growth factor A; XBP-1: X-box binding protein 1.

overexpressing cells[91]. Activation of GPER by estrogen derived from these multiple
sources  results  in  the  up-regulation  of  CTGF,  EGR1  and  ATF3,  with  CTGF up-
regulation  being  required  for  enhanced  cell  proliferation,  with  estrone  sulfate
transport and GPER-stimulated STS activity producing a novel estrogen-generating
positive  feedback  loop  (Figure  1)  that  may play  an  important  role  in  CRC pro-
gression[92].  Interestingly,  in addition to estrogen and G-1,  the breast  cancer the-
rapeutic agents, tamoxifen and fulvestrant (ICI 182.780), also increased STS activity (in
a GPER-dependent manner), suggesting these drugs could have a negative impact on
CRC development and progression.

GPER REGULATES CRC CELL MIGRATION
An increasing number of studies describes a modulatory effect of GPER activity on
cancer  cell  migration  and  invasion  in  multiple  cancer  types,  including  breast
(including triple-negative), endometrial, ovarian, lung, thyroid, kidney, and granulosa
cell[57,71,77,93-105]. In previous work that demonstrated the dual role of GPER activation on
CRC cell proliferation (see above), oxygen-dependent GPER-mediated effects on the
migration of HT-29 and DLD-1 cells was also observed[70]. Scratch wound and Boyden
chamber assays demonstrated that both G-1 and estrogen inhibited migration under
normoxic conditions, whereas GPER stimulation enhanced migration of CRC cells
under hypoxic conditions. Fatty acid synthase (FASN), a key lipogenic enzyme that
affects neoplastic transformation of the breast, colon and liver, has been described as a
metabolic oncogene[106-108] and is regulated by many factors, including estrogens[108,109].
GPER stimulation by G-1 or estrogen increases expression and activity of FASN via
EGFR/ERK/c-Fos/AP-1 signaling, resulting in increased growth and migration of
CRC cells, which was in turn decreased by a FASN inhibitor[108]. Thus, GPER activity
regulates cell motility through multiple complex mechanisms (Figure 1).

CLINICAL SIGNIFICANCE OF GPER IN CRC
There is conflicting evidence that GPER may act as a tumor suppressor as well as a
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tumor promoter in CRC. A seven-fold down-regulation of  GPER mRNA in CRC
samples  compared  to  adjacent  control  tissue  has  been  observed[74].  Immuno-
histochemical analysis confirmed a decrease in GPER protein expression in CRC
patients that was associated with decreased survival. Lower GPER expression also
correlated with tumor progression and lymph node metastasis. Bioinformatic analyses
of datasets (accession numbers: GSE2091 and GSE871) confirmed these results and
showed statistically significant lower GPER mRNA levels in both colon and rectal
adenoma  samples  compared  to  control  samples.  In  vitro  evidence  further  de-
monstrated  that  decreased  GPER  expression  in  HTC-8  and  SW-480  CRC  cells
correlated with  higher  promoter  methylation of  the  GPER gene as  compared to
LS147T CRC cells that exhibit high GPER expression. Beyond promoter methylation,
histone  H3  acetylation  may  represent  another  mechanism  regulating  GPER
expression  in  CRC  cell  lines  and  human  tissues  as  down-regulation  of  GPER
expression in HCT-8 and SW-480 cells was associated with decreased histone H3
acetylation. In contrast to the above results, based on Kaplan-Meier analyses of public
data (accession number: GSE39582), high GPER expression was associated with poor
relapse-free survival in women with stage 3/4 (but not stage 1/2) CRC, but not in
men with disease of any stage[70]. Overall, these results suggest that GPER plays a
complex  role  in  colorectal  carcinogenesis  that  is  further  complicated  by  sexual
dimorphism, potentially as a result of estrogen-dependent signaling in CRC.

CONCLUSION
Estrogen signaling modulates cancer cell proliferation, invasion and migration, acting
not only through the nuclear estrogen receptors α and β, but also through the GPER.
GPER is  without  a  doubt  an  important  mediator  of  colorectal  neoplastic  trans-
formation  and  progression.  Clinical  and  experimental  data  are  however,  not
unambiguous, which may result from the use of CRC cell lines with different GPER
expression levels or GPER-mediated signaling pathways. On the other hand, recent
studies have revealed the dual role of GPER in CRC development, potentially related
to the modulation of both anti-tumorigenic and pro-tumorigenic effects, depending in
part on oxygen levels in cancer cells. At the molecular level, GPER-mediated signaling
in  CRC cells  regulates  endoplasmic  reticulum and mitochondrial  functions,  the
metabolism of fatty acids and estrogens and the expression of genes directly involved
in cell  proliferation and survival  (summarized in  Table  2).  In  conclusion,  GPER
appears  to  be  an  important  mediator  of  estrogenic  actions  in  both  neoplastic
transformation of the colon and tumor progression, effects that need to be considered
in the application and development of therapeutic strategies.
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Table 2  Processes modulated by G protein-coupled estrogen receptor and their importance in neoplastic transformation of the colon

Features of cancer cells Process Anti-tumorigenic Pro-tumorigenic Ref.

Proliferation and tumor growth Apoptosis Yes No
[73]

Cell cycle Yes No
[73]

DNA repair No Yes
[64]

Endoplasmic reticulum stress Yes No
[73]

Estrogen metabolism No Yes
[90,91]

Mitochondrial membrane
polarity

Yes No
[73]

Oxygen level Yes under normoxia Yes under hypoxia
[64]

Migration Fatty acid metabolism No Yes
[107]

Oxygen level Yes under normoxia Yes under hypoxia
[64]
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