ON DISTANCE EDGE COLOURINGS OF A CYCLIC MULTIGRAPH

ZDZISLAW SKUPIEŃ
Faculty of Applied Mathematics
University of Mining and Metallurgy AGH
al. Mickiewicza 30, 30–059 Kraków, Poland

e-mail: skupien@uci.agh.edu.pl

We shall use the distance chromatic index defined by the present author in early nineties, cf. [5] or [4] of 1993. The edge distance of two edges in a multigraph M is defined to be their distance in the line graph $L(M)$ of M. Given a positive integer d, define the d^{+}-chromatic index of the multigraph M, denoted by $q^{(d)}(M)$, to be equal to the chromatic number χ of the dth power of the line graph $L(M)$,

$$q^{(d)}(M) = \chi(L(M)^d).$$

Then the colour classes are matchings in M with edges at edge distance larger than d apart.

Call C to be a cyclic multigraph if C consists of a cycle on n vertices with possibly more than one edge between two consecutive vertices.

The following problem was presented in [6].

Problem. Given an integer $d \geq 2$ and a cyclic multigraph C, find (or estimate) $q^{(d)}(C)$, the d^{+}-chromatic index of C.

In other words, generalize the following formula due to Berge [1] for the ordinary chromatic index ($q = q^{1}$)

$$q(C) = \max \left\{ \frac{\Delta(C) + \left\lceil \frac{e(C)}{4\Delta(C)} \right\rceil}{2}, \Delta(C) \right\}$$

for odd n,

$$\frac{\Delta(C)}{2}$$

for even n,

where $\Delta(C)$ and $e(C)$ are the maximum degree among vertices and the size of C, respectively.
Remarks 1. 2^+-chromatic index $q^{(2)}$ is known under the name *strong chromatic index*, estimations of $q^{(2)}(C)$ being studied in [2, 3].

2. In [5] it is proved that
\[
q^{(d)}(pC_n) = \begin{cases}
 pn & \text{if } n \leq 2d + 1, \\
 \left\lfloor \frac{pn}{d+1} \right\rfloor & \text{if } n \geq d + 1
\end{cases}
\]

where pC_n is the cyclic multigraph C with all edge multiplicities equal to p.

3. Let M be a loopless multigraph whose underlying graph is a forest. Then $q^{(d)}(M)$, the d^+-chromatic index of M, can be seen to be equal to the diameter-d cluster (or diameter-d edge-clique) number of M (i.e., the density of the dth power, $L(M)^d$, of the line graph of M). This extends the known corresponding results on a tree [5] and on $q^{(2)}(M)$ in [2].

References

Received 21 March 1999
Revised 13 September 1999